

BCA Sem-5 PAPER: BCAB3104T

 Java Programming

UNIT No. 1

C
e
n
te

r
fo

r
D
is
ta

n
c
e
 a

n
d
 O

n
li
n
e

E
d
u
c
a
ti
o
n
,

P
u
n
ja

b
iU

n
iv

e
rs

it
y
,P

a
ti

a
la

(A

llC
o
p
y
ri
g
h
ts

a
re

R
e
se

rv
e
d
)

Lesson No:

1. Introduction to Java and Object Oriented Programming

2. Program Structure and Data Types

3. Operators in Java

4. Control Statements

5. Introduction to Classes

6. Constructors

7. Passing Objects and Access Specifiers

8. Nested and Inner Classes

2

(Syllabus)

BCAB3104T: Java Programming

Max Marks: 75 Maximum Time: 3 Hrs

Min Pass Marks: 35%

(A.) INSTRUCTION FOR THE PAPER SETTER

The question paper will consist of three sections A, B and C. Section A and B will have four

questions from the respective section of the syllabus carrying 15 marks for each question.

Section C will consist of 5-10 short answer type questions carrying a total of 15 marks,

which will cover the entire syllabus uniformly. . Candidates are required to attempt five

questions in all by selecting at least two questions each from the section A and B.

Section C is compulsory.

(B.) INSTRUCTIONS FOR THE CANDIDATES

Candidates are required to attempt five questions in all by selecting at least two questions

each from the section A and B. Section C is compulsory.

SECTION-A

Introduction to java: evolution, features, comparison with C and C++; Java program

structure; tokens, keywords, constants, variables, data types, type casting, statements.

Operators and expressions: arithmetic, relational, logical, assignment, increment,

decrement, conditional, bitwise and special operators. Operator precedence & associativity

rules.

Control statements: if else, switch case, for, while, do while, break, continue, labeled

loops.

Class: syntax, instance variable, class variables, methods, constructors, overloading of

constructors and methods.

SECTION B

Inheritance: types of inheritance, use of super, method overriding, final class, abstract

class, wrapper classes.

Arrays, Strings and Vectors, Packages and Interfaces, visibility controls

Errors and Exceptions: Types of errors, Exception classes, Exception handling in java,

use of try, catch, finally, throw and throws. Taking user input, Command line arguments.

Multithreaded Programming: Creating Threads, Life cycle of thread, Thread priority,

Thread synchronization, Inter-thread communication.

Text Book:

3

1. Patrick Naughton and Herbert Schildt, “The Complete Reference Java 2”, TMH

References:

2. Horstmann, Cay S. and Gary Cornell, “Core Java 2: Fundamentals Vol. 1”, Pearson

Education. 3. E. Balagurusamy “Programming with Java”, TMH

4

BCA SEM-5

Paper: BCAB3104T

Java Programming

Lesson No. 1 Author : Kanwal Preet Singh

Converted into SLM by: Dr. Vishal Singh

Introduction to Java and Object Oriented Programming

1.1 Objectives

1.2 Introduction

1.3 History

1.4 Object-oriented programming (OOP)

1.5 Fundamental Concepts of Object Oriented Programming

1.6 Java Platform

1.7 The Java Virtual Machine

1.8 Java portability

1.9 Features of Java

1.10 Java and Internet

1.11 Advantages of Java

1.12 Difference Between C++ and Java

1.13 Summary

1.14 Short Answer Type Questions

1.15 Long Answer Type Questions

1.16 Suggested Readings

1.1 Objectives

The objective of the lesson is to make students familiar with the history of Java.

The chapter also introduces the concept of Object Oriented Programming and we will also

discuss different characteristics of Object Oriented Programming and Java. After going

through the lesson, you will have understanding of Java Virtual Machine and why Java is

known as portable language.

1.2 Introduction

Java is a high-level, third generation programming language, like C, FORTRAN, Perl

and many others. You can use Java to write computer applications that crunch numbers,

process words, play games, store data or do any of the thousands of other things computer

software can do.

Compared to other programming languages, Java is most similar to C. However

although Java shares much of C's syntax, it is not C. Knowing how to program in C or

better yet, C++, will certainly help you to learn Java more quickly, but you don't need to

know C to learn Java. Unlike C++ Java is not a superset of C. A Java compiler won't

compile C code and most large C programs need to be changed substantially before they

can become Java programs.

5

What's most special about Java in relation to other programming languages is that

it lets you write special programs called applets that can be downloaded from the Internet

and played safely within a web browser. Traditional computer programs have far too much

access to your system to be downloaded and executed. Although you generally trust the

maintainers of various ftp archives and bulletin boards to do basic virus checking and not

to post destructive software, a lot still slips through the cracks. Even more dangerous

software would be propagated if any web page you visited could run programs on your

system. You have no way of checking these programs for bugs or for out-and-out malicious

behavior before downloading and running them.

Java solves this problem by severely restricting what an applet can do. A Java

applet cannot write to your hard disk without your permission. It cannot write to arbitrary

addresses in memory and thereby introduce a virus into your computer. It should not

crash your system.

1.3 History

Java was started as a project called "Oak" by James Gosling in June 1991.

Gosling's goals were to implement a virtual machine and a language that had a familiar C-

like notation but with greater uniformity and simplicity than C/C++. The first public

implementation was Java 1.0 in 1995. It made the promise of "Write Once, Run

Anywhere", with free runtimes on popular platforms. It was fairly secure and its security

was configurable, allowing for network and file access to be limited. The major web

browsers soon incorporated it into their standard configurations in a secure "applet"

configuration. It got popular quickly. New versions for large and small platforms (J2EE

and J2ME) soon were designed with the advent of "Java 2". In 1997, Sun approached the

ISO/IEC JTC1 standards body and later the Ecma International to formalize Java, but it

soon withdrew from the process. Java remains a proprietary de facto standard that is

controlled through the Java Community Process. Sun makes most of its Java

implementations available without charge, with revenue being generated by specialized

products such as the Java Enterprise System. Sun distinguishes between its Software

Development Kit (SDK) and Runtime Environment (JRE) which is a subset of the SDK, the

primary distinction being that in the JRE the compiler is not present.

1.4 Object-oriented programming (OOP)

Object-oriented programming (OOP) is a programming paradigm that uses

"objects" to design applications and computer programs. It utilizes several

techniques from previously established paradigms, including inheritance,

modularity, polymorphism and encapsulation. Today, many popular programming

languages (such as Ada, C++, Delphi, Java, Lisp, SmallTalk, Perl, PHP, Python, Ruby,

VB.Net, Visual FoxProand Visual Prolog) support OOP.

Object-oriented programming's roots reach all the way back to the 1960s, when the

growing field of software engineering had begun to discuss the idea of a software crisis. As

hardware and software became increasingly complex, how could software quality be

maintained? Object-oriented programming addresses this problem by strongly

emphasizing modularity in software.

6

The Simula programming language was the first to introduce the concepts

underlying object-oriented programming (objects, classes, subclasses, virtual methods,

coroutines, garbage collection and discrete event simulation) as a superset of Algol.

Smalltalk was the first programming language to be called "object-oriented".

 Object-oriented programming may be seen as a collection of cooperating objects, as

opposed to a traditional view in which a program may be seen as a list of instructions to

the computer. In OOP, each object is capable of receiving messages, processing data and

sending messages to other objects. Each object can be viewed as an independent little

machine with a distinct role or responsibility.

Object-oriented programming came into existence because human consciousness,

understanding and logic are highly object-oriented. By way of "objectifying" software

modules, it is intended to promote greater flexibility and maintainability in programming,

and is widely popular in large-scale software engineering. By virtue of its strong emphasis

on modularity, object oriented code is intended to be simpler to develop and easier to

understand later on, lending itself to more direct analysis, coding and understanding of

complex situations and procedures than less modular programming methods.

1.5 Fundamental Concepts of Object Oriented Programming

A survey of computing literature, identified a number of fundamental concepts,

identified in the strong majority of definitions of OOP. They are:

Class

A class defines the abstract characteristics of a thing (object), including the

thing's characteristics (its attributes or properties) and the things it can do (its

behaviors or methods or features). For example, the class Dog would consist of traits

shared by all dogs, for example breed, fur color, and the ability to bark. Classes provide

modularity and structure in an object-oriented computer program. A class should typically

be recognizable to a non-programmer familiar with the problem domain, meaning that the

characteristics of the class should make sense in context. Also, the code for a class should

be relatively self-contained. Collectively, the properties and methods defined by a class are

called members.

Object

A particular instance of a class is called an object. The class of Dog defines all

possible dogs by listing the characteristics that they can have; the object Labbie is one

particular dog, with particular versions of the characteristics. A Dog has fur; Labbie has

black fur. In programmer jargon, the object Labbie is an instance of the Dog class. The set

of values of the attributes of a particular object is called its state.

Method

An object's abilities. Labbie, being a Dog, has the ability to bark. So bark() is one of

Labbie's methods. She may have other methods as well, for example sit() or eat(). Within

the program, using a method should only affect one particular object; all Dogs can bark,

but you need one particular dog to do the barking.

7

Inheritance

In some cases, a class will have "subclasses" i.e more specialized versions of a

class. For example, the class Dog might have sub-classes called Labrador, Doberman and

GoldenRetriever. In this case, Labbie would be an instance of the Labrador subclass.

Subclasses inherit attributes and behaviors from their parent classes, and can introduce

their own. Suppose the Dog class defines a method called bark() and a property called

furColor. Each of its sub-classes (Labrador, Doberman, and GoldenRetriever) will inherit

these members, meaning that the programmer only needs to write the code for them once.

Each subclass can alter its inherited traits. So, for example, the Labrador class might

specify that the default furColor for a Labrador is black. The Doberman subclass might

specify that the bark() method is high-pitched by default. Subclasses can also add new

members. The Doberman subclass could add a method called tremble(). So an individual

Doberman instance would use a high-pitched bark() from the Doberman subclass, which

in turn inherited the usual bark() from Dog. The Doberman object would also have the

tremble() method, but Labbie would not, because she is a Labrador, not a Doberman. In

fact, inheritance is an "is-a" relationship: Labbie is a Labrador. A Labrador is a Dog. Thus,

Labbie inherits the members of both Labradors and Dogs. When an object or class inherits

its traits from more than one ancestor class, and neither of these ancestors is an ancestor

of the other, then it's called multiple inheritance.

Encapsulation

One major difference between conventional structured programming and object-

oriented programming is encapsulation. Encapsulation enables you to hide, inside the

object, both the data fields and the methods that act on that data. (In fact, data fields

and methods are the two main elements of an object in the Java programming language.)

After you do this, you can control access to the data, forcing programs to retrieve or modify

data only through the object's interface. In strict object-oriented design, an object's data is

always private to the object. Other parts of a program should never have direct access to

that data.

Abstraction

Abstraction is simplifying complex reality by modeling classes appropriate to the

problem, and working at the most appropriate level of inheritance for a given aspect of the

problem. In simple words when you are using a class you what work it does without

knowing how it accomplishes it. Abstraction refers to the process of concentrating on the

most essential aspects of the problem and ignoring the details.

Polymorphism

Polymorphism is the ability of behavior to vary based on the conditions in which the

behavior is invoked, that is, two or more methods, as well as operators (such as +, -, *,

among others) can fit to many different conditions. For example, if a Dog is commanded to

speak() this may elicit a Bark; if a Pig is commanded to speak() this may elicit an Oink.

This is expected because Pig has a particular implementation inside the speak() method.

The same happens to class Dog. Considering both of them inherit speak() from Animal,

this is an example of Overriding Polymorphism

8

1.6 Java Platform

Java is a platform for application development. A platform is a loosely defined

computer industry buzzword that typically means some combination of hardware and

system software that will mostly run all the same software. For instance PowerMacs

running Mac OS 9.2 would be one platform. DEC Alphas running Windows NT would be

another.

There's another problem with distributing executable programs from web pages.

Computer programs are very closely tied to the specific hardware and operating system

they run. A Windows program will not run on a computer that only runs DOS. A Mac

application can't run on a UNIX workstation. VMS code can't be executed on an IBM

mainframe, and so on. Therefore major commercial applications like Microsoft Word or

Netscape have to be written almost independently for all the different platforms they run

on. Netscape is one of the most cross-platform of major applications and it still only runs

on a minority of platforms.

Java solves the problem of platform-independence by using byte code. The Java

compiler does not produce native executable code for a particular machine like a C

compiler would. Instead it produces a special format called byte code. Java byte code

written in hexadecimal, byte by byte, looks like this:

CA FE BA BE 00 03 00 2D 00 3E 08 00 3B 08 00 01 08 00 20 08

This looks a lot like machine language, but unlike machine language Java byte

code is exactly the same on every platform. This byte code fragment means the same thing

on a Solaris workstation as it does on a Macintosh PowerBook. Java programs that have

been compiled into byte code still need an interpreter to execute them on any given

platform. The interpreter reads the byte code and translates it into the native language of

the host machine on the fly. The most common such interpreter is Sun's program java

(with a little j). Since the byte code is completely platform independent, only the interpreter

and a few native libraries need to be ported to get Java to run on a new computer or

operating system. The rest of the runtime environment including the compiler and most of

the class libraries are written in Java.

All these pieces, the javac compiler, the java interpreter, the Java programming

language and more are collectively referred to as Java.

1.7 The Java Virtual Machine

Machine language consists of very simple instructions that can be executed directly

by the CPU of a computer. Almost all programs, though, are written in high-level

programming languages such as Java, Pascal or C++. A program written in a high-level

language cannot be run directly on any computer. First, it has to be translated into

machine language. This translation can be done by a program called a compiler. A

compiler takes a high-level-language program and translates it into an executable

machine-language program. Once the translation is done, the machine-language program

can be run any number of times, but of course it can only be run on one type of computer

(since each type of computer has its own individual machine language). If the program is

to run on another type of computer it has to be re-translated, using a different compiler,

9

into the appropriate machine language. There is an alternative to compiling a high-level

language program. Instead of using a compiler, which translates the program all at once,

you can use an interpreter, which translates it instruction-by-instruction, as necessary.

An interpreter is a program that acts much like a CPU, with a kind of fetch-and-execute

cycle. In order to execute a program, the interpreter runs in a loop in which it repeatedly

reads one instruction from the program, decides what is necessary to carry out that

instruction, and then performs the appropriate machine-language commands to do so.

One use of interpreters is to execute high-level language programs. For example, the

programming language Lisp is usually executed by an interpreter rather than a compiler.

However, interpreters have another purpose: they can let you use a machine-language

program meant for one type of computer on a completely different type of computer. For

example, there is a program called “Virtual PC” that runs on Macintosh computers. Virtual

PC is an interpreter that executes machine-language programs written for IBM-PC-clone

computers. If you run Virtual PC on your Macintosh, you can run any PC program,

including programs written for Windows. (Unfortunately, a PC program will run much

more slowly than it would on an actual IBM clone. The problem is that Virtual PC executes

several Macintosh machine-language instructions for each PC machine-language

instruction in the program it is interpreting. Compiled programs are inherently faster than

interpreted programs.)

The designers of Java chose to use a combination of compilation and interpretation.

Pro-grams written in Java are compiled into machine language, but it is a machine

language for a computer that doesn’t really exist. This so-called “virtual” computer is

known as the Java Virtual Machine(JVM). The machine language for the Java virtual

machine is called Java byte-code. There is no reason why Java bytecode could not be used

as the machine language of a real computer, rather than a virtual computer. However, one

of the main selling points of Java is that it can actually be used on any computer. All that

the computer needs is an interpreter for Java bytecode. Such an interpreter simulates the

Java virtual machine in the same way that Virtual PC simulates a PC computer. Of course,

a different Jave bytecode interpreter is needed for each type of computer, but once a

computer has a Java bytecode interpreter, it can run any Java bytecode program. And the

same Java bytecode program can be run on any computer that has such an interpreter.

This is one of the essential features of Java: the same compiled program can be run on

many different types of computers.

10

Why, you might wonder, use the intermediate Java bytecode at all? Why not just

distribute the original Java program and let each person compile it into the machine

language of whatever computer they want to run it on? There are many reasons. First of

all, a compiler has to understand Java, a complex high-level language. The compiler is

itself a complex program. A Java bytecode interpreter, on the other hand, is a fairly small,

simple program. This makes it easy to write a bytecode interpreter for a new type of

computer; once that is done, that computer can run any compiled Java program. It would

be much harder to write a Java compiler for the same computer. Furthermore, many Java

programs are meant to be downloaded over a network. This leads to obvious security

concerns: you don’t want to download and run a program that will damage your computer

or your files. The bytecode interpreter acts as a buffer between you and the program you

download. You are really running the interpreter, which runs the downloaded program

indirectly. The interpreter can protect you from potentially dangerous actions on the part

of that program. You should note that there is no necessary connection between Java and

Java bytecode. A pro-gram written in Java could certainly be compiled into the machine

language of a real computer. And programs written in other languages could be compiled

into Java bytecode. However, it is the combination of Java and Java bytecode that is

platform-independent, secure and network-compatible while allowing you to program in a

modern high-level object-oriented language.

1.8 Java portability

So applets are really JVM code that is translated into the correct machine code by

the browser. That's why applets can run on any machine and C and C++ programs cannot.

This same two step translation can be used for Java applications as well as applets. If a

program is in JVM code, then it is portable and can be run on any machine that has a JIT

compiler on it.

C and C++ object programs are not portable because they are always translated

into the machine language for a specific machine. If you are very careful when you write

your C programs, you may be able to compile and run the source program on many

machines, but there are often big problems. For example, how big is a C int? On some

machines it is 16 bits, on some machines it is 32 bits, and some it is 64 bits. Java has

defined the basic types very exactly (eg, ints are always 32 bits). Another big problem is

that lack of standard library functions in C/C++. There are some standard library

11

functions for C/C++, but they are very small compared to Java and don't do many of the

things that programmers need to do (eg build a graphical user interface).

Portability is extremely important to many companies, since large companies usually have

many kinds of computers. If a company can "write once and run everywhere" they can

save an enormous amount of money. If a developer can do this, they will have a much

larger market for their software.

bytecode

 Programming code that, once compiled, is run through a virtual machine instead of

the computers processors. By using this approach, source code can be run on any

platform once it has been compiled and run through the virtual machine.

 Bytecode is the compiled format for Java programs. Once a java program has been

converted to bytecode, it can be transferred across a network and executed by Java Virtual

Machine (JVM). Bytecode files generally have a .class extension.

1.9 Features of Java

The main features of Java are:

Simple

Java was designed to make it much easier to write bug free code. Java has the bare

bones functionality needed to implement its rich feature set. It does not add lots of

syntactic sugar or unnecessary features. Despite its simplicity Java has considerably more

functionality than C, primarily because of the large class library.

About half of the bugs in C and C++ programs are related to memory allocation and

deallocation. Therefore the second important addition Java makes to providing bug-free

code is automatic memory allocation and deallocation. The C library memory allocation

functions malloc() and free() are gone as are C++'s destructors.

Java is an excellent teaching language and an excellent choice with which to learn

programming. The language is small so it's easy to become fluent. The language is

interpreted so the compile-run-link cycle is much shorter. The runtime environment

provides automatic memory allocation and garbage collection so there's less for the

programmer to think about. Java is object-oriented unlike Basic so the beginning

programmer doesn't have to unlearn bad programming habits when moving into real world

projects. Finally, it's very difficult (if not quite impossible) to write a Java program that will

crash your system, something that you can't say about any other language.

Object-Oriented

Object oriented programming is the catch phrase of computer programming in the

1990's. Although object oriented programming has been around in one form or another

since the Simula language was invented in the 1960's, it's really begun to take hold in

modern GUI environments like Windows, Motif and the Mac. In object-oriented programs

data is represented by objects. Objects have two sections, fields (instance variables) and

methods. Fields tell you what an object is. Methods tell you what an object does. These

fields and methods are closely tied to the object's real world characteristics and behavior.

When a program is run messages are passed back and forth between objects. When an

object receives a message it responds accordingly as defined by its methods.

12

Object oriented programming is alleged to have a number of advantages including:

 Simpler, easier to read programs

 More efficient reuse of code

 Faster time to market

 More robust, error-free code

Platform Independent(Portable)

Java was designed to not only be cross-platform in source form like C, but also in

compiled binary form. Since this is frankly impossible across processor architectures Java

is compiled to an intermediate form called byte-code. A Java program never really executes

natively on the host machine. Rather a special native program called the Java interpreter

reads the byte code and executes the corresponding native machine instructions. Thus to

port Java programs to a new platform all that is needed is to port the interpreter and some

of the library routines. Even the compiler is written in Java. The byte codes are precisely

defined and remain the same on all platforms.

The second important part of making Java cross-platform is the elimination of

undefined or architecture dependent constructs. Integers are always four bytes long, and

floating point variables follow the IEEE 754 standard for computer arithmetic exactly. You

don't have to worry that the meaning of an integer is going to change if you move from a

Pentium to a PowerPC. In Java everything is guaranteed.

However the virtual machine itself and some parts of the class library must be written in

native code. These are not always as easy or as quick to port as pure Java programs.

Secure

Java was designed from the ground up to allow for secure execution of code across

a network, even when the source of that code was untrusted and possibly malicious. This

required the elimination of many features of C and C++. Most notably there are no pointers

in Java. Java programs cannot access arbitrary addresses in memory. All memory access

is handled behind the scenes by the (presumably) trusted runtime environment.

Furthermore Java has strong typing. Variables must be declared, and variables do not

change types when you aren't looking. Casts are strictly limited to casts between types

that make sense. Thus you can cast an int to a long or a byte to a short but not a long to a

boolean or an int to a String.

Java implements a robust exception handling mechanism to deal with both

expected and unexpected errors. The worst that an applet can do to a host system is bring

down the runtime environment. It cannot bring down the entire system.

Most importantly Java applets can be executed in an environment that prohibits them

from introducing viruses, deleting or modifying files or otherwise destroying data and

crashing the host computer. A Java enabled web browser checks the byte codes of an

applet to verify that it doesn't do anything nasty before it will run the applet.

However the biggest security problem is not hackers. It's not viruses. It's not even

insiders erasing their hard drives and quitting your company to go to work for your

competitors. No, the biggest security issue in computing today is bugs. Regular, ordinary,

non-malicious unintended bugs are responsible for more data loss and lost productivity

13

than all other factors combined. Java, by making it easier to write bug-free code,

substantially improves the security of all kinds of programs.

Multi-Threaded

Java is inherently multi-threaded. A single Java program can have many different

threads executing independently and continuously. Three Java applets on the same page

can run together with each getting equal time from the CPU with very little extra effort on

the part of the programmer. This makes Java very responsive to user input. It also helps to

contribute to Java's robustness and provides a mechanism whereby the Java environment

can ensure that a malicious applet doesn't steal all of the host's CPU cycles.

 There is a cost associated with multi-threading. Multi-threading is to Java what

pointer arithmetic is to C, that is, a source of devilishly hard to find bugs. Nonetheless, in

simple programs it's possible to leave multi-threading alone and normally be OK.

Dynamically linked(Dynamic)

Java does not have an explicit link phase. Java source code is divided into .java

files, roughly one per class in your program. The compiler compiles these into .class files

containing byte code. Each .java file generally produces exactly one .class file. (There are a

few exceptions we'll discuss later, non-public classes and inner classes).

The compiler searches the current directory and directories specified in the

CLASSPATH environment variable to find other classes explicitly referenced by name in

each source code file. If the file you're compiling depends on other, non-compiled files the

compiler will try to find them and compile them as well. The compiler is quite smart and

can handle circular dependencies as well as methods that are used before they're declared.

It also can determine whether a source code file has changed since the last time it was

compiled.

More importantly, classes that were unknown to a program when it was compiled

can still be loaded into it at runtime. For example, a web browser can load applets of

differing classes that it's never seen before without recompilation.

Furthermore, Java .class files tend to be quite small, a few kilobytes at most. It is not

necessary to link in large runtime libraries to produce a (non-native) executable. Instead

the necessary classes are loaded from the user's CLASSPATH.

Automatic Garbage Collection

You do not need to explicitly allocate or deallocate memory in Java. Memory is

allocated as needed, both on the stack and the heap and reclaimed by the garbage collector

when it is no longer needed. There's no malloc(), free() or destructor methods. There are

constructors and these do allocate memory on the heap, but this is transparent to the

programmer.

 The exact algorithm used for garbage collection varies from one virtual machine to

the next. The most common approach in modern VMs is generational garbage collection

for short-lived objects, followed by mark and sweep for longer lived objects.

1.10 Java and Internet

Computers can be connected together on networks. A computer on a network can

communicate with other computers on the same network by exchanging data and files or

14

by sending and receiving messages. Computers on a network can even work together on a

large computation. Today, millions of computers throughout the world are connected to a

single huge network called the Internet. New computers are being connected to the

Internet every day. Computers can join the Internet by using a modem to establish a

connection through telephone lines. Broadband connections to the Internet, such as DSL

and cable modems are increasingly common. They allow faster data transmission than is

possible through telephone modems.

 Java is intimately associated with the Internet and the World-Wide Web. Special

Java programs called applets are meant to be transmitted over the Internet and displayed

on Web pages. A Web server transmits a Java applet just as it would transmit any other

type of information. A Web browser that understands Java—that is, that includes an

interpreter for the Java virtual machine—can then run the applet right on the Web page.

Since applets are programs, they can do almost anything, including complex interaction

with the user. With Java, a Web page becomes more than just a passive display of

information. It becomes anything that programmers can imagine and implement. But

applets are only one aspect of Java’s relationship with the Internet, and not the major one.

In fact, as both Java and the Internet have matured, applets have become less important.

At the same time, however, Java has increasingly been used to write complex, stand-alone

applications that do not depend on a web browser. Many of these programs are network-

related. For example many of the largest and most complex web sites use web server

software that is written in Java. Java includes excellent support for network protocols and

its platform independence makes it possible to write network programs that work on many

different types of computer. Its association with the Internet is not Java’s only advantage.

But many good programming languages have been invented only to be soon forgotten.

Java has had the good luck to ride on the coattails of the Internet’s immense and

increasing popularity.

1.11 Advantages of JAVA

Java™ has significant advantages over other languages and environments that

make it suitable for just about any programming task.

The advantages of Java are as follows:

 Java is easy to learn. Java was designed to be easy to use and is therefore easy to

write, compile, debug and learn than other programming languages.

 Java is object-oriented. This allows you to create modular programs and reusable

code.

 Java is platform-independent. One of the most significant advantages of Java is its

ability to move easily from one computer system to another. The ability to run the

same program on many different systems is crucial to World Wide Web software, and

Java succeeds at this by being platform-independent at both the source and binary

levels.

Because of Java's robustness, ease of use, cross-platform capabilities and security

features, it has become a language of choice for providing worldwide Internet solutions.

15

1.12 Difference between C++ and Java

The different goals in the development of C++ and Java resulted in different principles and

design trade-offs between the languages. The differences are as follows :

C++ Java

Compatible with C source code, except for a

few corner cases.

No backward compatibility with any

previous language. The syntax is

however strongly influenced by C/C++.

Write once compile anywhere (WOCA) Write once run anywhere / everywhere

(WORA / WORE)

Allows both procedural

programming and object-oriented programming.

Encourages an object

oriented programming paradigm.

Allows direct calls to native system libraries. Call through the Java Native

Interface and recently Java Native

Access

Exposes low-level system facilities. Runs in a protected virtual machine.

Only provides object types and type names. Is reflective, allowing metaprogramming

and dynamic code generation at runtime.

Has multiple binary compatibility standards

(commonly Microsoft and Itanium/GNU)

Has a binary compatibility standard,

allowing runtime check of correctness of

libraries.

Optional automated bounds checking. (e.g.

the at() method invector and string containers)

Normally performs bounds

checking. HotSpot can remove bounds

checking.

Supports native unsigned arithmetic. No native support for unsigned

arithmetic.

Standardized minimum limits for all numerical

types, but the actual sizes are implementation-

defined. Standardized types are available as

typedefs (uint8_t, ..., uintptr_t).

Standardized limits and sizes of all

primitive types on all platforms.

Pointers, References and pass by value are

supported

Primitive and reference data types

always passed by value.

Explicit memory management, though third

party frameworks exist to provide garbage

collection. Supports destructors.

Automatic garbage collection (can be

triggered manually). Doesn't have the

concept of Destructor and usage

of finalize() is not recommended.

Supports class, struct, and union and can Supports only class and allocates them

http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Corner_case
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Java_Native_Interface
http://en.wikipedia.org/wiki/Java_Native_Interface
http://en.wikipedia.org/wiki/Java_Native_Access
http://en.wikipedia.org/wiki/Java_Native_Access
http://en.wikipedia.org/wiki/Reflection_(computer_science)
http://en.wikipedia.org/wiki/Bounds_checking
http://en.wikipedia.org/wiki/HotSpot

16

allocate them on heap orstack on the heap. Java SE 6optimizes

with escape analysis to allocate some

objects on the stack.

Allows explicitly overriding types. Rigid type safety except for widening

conversions. Autoboxing/Unboxing

added in Java 1.5.

The C++ Standard Library has a much more

limited scope and functionality than the Java

standard library but includes: Language

support, Diagnostics, General Utilities, Strings,

Locales, Containers, Algorithms, Iterators,

Numerics, Input/Output and Standard C

Library. The Boost library offers much more

functionality including threads and network

I/O. Users must choose from a plethora of

(mostly mutually incompatible) third-party

libraries for GUI and other functionality.

The standard library has grown with

each release. By version 1.6 the library

included support for locales, logging,

containers and iterators, algorithms, GUI

programming (but not using the system

GUI), graphics, multi-threading,

networking, platform security,

introspection, dynamic class loading,

blocking and non-blocking I/O, and

provided interfaces or support classes

for XML, XSLT, MIDI, database

connectivity, naming services

(e.g. LDAP), cryptography, security

services (e.g. Kerberos), print services,

and web services. SWT offers an

abstraction for platform specific GUIs.

Operator overloading for most operators The meaning of operators is generally

immutable, however the + and +=

operators have been overloaded for

Strings.

Full multiple inheritance, including virtual

inheritance.

Single inheritance only from classes,

multiple from interfaces.

Compile time Templates Generics are used to achieve an

analogous effect to C++ templates,

however they do not translate from

source code to byte code due to the use

of Type Erasure by the compiler.

Function pointers, function objects, lambdas (in

C++0x) and interfaces

No function pointer mechanism. Instead

idioms such as Interfaces, Adapters and

Listeners are extensively used.

No standard inline documentation mechanism.

3rd party software (e.g.Doxygen) exists.

Javadoc standard documentation

const keyword for defining immutable variables final provides a limited version of const,

http://en.wikipedia.org/wiki/Dynamic_memory_allocation
http://en.wikipedia.org/wiki/Stack-based_memory_allocation
http://en.wikipedia.org/wiki/Dynamic_memory_allocation
http://en.wikipedia.org/wiki/Java_version_history#Java_SE_6_Update_14
http://en.wikipedia.org/wiki/Escape_analysis
http://en.wikipedia.org/wiki/Stack-based_memory_allocation
http://en.wikipedia.org/wiki/Type_safety
http://en.wikipedia.org/wiki/C%2B%2B_Standard_Library
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XSLT
http://en.wikipedia.org/wiki/MIDI
http://en.wikipedia.org/wiki/LDAP
http://en.wikipedia.org/wiki/Kerberos_(protocol)
http://en.wikipedia.org/wiki/Operator_overloading
http://en.wikipedia.org/wiki/Generics_in_Java
http://en.wikipedia.org/wiki/Type_erasure
http://en.wikipedia.org/wiki/Doxygen
http://en.wikipedia.org/wiki/Javadoc

17

and member functions that do not change the

object.

equivalent to type* constpointers for

objects and plain const of primitive types

only. No constmember functions, nor

any equivalent to const type* pointers.

Supports the goto statement. Supports labels with loops and

statement blocks.

Source code can be written to be platform

independent (can be compiled

for Windows, BSD, Linux, Mac OS X, Solaris etc.

without needing modification) and written to

take advantage of platform specific features. Is

typically compiled into native machine code.

Is compiled into byte code for the JVM.

Is dependent on the Java platform but

the source code is typically written not to

be dependent on operating

system specific features.

1.13 Summary

Java is a high-level, third generation programming language, like C, FORTRAN,

Perl, and many others. Java was started as a project called "Oak" by James Gosling in

June 1991. Gosling's goals were to implement a virtual machine and a language that had

a familiar C-like notation but with greater uniformity and simplicity than C/C++. The first

public implementation was Java 1.0 in 1995. Object-oriented programming (OOP) is a

programming paradigm that uses "objects" to design applications and computer programs.

It utilizes several techniques from previously established paradigms, including inheritance,

modularity, polymorphism and encapsulation. The designers of Java chose to use a

combination of compilation and interpretation. Pro-grams written in Java are compiled

into machine language, but it is a machine language for a computer that doesn’t really

exist. This so-called “virtual” computer is known as the Java Virtual Machine(JVM). The

machine language for the Java virtual machine is called Java byte-code. The main features

of Java are: simple, object-oriented, platform independent, secure, multithreaded, dynamic

and automatic garbage collection.

1.14 Short Answer Type Questions

1. When and by whom was Java created?

2. What is Java Virtual Machine?

3. Why is Java known as a platform independent language?

1.15 Long Answer Type Questions

1. What is Object Oriented Programming? Explain its different characteristics.

2. Explain different features of Java in detail.

1.16 Suggested Readings

 The Complete Reference by Herbert Scheild

 Programming with Java by E.Balagurusamy

 Java : A Beginner's Guide by Herbert Schildt

 Introduction to Java Programming by Y.Daniel Liang.

 Object Oriented Programming in Java by G.T. Thampi

http://en.wikipedia.org/wiki/Windows
http://en.wikipedia.org/wiki/BSD
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Solaris_(operating_system)
http://en.wikipedia.org/wiki/JVM
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system

18

BCA SEM-5 Paper : BCAB3104T

Java Programming

Lesson No. 2 Author : Kanwal Preet Singh

Converted into SLM by: Dr. Vishal Singh

Program Structure and Data Types

2.1 Objectives

2.2 Introduction

2.3 The First Java Program

2.4 Basic Language Elements (Lexical Structure)

2.5 Keywords

2.6 Comments

2.7 Constants And Variables

2.8 Literals

2.9 Naming Constants and Variables

2.10 Data Types

 2.10.1 Integer Values

 2.10.2 Floating-Point Values

 2.10.3 Character Values

 2.10.4 Boolean Values

2.11 Variable Scope

2.12 Dynamic Initialization

2.13 Summary

2.14 Short Answer Type Questions

2.15 Long Answer Type Questions

2.16 Suggested Readings

2.1 Objectives

After reading this lesson you will be able to understand:

 How to compile and run a java program

 The different program elements used in Java

 Keywords

 Constants

 Variables

 Datatypes

2.2 Introduction

In Programming languages such as C and C++, a program is either compiled or

interpreted. But in Java, the program is both compiled and interpreted. The program is

first compiled to generate Java Byte Code which is then interpreted to machine language.

A Java program consists of comments, keywords, constants, variables, etc. The main

19

method acts as a starting point of the program and main method is itself defined within

some class.

2.3 The First Java Program

A Java program is a collection of one or more java classes. A Java source file can

contain more than one class definition and has a .java extension. Each class definition in

a source file is compiled into a separate class file. The name of this compiled file is

comprised of the name of the class with .class as an extension. Below is a java sample

code for the traditional Hello World program. Basically, the idea behind this Hello World

program is to learn how to create a program, compile and run it. To create your java

source code you can use any editor (Text pad/Edit plus etc).

public class HelloWorld

 {

 public static void main(String[] args)

 {

 System.out.println(”Hello World”);

 }//End of main

 }//End of HelloWorld Class

Output is:

Hello World

About The Program

We created a class named “HelloWorld” containing a simple main function within it.

The keyword class specifies that we are defining a class. The name of a public class is

spelled exactly as the name of the file (Case Sensitive). All java programs begin execution

with the method named main(). main method that gets executed has the following

signature : public static void main(String args[]).Declaring this method as public means

that it is accessible from outside the class so that the JVM can find it when it looks for the

program to start it. It is necessary that the method is declared with return type void (i.e.

no arguments are returned from the method). The main method contains a String

argument array that can contain the command line arguments. The brackets { and } mark

the beginning and ending of the class. The program contains a line

‘System.out.println(”Hello World”);’ that tells the computer to print out on one line of text

namely ‘Hello World’. The semi-colon ‘;’ ends the line of code. The double slashes ‘//’ are

used for comments that can be used to describe what a source code is doing. Everything to

the right of the slashes on the same line does not get compiled, as they are simply the

comments in a program.

Java Main method Declarations

class MainExample1 {public static void main(String[] args) {}}

class MainExample2 {public static void main(String []args) {}}

class MainExample3 {public static void main(String args[]) {}}

All the 3 valid main method’s shown above accepts a single String array argument.

Compiling and Running an Application

20

To compile and run the program you need the JDK distributed by Sun

Microsystems. The JDK contains documentation, examples, installation instructions, class

libraries and packages and tools. Download an editor like Textpad/EditPlus to type your

code. You must save your source code with a .java extension. The name of the file must be

the name of the public class contained in the file.

Steps for Saving, compiling and Running a Java

Step 1:Save the program With .java Extension.

Step 2:Compile the file from DOS prompt by typing javac <filename>.

Step 3:Successful Compilation, results in creation of .class containing byte code

Step 4:Execute the file by typing java <filename without extension>

2.4 Basic Language Elements (Lexical Structure)

The lexical structure of a programming language is the set of elementary rules that

define what are the tokens or basic atoms of the program. It is the lowest level syntax of a

language and specifies what is punctuation, reserved words, identifiers, constants and

operators. Some of the basic rules for Java are:

 Java is case sensitive.

 Whitespace, tabs, and newline characters are ignored except when part of

string constants. They can be added as needed for readability.

 Single line comments begin with //

 Multiline comments begin with /* and end with */

 Statements terminate in semicolons! Make sure to always terminate

statements with a semicolon.

 Commas are used to separate words in a list.

 Round brackets are used for operator precedence and argument lists.

 Square brackets are used for arrays and square bracket notation.

 Curly or brace brackets are used for blocks.

 Keywords are reserved words that have special meanings within the language

syntax.

 Identifiers are names for constants, variables, functions, properties, methods

and objects. The first character must be a letter, underscore or dollar sign.

Following characters can also include digits. Letters are A to Z, a to z, and

Unicode characters above hex 00C0. Java styling uses initial capital letter on

object identifiers, uppercase for constant ids and lowercase for property,

method and variable ids.

Note: an identifier must NOT be any word on the Java Reserved Word List

(Keywords).

2.5 Keywords

There are certain words with a specific meaning in java which tell (help) the

compiler what the program is supposed to do. These Keywords cannot be used as variable

names, class names or method names. Keywords in java are case sensitive, all characters

21

being lower case. Keywords are reserved words that are predefined in the language; see the

table below (Taken from Sun Java Site). All the keywords are in lowercase.

 abstract default if private this

 boolean do implements protected throw

 break double import public throws

 byte else instanceof return transient

 case extends int short try

 catch final interface static void

 char finally long strictfp volatile

 class float native super while

 const for new switch

 continue goto package synchronized

2.6 Comments

Comments are descriptions that are added to a program to make code easier to

understand. The compiler ignores comments and hence they are only for documentation of

the program. Java supports two comment styles.

Block style comments begin with /* and terminate with */ that spans multiple lines.

Line style comments begin with // and terminate at the end of the line.

2.7 Constants And Variables

If there's one thing that every computer program has in common, it's that they

always process data input and produce some sort of output based on that data. And

because data is so important to a computer program, it stands to reason that there must

be plenty of different ways to store data so that programs can do their processing correctly

and efficiently. In order to keep track of data, programs use constants and variables. In

this lesson, you discover what constants and variables are, as well as learn to use them in

the Java language.

Constants

If you think about the term "constant" for a few moments, you might conclude that

constants must have something to do with data that never changes. And your conclusion

would be correct. A constant is nothing more than a value, in a program, that stays the

same throughout the program's execution. However, while the definition of a constant is

fairly simple, constants themselves can come in many different guises. For example, the

numeral 2, when it's used in a line of program code, is a constant. If you place the word

"Java" in a program, the characters that comprise the word are also constants. In fact,

these constant characters taken together are often referred to as a string constant.

NOTE: To be entirely accurate, I should say that text and numerals that are placed in

program code are actually called literals, because the value is literally, rather than

symbolically, in the program. If this literal and symbolic stuff is confusing you, you'll

probably have it figured out by the end of this lesson. For now, just know that I'm lumping

literals in with constants to simplify the discussion. Such values as the numeral 2 and the

22

string constant "Java" are sometimes called hard-coded values because the values that

represent the constants are placed literally in the program code. For example, suppose you

were writing a program and wanted to calculate the amount of sales tax on a purchase.

Suppose further that the total purchase in question is Rs. 120.00 and the sales tax in your

state is 10 percent. The calculation that'll give you the sales tax would look like this:

 tax = 120 * .10;

Suppose now that you write a large program that uses the sales tax percentage in

many places. Then, after you've been happily using your program for a few months, the

state suddenly decides to raise the sales tax to eleven percent. In order to get your

program working again, you have to go through every line of code, looking for the .10

values that represent the sales tax and changing them to .11. Such a modification can be

a great deal of work in a large program. Worse, you may miss one or two places in the code

that need to be changed, leaving your program with some serious bugs.

To avoid these situations, programmers often use something called symbolic

constants, which are simply words that represent values in a program. In the case of your

sales tax program, you could choose a word like SALESTAX (no spaces) to represent the

current sales tax percentage for your state. Then, at the beginning of your program, you

set SALESTAX to be equal to the current state sales tax. In the Java language, such a line

of program code might look like this:

 final float SALESTAX = 0.10;

In the preceding line, the word final tells Java that this data object is going to be a

constant. The float is the data type, which, in this case, is a floating point. (You'll learn

more about data types later in this lesson.) The word SALESTAX is the symbolic constant.

The equals sign tells Java that the word on the left should be equal to the value on the

right, which, in this case, is 0.10. After defining the symbolic constant SALESTAX, you can

rewrite any lines that use the current sales tax value to use the symbolic constant rather

than the hard-coded value. For example, the calculation for the sales tax on that

Rs.120.00 purchase might now look something like this:

 tax = 120 * SALESTAX;

TIP: In order to differentiate symbolic constants from other values in a program,

programmers often use all uppercase letters when naming these constants. Now, when

your state changes the sales tax to 11 percent, you need only change the value you assign

to the symbolic constant and the rest of the program automatically fixes itself. The change

would look like this:

 final float SALESTAX = 0.11;

Variables

If constants are program values that cannot be changed throughout the execution

of a program, what are variables? Variables are values that can change as much as

needed during the execution of a program. Because of a variable's changing nature, there's

no such thing as a hard-coded variable. That is, hard-coded values in a program are

always constants (or, more accurately, literals). Why do programs need variables? Think

23

back to the sales tax program from the previous section. You may recall that you ended up

with a program line that looked like this:

 tax = 12 * SALESTAX;

In this line, the word tax is a variable. So, one reason you need variables in a

program is to hold the results of a calculation. In this case, you can think of the word tax

as a kind of digital bucket into which the program dumps the result of its sales tax

calculation. When you need the value stored in tax, you can just reach in and take it out-

figuratively speaking, of course. As an example, to determine the total cost of a Rs.120.00

purchase, plus the sales tax, you might write a line like this:

 total = 120 + tax;

In this line, the word total is yet another variable. After the computer performs the

requested calculation, the variable total will contain the sum of 120 and whatever value is

stored in tax. For example, if the value 12 is stored in tax, after the calculation, total

would be equal to 132.

Do you see another place where a variable is necessary? How about the hard-coded

value 120? Such a hard-coded value makes a program pretty useless because every person

that comes into your store to buy something isn't going to spend exactly Rs.120.00.

Because the amount of each customer's purchase will change, the value used in your sales

tax calculation must change, too. That means you need another variable. How about

creating a variable named purchase? With such a variable, you can rewrite the

calculations like this:

 tax = purchase * SALESTAX;

 total = purchase + tax;

Now you can see how valuable variables can be. Every value in the preceding lines

is represented by a variable. (Although you're using SALESTAX as a symbolic constant,

because of Java's current lack of true constants, it's really a variable, too.) All you have to

do to get the total to charge your customer is plug the cost of his purchase into the

variable purchase.

2.8 Literals

By literal we mean any number, text or other information that represents a value.

This means what you type is what you get. We will use literals in addition to variables in

Java statement. While writing a source code as a character sequence, we can specify any

value as a literal such as an integer. This character sequence will specify the syntax based

on the value's type. This will give a literal as a result. For instance

int month = 10;

In the above statement the literal is an integer value i.e 10. The literal is 10 because

it directly represents the integer value. In Java programming language there are some

special type of literals that represent numbers, characters, strings and boolean values.

Lets have a closer look on each of the following.

Integer Literals

 Integer literals is a sequence of digits and a suffix as L. To represent the type as

long integer we use L as a suffix. We can specify the integers either in decimal,

24

hexadecimal or octal format. To indicate a decimal format put the left most digit as

nonzero. Similarly put the characters as ox to the left of at least one hexadecimal digit to

indicate hexadecimal format. Also we can indicate the octal format by a zero digit

followed by the digits 0 to 7. Lets tweak the table below.

659L
 Decimal integer literal of

type long integer

 0x4a
 Hexadecimal integer literal

of type integer

 057L
 Octal integer literal of type

long integer

 Character Literals

 We can specify a character literal as a single printable character in a pair of

single quote characters such as 'a', '#', and '3'. You must be knowing about the ASCII

character set. The ASCII character set includes 128 characters including letters,

numerals, punctuations etc. There are few character literals which are not readily

printable through a keyboard. The table below shows the codes that can represent these

special characters. The letter d such as in the octal, hex etc represents a number.

 Escape Meaning

 \n New line

 \t Tab

 \b Backspace

 \r Carriage return

 \f Formfeed

 \\ Backslash

 \' Single quotation mark

 \" Double quotation mark

 \d Octal

 \xd Hexadecimal

 \ud Unicode character

It is very interesting to know that if we want to specify a single quote, a backslash or a

nonprintable character as a character literal use an escape sequence. An escape

sequence uses a special syntax to represents a character. The syntax begins with a single

backslash character. Lets see the table below in which the character literals use Unicode

escape sequence to represent printable and nonprintable characters both.

 'u0041' Capital letter A

 '\u0030' Digit 0

 '\u0022' Double quote "

 '\u003b' Punctuation ;

 '\u0020' Space

25

 '\u0009' Horizontal Tab

Boolean Literals

 The values true and false are also treated as literals in Java programming. When we

assign a value to a boolean variable, we can only use these two values. Unlike C, we can't

presume that the value of 1 is equivalent to true and 0 is equivalent to false in Java. We

have to use the values true and false to represent a Boolean value. Like

boolean chosen = true; Remember that the literal true is not represented by the quotation

marks around it. The Java compiler will take it as a string of characters, if its in quotation

marks.

Floating-point literals

Floating-point numbers are like real numbers in mathematics, for example,

4.13179, -0.000001. Java has two kinds of floating-point numbers: float and double. The

default type when you write a floating-point literal is double.

Type Size Range Precision

name bytes bits approximate in decimal digits

float 4 32 +/- 3.4 * 1038 6-7

double 8 64 +/- 1.8 * 10308 15

A floating-point literal can be denoted as a decimal point, a fraction part, an

exponent (represented by E or e) and as an integer. We also add a suffix to the floating

point literal as D, d, F or f. The type of a floating-point literal defaults to double-precision

floating-point. The following floating-point literals represent double-precision floating-point

and floating-point values.

 6.5E+32 (or 6.5E32) Double-precision floating-point literal

 7D Double-precision floating-point literal

 .01f Floating-point literal

String Literals

 The string of characters is represented as String literals in Java. In Java a string

is not a basic data type, rather it is an object. These strings are not stored in arrays as in

C language. There are few methods provided in Java to combine strings, modify strings

and to know whether to strings have the same value.

We represent string literals as

String myString = "How are you?";

The above example shows how to represent a string. It consists of a series of characters

inside double quotation marks.

Lets see some more examples of string literals:

"" // the empty string

"\"" // a string containing "

"This is a string" // a string containing 16 characters

26

"This is a " + // actually a string-valued constant expression,

"two-line string" // formed from two string literals

Strings can include the character escape codes as well, as shown here:

String example = "Your Name, \"Sumit\"";

System.out.println("Thankingyou,\nRichards\n");

Null Literals

The final literal that we can use in Java programming is a Null literal. We specify the Null

literal in the source code as 'null'. To reduce the number of references to an object, use

null literal. The type of the null literal is always null. We typically assign null literals to

object reference variables. For instance

s = null;

2.9 Naming Constants and Variables

The first computer languages were developed by mathematicians. For that reason,

the calculations and the variables used in those calculations were modeled after the types

of equations mathematicians were already accustomed to working with. For example, in

the old days, the lines in your tax program might have looked like this:

 a = b * c;

 d = b + a;

As you can see, this type of variable-naming convention left a lot to be desired. It's

virtually impossible to tell what type of calculations are being performed. In order to

understand their own programs, programmers had to use tons of comments mixed in with

their source code so they could remember what the heck they were doing from one

programming session to the next. Although adding comments to the program lines helps a

little, the code is still pretty confusing, because you don't really know what the variables a,

b, c, and d stand for. After a while (probably when mathematicians weren't the only

programmers), someone came up with the idea of allowing more than one character in a

variable name, which would enable the programmer to create mathematical expressions

that read more like English. Thus, the confusing example above would be written as:

 // Calculate the amount of sales tax.

 tax = purchase * SALESTAX;

 // Add the sales tax to the purchase amount.

 total = purchase + tax;

By using carefully chosen variable names, you can make your programs self

documenting, which means that the program lines themselves tell whoever might be

reading the program what the program does. If you strip away the comments from the

preceding example, you can still see what calculations are being performed. Of course,

there are rules for choosing constant and variable names (also known as identifiers

because they identify a program object). You can't just type a bunch of characters on your

keyboard and expect Java to accept them. The rules for naming identifiers are as follows:

1) First, every Java identifier must begin with one of these characters:

 A-Z

 a-z

27

 _

 $

The preceding characters are any uppercase letter from A through Z, any lowercase

letter from a through z, an underscore and the dollar sign.

2) Following the first character, the rest of the identifier can use any of these characters:

 A-Z

 a-z

 _

 $

 0-9

As you may have noticed, this second set of characters is very similar to the first. In

fact, the only difference is the addition of the digits from 0 through 9.

Using the rules given, the following are valid identifiers in a Java program:

 number

 number2

 amount_of_sale

 $amount

The following identifiers are not valid in a Java program:

 1number

 amount of sale

 &amount

 item#

2.10 Data Types

Variables have a data type, that indicates the kind of value they can store and the

amount of memory space they occupy. You may remember my mentioning two data types

already, these being floating point (represented by the float keyword) and integer

(represented by the int keyword). Java has eight different data types, all of which represent

different kinds of values in a program. These data types are byte, short, int, long, float,

double, char and boolean. In this section, you'll learn what kinds of values these various

data types represent.

2.10.1 Integer Values

The most common values used in computer programs are integers, which represent

whole number values such as 17, 1978, and -26. Integer values can be both positive or

negative, or even the value 0. The size of the value that's allowed depends on the integer

data type you choose. Java features four integer data types, which are byte, short, int,

and long. Although some computer languages allow both signed and unsigned integer

values, all of Java's integers are signed, which means they can be positive or negative.

(Unsigned values, which Java does not support, can hold only positive numbers.)

byte

The first integer type, byte, takes up the least amount of space in a computer's

memory. When you declare a constant or variable as byte, you are limited to values in the

range -128 to 127. Why would you want to limit the size of a value in this way? Because

28

the smaller the data type, the faster the computer can manipulate it. For example, your

computer can move a byte value, which consumes only eight bits(One Byte) of memory,

much faster than an int value, which, in Java, is four times as large. In Java, you declare

a byte value like this:

 byte identifier;

In the preceding line, byte is the data type for the value and identifier is the

variable's name. You can also simultaneously declare and assign a value to a variable like

this:

 byte count = 100;

After Java executes the preceding line, your program will have a variable named count

that currently holds the value of 100. Of course, you can change the contents of count at

any time in your program. It only starts off holding the value 100.

short

The next biggest type of Java integer is short. It takes 2 Bytes of memory. A variable

declared as short can hold a value from -32,768 to 32,767. You declare a short value like

this:

 short identifier;

or

 short identifier = value;

In the preceding line, value can be any value from -32,768 to 32,767, as described

previously. In Java, short values are twice as big in memory-16 bits (or two bytes)-as byte

values.

int

Next in the integer data types is int, which can hold a value from -2,147,483,648 to

2,147,483,647. Now you're getting into some big numbers! The int data type can hold such

large numbers because it takes up 32 bits (four bytes) of computer memory. You declare

int values like this:

 int identifier;

or

 int identifier = value;

long

The final integer data type in the Java language is long, which takes up a whopping 64

bits (eight bytes) of computer memory and can hold truly immense numbers. Unless you're

calculating the number of molecules in the universe, you don't even have to know how big

a long number can be. I'd figure it out for you, but I've never seen a calculator that can

handle numbers that big. You declare a long value like this:

 long identifier;

or

 long identifier = value;

Note: How do you know which integer data type to use in your program? Choose the

smallest data type that can hold the largest numbers you'll be manipulating. Following

this rule keeps your programs running as fast as possible. However, having said that, I

29

should tell you that most programmers (including me) use the int data type a lot, even

when they can get away with a byte.

2.10.2 Floating-Point Values

Whereas integer values can hold only whole numbers, the floating-point data types

can hold values with both whole number and fractional parts. Examples of floating-point

values include 61.8, 123.284, and -23.456. As you can see, just like integers, floating-

point values can be either positive or negative.

Java includes two floating-point types, which are float and double. Each type

allows greater precision in calculations. What does this mean? Floating-point numbers can

become very complex when they're used in calculations, particularly in multiplication and

division. For example, when you divide 3.9 by 2.7, you get 1.44444444. In actuality,

though, the fractional portion of the number goes on forever. That is, if you were to

continue the division calculation, you'd discover that you keep getting more and more

fours in the fractional part of the answer. The answer to 3.9 divided by 2.7 is not really

1.44444444, but rather something more like 1.4444444444444444. But even that answer

isn't completely accurate. A more accurate answer would be

1.44444444444444444444444444444444. The more 4s you add to the answer the more

accurate the answer becomes-yet, because the 4s extend on into infinity, you can never

arrive at a completely accurate answer. Dealing with floating-point values frequently

means deciding how many decimal places in the answer is accurate enough. That's where

the difference between the float and double data types shows up. In Java, a value declared

as float can hold a number in the range from around -3.402823 x 10 38 to around

3.402823 x 10 38. These types of values are also known as single-precision floating-point

numbers and take up 32 bits (four bytes) of memory. You declare a single-precision

floating-point number like this:

 float identifier;

or

 float identifier = value;

In the second line, value must be a value in the range given in the previous

paragraph, followed by an upper- or lowercase F. However, you can write floating-point

numbers in a couple of ways, using regular digits and a decimal point or using scientific

notation. This value is the type of floating-point number you're used to seeing:

 356.552

Now, here's the same number written using Java's rules, in both the number's normal

form and in the form of scientific notation:

 356.552f

 3.56552e2f

Both of the preceding values are equivalent and you can use either form in a Java

program. The e2 in the second example is the equivalent of writing x 102 and is a short

form of scientific notation that's often used in programming languages.

30

Note: If you're not familiar with scientific notation, the value 3.402823 x 10 38 is equal to

3.402823 times a number that starts with a 1 and is followed by 38 zeroes. Computer

languages shorten this scientific notation to 3.402823e38.

The second type of floating-point data, double, represents a double-precision value, which

is a much more accurate representation of floating-point numbers because it allows for

more decimal places. A double value can be in the range from -1.79769313486232 x 10

308 to 1.79769313486232 x 10 308 and is declared like this:

 double identifier;

or

 double identifier = value;

Floating-point values of the double type are written exactly as their float counterparts,

except you use an upper- or lowercase D as the suffix, rather than an F. Here are a few

examples:

 3.14d

 344.23456D

 3.4423456e2d

Note: When using floating-point numbers in your programs, the same rule that you

learned about integers applies: Use the smallest data type you can. This is especially true

for floating-point numbers, which are notorious for slowing computer programs to a crawl.

Unless you're doing highly precise programming, such as 3-D modeling, the single-

precision float data type should do just fine.

2.10.3 Character Values

Often in your programs, you'll need a way to represent character values rather than

just numbers. A character is a symbol that's used in text. The most obvious examples of

characters are the letters of the alphabet, in both upper- and lowercase varieties. There

are, however, many other characters, including not only things such as spaces,

exclamation points and commas, but also tabs, carriage returns, and line feeds. The

symbols 0 through 9 are also characters when they're not being used in mathematical

calculations.

 In order to provide storage for character values, Java features the char data type,

which is 16 bits. However, the size of the char data type has little to do with the values it

can hold. Basically, you can think of a char as being able to hold a single character. (The

16 bit length accommodates Unicode characters, which you don't need to worry about in

this book.) You declare a char value like this:

 char c;

or

 char c = 'A';

In the second example, you're not only declaring the variable c as a char, but also setting

its value to an uppercase A. Notice that the character that's being assigned is enclosed in

single quotes.

31

Some characters cannot be written with only a single symbol. For example, the tab

character is represented in Java as \t, which is a backslash followed by a lowercase t.

There are several of these special characters, as shown in the following Table.

Special Character Literals

Character Symbol

Backslash

Backspace

Carriage return

Double quote

Form feed

Line feed

Single quote

Tab

\\

\b

\r

\"

\f

\n

\'

\t

Although the special characters in the above Table are represented by two symbols,

the first of which is always a backslash, you still use them as single characters. For

example, to define a char variable as a backspace character, you might write something

like the following in your Java program:

 char backspace = '\b';

When Java's compiler sees the backslash, it knows that it's about to encounter a

special character of some type. The symbol following the backslash tells the compiler

which special character to use. Because the backslash is used to signify a special

character, when you want to specify the backslash character yourself, you must use two

backslashes, which keeps the compiler from getting confused.

Other special characters that might confuse the compiler because they are used as part of

the Java language are single and double quotes. When you want to use these characters in

your program's data, you must also precede them with a backslash.

2.10.4 Boolean Values

Many times in a program, you need a way to determine if a specific condition has

been met. For example, you might need to know whether a part of your program executed

properly. In such cases, you can use Boolean values, which are represented in Java by the

boolean data type. Boolean values are unique in that they can be only one of two possible

values: true or false. You declare a boolean value like this:

 boolean identifier;

or

 boolean identifier = value;

In the second example, value must be true or false. In an actual program, you might write

something like this:

 boolean file_okay = true;

Boolean values are often used in if statements, which enable you to do different things

depending on the value of a variable.

32

The following Table summarizes Java's various data types. Take some time now to look

over the table and make sure you understand how the data types differ from each other.

You might also want to think of ways you might use each data type in an actual program.

 Summary of Java's Data Types

Type Values Default Size Range

byte signed integers 0 8 bits -128 to 127

short signed integers 0 16 bits -32768 to 32767

int signed integers 0 32 bits -2147483648 to 2147483647

long signed integers 0 64 bits
-9223372036854775808 to

9223372036854775807

float floating point 0.0 32 bits +/-1.4E-45 to +/-3.4028235E+38

double floating point 0.0 64 bits
+/-4.9E-324 to

+/-1.7976931348623157E+308

char Unicode character \u0000 16 bits \u0000 to \uFFFF

boolean true, false False

1 bit used

in 32 bit

integer

NA

2.11 Variable Scope

When you write your Java programs, you can't just declare your variables willy-nilly

all over the place. You first have to consider how and where you need to use the variables.

This is because variables have an attribute known as scope, which determines where in

your program variables can be accessed. In Java, a variable's scope is determined by the

program block in which the variable first appears.

The variable is "visible" to the program only from the beginning of its program block

to the end of the program block. When a program's execution leaves a block, all the

variables in the block disappear, a phenomenon that programmers call "going out of

scope."

Now you're probably wondering, "What is a program block?" Generally, a program

block is a section of program code that starts with an opening curly brace ({) and ends with

a closing curly brace (}). (Sometimes, the beginning and ending of a block are not explicitly

defined, but you don't have to worry about that just yet.) Specifically, program blocks

include things like classes, functions and loops, all of which you'll learn about later. Of

course, things aren't quite as simple as all that. The truth is that you can have program

blocks within other program blocks. When you have one block inside another, the inner

block is considered to be nested.

The ability to nest program blocks adds a wrinkle to the idea of variable scope.

Because a variable remains in scope from the beginning of its block to the end of its block,

such a variable is also in scope in any blocks that are nested in the variable's block.

33

A variable's scope is the block of code within which the variable is accessible and

determines when the variable is created and destroyed. The location of the variable

declaration within your program establishes its scope and places it into one of these four

categories:

 Member variable

 Local variable

 Method parameter

 Exception-handler parameter

A member variable is a member of a class or an object. It can be declared anywhere

in a class but not in a method. The member is available to all code in the class. You can

declare local variables anywhere in a method or within a block of code in a method. In

general, a local variable is accessible from its declaration to the end of the code block in

which it was declared.

Method parameters are formal arguments to methods and constructors and are

used to pass values into methods and constructions. The scope of a method parameter is

the entire method or constructor for which it is a parameter. Exception-handler

parameters are similar to method parameters but are arguments to an exception handler

rather than to a method or a constructor.

2.12 Dynamic Initialization

There are two types of variable mainly:

1. Instance Variable or Class Variable

2. Local Variable or method variable

Instance variable are initialized by JVM to their default values if not defined

explicitly.Whereas the local variables needs to be defined each time time they are

34

declared.But the local variables can be used to a greater effect by using the concept of

dynamic initialization. Dynamic Initialization can be defined as the dynamic operation that

allows variables to be initialized dynamically using any expression valid at the time of the

variable declaration.

Above definition implies that if you need a variable to store value of an expression

you can use dynamic initialization.In which value of an expression is assigned to a

variable.

Dynamic Initialization can be clear by understanding following example:-

class DynamicInit{

public static void main(String a[]){

int a=2;

int b=5;

int c=a*a+b*b;

System.out.println("value of c is "+c);

}

}

Output :-The output of above program is value of c is 29

In the above program we have three variables a,b and c.Each has been declared as '

int '.Variable a and b are declared and provided values on declaration whereas the variable

c has been assigned a expression to evaluate and store its value.This is done through

dynamic evaluation.

2.13 Summary

In Java, the program is both compiled and interpreted. The program is first
compiled to generate Java Byte Code which is then interpreted to machine language. A
Java program is a collection of one or more java classes. A Java source file can contain
more than one class definition and has a .java extension. Each class definition in a source
file is compiled into a separate class file. The name of this compiled file is comprised of the
name of the class with .class as an extension. To compile and run the program you need
the JDK distributed by Sun Microsystems. There are certain words with a specific meaning
in java which tell (help) the compiler what the program is supposed to do. These Keywords
cannot be used as variable names, class names, or method names. Comments are
descriptions that are added to a program to make code easier to understand. The compiler
ignores comments and hence they are only for documentation of the program. A constant
is nothing more than a value, in a program, that stays the same throughout the program's
execution. Variables are values that can change as much as needed during the execution
of a program. Variables have a data type that indicates the kind of value they can store
and the amount of memory space they occupy. In Java, we can make use of integer,
floating point, character and Boolean data types. In Java, a variable's scope is determined
by the program block in which the variable first appears.
2.14 Short Answer Type Questions

1. What are keywords?

2. What are constants and variables?

3. What do you mean by variable scope?

2.15 Long Answer Type Questions

35

1. Explain with the help of an example how to create, save, compile and execute a

program in java.

2. Explain different data types used in Java in detail.

3. WAP to print "Hello World".

2.16 Suggested Readings

 The Complete Reference by Herbert Scheild

 Programming with Java by E.Balagurusamy

 Java : A Beginner's Guide by Herbert Schildt

 Introduction to Java Programming by Y.Daniel Liang.

 Object Oriented Programming in Java by G.T. Thampi

 Java Programming by C. Xavier

36

BCA SEM-5 Paper: BCAB3104T

Java Programming

Lesson No. 3 Author : Kanwal Preet Singh

Converted into SLM by: Dr. Vishal Singh

Operators in Java

3.1 Objectives

3.2 Introduction

3.3 Java Arithmetic Operators

3.4 Java Assignment Operators

3.5 Java Relational Operators

3.6 Java Boolean Operators

3.7 Java Conditional Operators

3.8 Bitwise operators

3.9 Operator Precedence

3.10 Type Casting and Conversion

3.11 Summary

3.12 Short Answer Type Questions

3.13 Long Answer Type Questions

3.14 Suggested Readings

3.1 Objectives

After reading this lesson you will be able to understand:

 Java Arithmetic Operators

 Java Assignment Operators

 Java Relational Operators

 Java Boolean Operators

 Java Conditional Operators

 Bitwise operators

 Operator Precedence

3.2 Introduction

Most of the expressions in Java use operators. Operators are special symbols for

things like arithmetic, various forms of assignment, increment and decrement and logical

operations. An operator performs a function on either one, two or three operands. An

operator that requires one operand is called a unary operator. For example, ++ is a unary

operator that increments the value of its operand by 1. An operator that requires two

operands is a binary operator. For example, = is a binary operator that assigns the value

from its right-hand operand to its left-hand operand. And finally a ternary operator is one

37

that requires three operands. The Java programming language has one ternary operator,

?:, which is a short-hand if-else statement. The unary operators support either prefix or

postfix notation. Prefix notation means that the operator appears before its operand:

operator op

Postfix notation means that the operator appears after its operand:

op operator

All of the binary operators use infix notation, which means that the operator

appears between its operands:

op1 operator op2

The ternary operator is also infix; each component of the operator appears between

operands:

expr ? op1 : op2

In addition to performing the operation, an operator also returns a value. The

return value and its type depends on the operator and the type of its operands. For

example, the arithmetic operators, which perform basic arithmetic operations such as

addition and subtraction, return numbers--the result of the operation. The data type

returned by the arithmetic operators depends on the type of its operands: If you add two

integers, you get an integer back. An operation is said to evaluate to its result. It's useful

to divide the operators into different categories.

3.3 Java Arithmetic Operators

The Java programming language includes five simple arithmetic operators. They are

+ (addition), - (subtraction), * (multiplication), / (division), and % (modulo). The

following table summarizes the binary arithmetic operators in the Java programming

language.

Use Returns true if

op1 + op2 op1 added to op2

op1 - op2 op2 subtracted from op1

op1 * op2 op1 multiplied with op2

op1 / op2 op1 divided by op2

op1 % op2 Computes the remainder of dividing op1 by op2

The following java program, defines two integers and two double-precision floating-

point numbers and uses the five arithmetic operators to perform different arithmetic

operations. This program also uses + to concatenate strings. The arithmetic operations are

shown in boldface.

public class ArithmeticProg

 {

 public static void main(String[] args)

 {

38

 //a few numbers

 int i = 10;

 int j = 20;

 double x = 10.5;

 double y = 20.5;

 //adding numbers

 System.out.println("Adding");

 System.out.println(" i + j = " + (i + j));

 System.out.println(" x + y = " + (x + y));

 //subtracting numbers

 System.out.println("Subtracting");

 System.out.println(" i - j = " + (i - j));

 System.out.println(" x - y = " + (x - y));

 //multiplying numbers

 System.out.println("Multiplying");

 System.out.println(" i * j = " + (i * j));

 System.out.println(" x * y = " + (x * y));

 //dividing numbers

 System.out.println("Dividing");

 System.out.println(" i / j = " + (i / j));

 System.out.println(" x / y = " + (x / y));

 //computing the remainder resulting

 //from dividing numbers

 System.out.println("Modulus");

 System.out.println(" i % j = " + (i % j));

 System.out.println(" x % y = " + (x % y));

 }
 }

3.4 Java Assignment Operators
Java Variables are assigned or given, values using one of the assignment operators.

The variable are always on the left-hand side of the assignment operator and the value to

be assigned is always on the right-hand side of the assignment operator. The assignment

operator is evaluated from right to left, so a = b = c = 0; would assign 0 to c, then c to b

then b to a.

i = i + 2;

Here we say that we are assigning i's value to the new value which is i+2. A shortcut way

to write assignments like this is to use the += operator. It is one operator symbol so don't

put blanks between the + and =.

39

i += 2; // Same as "i = i + 2"

The shortcut assignment operator can be used for all Arithmetic Operators i.e. you can

use this style with all arithmetic operators (+, -, *, /, and even %). Here are some examples

of assignments:

//assign 1 to variable a

int a = 1;

//assign the result of 2 + 2 to b

int b = 2 + 2;

//assign the literal "Hello" to str

String str = new String("Hello");

//assign b to a, then assign a

//to d; results in d, a, and b being equal

int d = a = b;

Java Increment and Decrement Operators

There are 2 Increment or decrement operators ++ and --. These two operators are unique

in that they can be written both before the operand they are applied to called prefix

increment/decrement, or after, called postfix increment/decrement. The meaning is

different in each case.

Example:

x = 1;

y = ++x;

System.out.println(y);

prints 2, but

x = 1;

y = x++;

System.out.println(y);

prints 1

Source Code

//Count to ten

class UptoTen

 {

 public static void main (String args[])

 {

 int i;

 for (i=1; i <=10; i++)

 {

 System.out.println(i);

 }

 }

 }

40

When we write i++ we're using shorthand for i = i + 1. When we say i-- we're using

shorthand for i = i - 1. Adding and subtracting one from a number are such common

operations that these special increment and decrement operators have been added to the

language. There's another short hand for the general add and assign operation, +=. We

would normally write this as i += 15. Thus if we wanted to count from 0 to 20 by two's

we'd write:

Source Code

class CountToTwenty

 {

 public static void main (String args[])

 {

 int i;

 for (i=0; i <=20; i += 2)

 { //Note Increment Operator by 2

 System.out.println(i);

 }

 } //main ends here

 }

As you might guess there is a corresponding -= operator. If we wanted to count down from

twenty to zero by twos we could write: -=

class CountToZero

 {

 public static void main (String args[])

 {

 int i;

 for (i=20; i >= 0; i -= 2)

 { //Note Decrement Operator by 2

 System.out.println(i);

 }

 }

 }

The ? : operator in Java

The value of a variable often depends on whether a particular boolean expression is

or is not true and on nothing else. For instance one common operation is setting the value

of a variable to the maximum of two quantities. In Java you might write

if (a > b) {

 max = a;

}

else {

 max = b;

41

}

Setting a single variable to one of two states based on a single condition is such a

common use of if-else that a shortcut has been devised for it, the conditional operator, ?:.

Using the conditional operator you can rewrite the above example in a single line like this:

max = (a > b) ? a : b;

(a > b) ? a : b; is an expression which returns one of two values, a or b. The condition, (a >

b), is tested. If it is true the first value, a, is returned. If it is false, the second value, b, is

returned. Whichever value is returned is dependent on the conditional test, a > b. The

condition can be any expression which returns a boolean value.

3.5 Java Relational Operators

A relational operator compares two values and determines the relationship between

them. For example, != returns true if its two operands are unequal. Relational operators

are used to test whether two values are equal, whether one value is greater than another,

and so forth. The relation operators in Java are: ==, !=, <, >, <=, and >=. The meanings of

these operators are:

Use Returns true if

op1 > op2 op1 is greater than op2

op1 >= op2 op1 is greater than or equal to op2

op1 < op2 op1 is less than to op2

op1 <= op2 op1 is less than or equal to op2

op1 == op2 op1 and op2 are equal

op1 != op2 op1 and op2 are not equal

The main use for the above relational operators are in CONDITIONAL phrases. The

following java program is an example, that defines three integer numbers and uses the

relational operators to compare them.

public class RelationalProg

 {

 public static void main(String[] args)

 {

 //a few numbers

 int i = 37;

 int j = 42;

 int k = 42;

 //greater than

 System.out.println("Greater than...");

 System.out.println(" i > j = " + (i > j)); //false

 System.out.println(" j > i = " + (j > i)); //true

42

 System.out.println(" k > j = " + (k > j)); //false

 //(they are equal)

 //greater than or equal to

 System.out.println("Greater than or equal to...");

 System.out.println(" i >= j = " + (i >= j)); //false

 System.out.println(" j >= i = " + (j >= i)); //true

 System.out.println(" k >= j = " + (k >= j)); //true

 //less than

 System.out.println("Less than...");

 System.out.println(" i < j = " + (i < j)); //true

 System.out.println(" j < i = " + (j < i)); //false

 System.out.println(" k < j = " + (k < j)); //false

 //less than or equal to

 System.out.println("Less than or equal to...");

 System.out.println(" i <= j = " + (i <= j)); //true

 System.out.println(" j <= i = " + (j <= i)); //false

 System.out.println(" k <= j = " + (k <= j)); //true

 //equal to

 System.out.println("Equal to...");

 System.out.println(" i == j = " + (i == j)); //false

 System.out.println(" k == j = " + (k == j)); //true

 //not equal to

 System.out.println("Not equal to...");

 System.out.println(" i != j = " + (i != j)); //true

 System.out.println(" k != j = " + (k != j)); //false

 }

 }

3.6 Java Boolean Operators

The Boolean logical operators are : | , & , ^ , ! , || , && . Java supplies a primitive

data type called Boolean, instances of which can take the value true or false only, and

have the default value false. The major use of Boolean facilities is to implement the

expressions which control if decisions and while loops. These operators act on Boolean

operands according to this table:

A B A|B A&B A^B !A

false false false false false true

true false true false true false

false true true false true true

43

true true true true false false

The details of the various operators are given in the following table:

Boolean Operators

x and y are boolean types. x and y can be expressions that result in a boolean

value. Result is a boolean true or false value.

 x && y
Conditional

AND

If both x and y are true, result is true.

If either x or y are false, the result is false

If x is false, y is not evaluated.

 x & y
Boolean

AND

If both x and y are true,the result is true.

If either x or y are false, the result is false

Both x and y are evaluated before the test.

 x || y
Conditional

OR

If either x or y are true, the result is true.

If x is true, y is not evaluated.

 x | y
Boolean

OR

If either x or y are true, the result is true.

Both x & y are evaluated before the test.

 !x
Boolean

NOT

If x is true, the result is false.

If x is false, the result is true.

 x ^ y
Boolean

XOR

If x is true and y is false, the result is true.

If x is false and y is true, the result is true.

Otherwise, the result is false.

Both x and y are evaluated before the test.

Example

class Bool1

 {

 public static void main(String args[])

 {

 // these are boolean variables

 boolean A = true;

 boolean B = false;

 System.out.println("A|B = "+(A|B));

 System.out.println("A&B = "+(A&B));

 System.out.println("!A = "+(!A));

 System.out.println("A^B = "+(A^B));

 System.out.println("(A|B)&A = "+((A|B)&A));

 }

 }

3.7 Java Conditional Operators

44

Java has the conditional operator. It's a ternary operator that is, it has three

operands and it comes in two pieces, ? and :, that have to be used together. It takes the

form:

Boolean-expression ? expression-1 : expression-2

 The JVM tests the value of Boolean-expression. If the value is true, it evaluates

expression-1; otherwise, it evaluates expression-2. For Example:

if (a > b)

 {

 max = a;

 }

else

 {

 max = b;

 }

Setting a single variable to one of two states based on a single condition is such a common

use of if-else that a shortcut has been devised for it, the conditional operator, ?:. Using the

conditional operator you can rewrite the above example in a single line like this:

max = (a > b) ? a : b;

3.8 Bitwise operators

The bitwise operators allow you to manipulate individual bits in an integral

primitive data type. Bitwise operators perform Boolean algebra on the corresponding bits

in the two arguments to produce the result. The bitwise operators come from C’s low-level

orientation; you were often manipulating hardware directly and had to set the bits in

hardware registers. Java was originally designed to be embedded in TV set-top boxes, so

this low-level orientation still made sense. However, you probably won’t use the bitwise

operators much.

 The bitwise AND operator (&) produces a one in the output bit if both input bits

are one; otherwise it produces a zero. The bitwise OR operator (|) produces a one in the

output bit if either input bit is a one and produces a zero only if both input bits are zero.

the bitwise, EXCLUSIVE OR, or XOR (^), produces a one in the output bit if one or the

other input bit is a one, but not both. The bitwise NOT (~, also called the ones complement

operator) is a unary operator; it takes only one argument. (All other bitwise operators are

binary operators.) Bitwise NOT produces the opposite of the input bit – a one if the input

bit is zero, a zero if the input bit is one.

 Bitwise operators can be combined with the = sign to unite the operation and

assignment: &=, |= and ^= are all legitimate. (Since ~ is a unary operator it cannot be

combined with the = sign.) The boolean type is treated as a one-bit value so it is somewhat

different. You can perform a bitwise AND, OR and XOR, but you can’t perform a bitwise

NOT (presumably to prevent confusion with the logical NOT). For booleans the bitwise

operators have the same effect as the logical operators except that they do not short

circuit. Also, the bitwise operators on booleans gives you a XOR logical operator that is

not included under the list of “logical” operators.

45

 The shift operators shift the individual bits of the operand to the left or right

as indicated by the operator. Each shift operator shifts the bits of the left-hand operand

over by the number of positions indicated by the right-hand operand. The shift occurs in

the direction indicated by the operator itself. For example, the following statement shifts

the bits of the integer 13 to the right by one position:

13 >> 1;

The binary representation of the number 13 is 1101. The result of the shift

operation is 1101 shifted to the right by one position--110 or 6 in decimal. Note that the

bit farthest to the right falls off the end into the bit bucket. The different bit manipulation

operators are summarized in the table below:

3.9 Operator Precedence

Operator precedence determines the order in which expressions are evaluated.

This, in some cases, can determine the overall value of the expression. For example, take

the following expression:

 y = 6 + 4 / 2

Depending on whether the 6 + 4 expression or the 4 / 2 expression is evaluated

first, the value of y can end up being 5 or 8. Operator precedence determines the order in

which expressions are evaluated, so you can predict the outcome of an expression. In

general, increment and decrement are evaluated before arithmetic, arithmetic expressions

are evaluated before comparisons and comparisons are evaluated before logical

expressions. Assignment expressions are evaluated last.

46

The following table shows the specific precedence of the various operators in Java.

Operators further up in the table are evaluated first; operators on the same line have the

same precedence and are evaluated left to right based on how they appear in the

expression itself. For example, given that same expression y = 6 + 4 / 2, you now know,

according to this table, that division is evaluated before addition, so the value of y will be

8.

 Operator precedence

Operator Explanation

. [] () Parentheses (()) are used to group expressions; dot (.) is used

for access to methods and variables within objects and classes

(discussed tomorrow); square brackets ([]) are used for arrays

++ -- ! ~ instanceof The instanceof operator returns true or false based on whether

the object is an instance of the named class or any of that

class's subclasses

new (type)expression The new operator is used for creating new instances of classes;

() in this case is for casting a value to another type

* / % Multiplication, division, modulus

+ - Addition, subtraction

<< >> >>> Bitwise left and right shift

< > <= >= Relational comparison tests

== != Equality

& AND

^ XOR

| OR

&& Logical AND

|| Logical OR

? : Shorthand for if...then...else (discussed on Day 5)

= += -= *= /= %= ^= Various assignments

&= |= <<= >>= >>>= More assignments

3.10 Type Casting and Conversion

It is sometimes necessary to convert a data item of one type to another type. Conversion

of data from one type to another type is known as type casting. In java one object reference

can be type cast into another object reference. This casting may be of its own type or to

one of its subclass or superclasss types or interfaces. Some compile time or runtime type

casting rules are there in java. Some circumstances requires automatic type conversion,

while in other cases it must be "forced" manually (explicitly).

Automatic Conversion

Java performs automatic type conversion when the type of the expression on the

right hand side of an assignment operator safely promotes to the type of the variable on

47

the left hand side of the assignment operator. Thus we can safely assign: byte -> short ->

int -> long -> float -> double. Symbol (->) used here interprets to "to a".

Lets take an example,

// 64 bit long integer

long myLongInteger;

// 32 bit standard integer

int myInteger;

myLongInteger = myInteger;

In the above example, extra storage associated with the long integer, simply results in

padding with extra zeros. Any object can reference to a reference variable of the type

Object, as Object class comes at the top in the hierarchy of every Java class.

Java follows two types of casting

 Upcasting

 Downcasting

Upcasting

Casting a reference with the class hierarchy in a direction from the sub classes

towards the root then this type of casting is termed as upcasting. Upcasting does not

require a cast operator.

DownCasting

On the other hand, casting a reference with hierarchal class order in a direction

from the root class towards the children or subclasses, then it is known as downcasting.

Explicit Conversion (Casting)

Automatic type casting does work in case of narrowing i.e. when a data type

requiring more storage is converted into a data type that requires less storage. E.g.

conversion of a long to an int does not perform because the first requires more storage

than the second and consequently information may be lost. In such situations an explicit

conversion is required.

3.11 Summary

 Operators are special symbols for things like arithmetic, various forms of

assignment, increment and decrement and logical operations. An operator performs a

function on one, two, or three operands. An operator that requires one operand is called a

unary operator. An operator that requires two operands is a binary operator and a

ternary operator is one that requires three operands. The Java programming language

48

includes five simple arithmetic operators. They are + (addition), - (subtraction), *

(multiplication), / (division), and % (modulo). Java Variables are assigned, or given,

values using one of the assignment operators. The variable are always on the left-hand

side of the assignment operator and the value to be assigned is always on the right-hand

side of the assignment operator. There are 2 Increment or decrement operators ++ and – to

increase and decrease the value of a variable by one respectively. A relational operator

compares two values and determines the relationship between them. The relation

operators in Java are: ==, !=, <, >, <=, and >=. The Boolean logical operators are : | , & , ^

, ! , || , && . Java supplies a primitive data type called Boolean, instances of which can

take the value true or false only, and have the default value false. Java has the conditional

operator. It's a ternary operator that is, it has three operands and it comes in two pieces, ?

and :, that have to be used together. The bitwise operators allow you to manipulate

individual bits in an integral primitive data type. Bitwise operators perform Boolean

algebra on the corresponding bits in the two arguments to produce the result. Operator

precedence determines the order in which expressions are evaluated.

3.12 Short Answer Type Questions

1. What is an operator and what are operands?

2. Explain different arithmetic operators?

3. What do you mean by precedence of operators?

3.13 Long Answer Type Questions

1. Explain in detail different operators used in java.

2. WAP to find roots of a quadratic equation.

3. WAP to show the all of unary operator.

3.14 Suggested Readings

 The Complete Reference by Herbert Scheild

 Programming with Java by E.Balagurusamy

 Java : A Beginner's Guide by Herbert Schildt

 Introduction to Java Programming by Y.Daniel Liang.

 Object Oriented Programming in Java by G.T. Thampi

 Java Programming by C. Xavier

49

BCA SEM-5 Paper : BCAB3104T

Java Programming

Lesson No. 4 Author : Kanwal Preet Singh

Converted into SLM by: Dr. Vishal Singh

Control Statements

4.1 Objectives

4.2 Introduction

4.3 true and false

4.4 if-else

4.5 return

4.6 Iteration

4.7 The comma operator

4.8 break and continue

4.9 goto

4.10 switch

4.11 Arrays

4.12 Summary

4.13 Short Answer Type Questions

4.14 Long Answer Type Questions

4.15 Suggested Readings

4.1 Objectives

 After reading this lesson you will have understanding of various decision and

iteration statements. You will also have an understanding of return, break, continue and

switch statements.

4.2 Introduction

Java uses all of C’s execution control statements, so if you’ve programmed with C

or C++ then most of what you see will be familiar. Most procedural programming

languages have some kind of control statements and there is often overlap among

languages. In Java, the keywords include if-else, while, do-while, for, and a selection

statement called switch. Java does not, however, support the goto (which can still be the

most expedient way to solve certain types of problems). You can still do a goto-like jump,

but it is much more constrained than a typical goto.

4.3 true and false

All conditional statements use the truth or falsehood of a conditional expression to

determine the execution path. An example of a conditional expression is A == B. This uses

the conditional operator == to see if the value of A is equivalent to the value of B. The

expression returns true or false. Any of the relational operators you’ve seen earlier can be

used to produce a conditional statement. Note that Java doesn’t allow you to use a

number as a boolean, even though it’s allowed in C and C++ (where truth is nonzero and

50

falsehood is zero). If you want to use a non-boolean in a boolean test, such as if(a), you

must first convert it to a boolean value using a conditional expression, such as if(a != 0).

4.4 if-else

The if-else statement is probably the most basic way to control program flow. The

else is optional, so you can use if in two forms:

if(Boolean-expression)

statement

or

if(Boolean-expression)

statement

else

statement

The conditional must produce a Boolean result. The statement means either a

simple statement terminated by a semicolon or a compound statement, which is a group of

simple statements enclosed in braces. Anytime the word “statement” is used, it always

implies that the statement can be simple or compound. As an example of if-else, here is a

test() method that will tell you whether a guess is above, below or equivalent to a target

number:

static int test(int testval)

 {

 int result = 0;

 if(testval > target)

 result = -1;

 else if(testval < target)

 result = +1;

 else

 result = 0; // match

 return result;

}

It is conventional to indent the body of a control flow statement so the reader might easily

determine where it begins and ends.

4.5 return

The return keyword has two purposes: it specifies what value a method will return

(if it doesn’t have a void return value) and it causes that value to be returned immediately.

The test() method above can be rewritten to take advantage of this:

static int test2(int testval)

 {

 if(testval > target)

 return -1;

 if(testval < target)

 return +1;

 return 0; // match

51

 }

There’s no need for else because the method will not continue after executing a return.

4.6 Iteration

while, do-while and for control looping and are sometimes classified as iteration

statements. A statement repeats until the controlling Boolean-expression evaluates to false.

The form for a while loop is

while(Boolean-expression)

statement

The Boolean-expression is evaluated once at the beginning of the loop and again

before each further iteration of the statement. Here’s a simple example that generates

random numbers until a particular condition is met:

//WhileTest.java

// Demonstrates the while loop

public class WhileTest

 {

 public static void main(String[] args)

 {

double r = 0;

while(r < 0.99d)

 {

 r = Math.random();

 System.out.println(r);

 }

 }

 }

This uses the static method random() in the Math library, which generates a

double value between 0 and 1. (It includes 0, but not 1.) The conditional expression for the

while says “keep doing this loop until the number is 0.99 or greater.” Each time you run

this program you’ll get a different-sized list of numbers.

do-while

The form for do-while is

do

statement

while(Boolean-expression);

The sole difference between while and do-while is that the statement of the do-

while always executes at least once, even if the expression evaluates to false the first time.

In a while, if the conditional is false the first time the statement never executes. In

practice, do-while is less common than while.

for

A for loop performs initialization before the first iteration. Then it performs

conditional testing and at the end of each iteration, some form of “stepping.” The form of

the for loop is:

52

for(initialization; Boolean-expression; step)

statement

Any of the expressions initialization, Boolean-expression or step can be empty. The

expression is tested before each iteration and as soon as it evaluates to false execution will

continue at the line following the for statement. At the end of each loop, the step executes.

for loops are usually used for “counting” tasks:

//ListCharacters.java

// Demonstrates "for" loop by listing

// all the ASCII characters.

public class ListCharacters

 {

 public static void main(String[] args)

 {

 for(char c = 0; c < 128; c++)

 if (c != 26) // ANSI Clear screen

 System.out.println("value: " + (int)c +" character: " + c);

 }

 }

Note that the variable c is defined at the point where it is used, inside the control

expression of the for loop, rather than at the beginning of the block denoted by the open

curly brace. The scope of c is the expression controlled by the for. Traditional procedural

languages like C require that all variables be defined at the beginning of a block so when

the compiler creates a block it can allocate space for those variables. In Java and C++ you

can spread your variable declarations throughout the block, defining them at the point

that you need them. This allows a more natural coding style and makes code easier to

understand. You can define multiple variables within a for statement, but they must be of

the same type:

for(int i = 0, j = 1;i < 10 && j != 11;i++, j++)

/* body of for loop */;

The int definition in the for statement covers both i and j. The ability to define

variables in the control expression is limited to the for loop. You cannot use this approach

with any of the other selection or iteration statements.

Nested for loops

We saw how to create a for loop in Java. This is generally where a single variable

cycles over a range of values.

Very often, it’s useful to cycle through combinations of two or more variables. For

example, we printed out a single times table, but what if we wanted to print out all the

times tables, say, between 2 and 12 ?

One common way to do this is to use a nested loop. That’s just a fancy way to

saying one loop inside another. So we start with one loop, which goes through all the

“times table numbers” in turn that we want to print (in this case, we said between 2 and

12).

53

for (int timsTableNo = 2; timesTableNo <= 12; timesTableNo++) {

}

Then, inside this loop, we place our other loop that printed the 7 times table. Only

this time, we don’t want it to print the 7 times table each time – we want to print the

timesTableNo times table each time. So the program looks like this :

for (int timesTableNo = 2; timesTableNo <= 12; timesTableNo++) {

system.out.printIn(“The” + timesTableNo + “times table:”);

int result = n * timesTableNo;

System.out.printIn(timesTableNo + “times” + n + “eqals” + n);

}

}

Now, the lines in bold will run for all combinations of time table number and n.

Notice that each time table is also preceded by a “heading” that announces it as “The 2

times table” etc. The line to do that sits only inside the timesTableNo loop, so it only gets

run once for every times table, not once for every combination. Try running the program

and confirming that it prints all the times tables, for every value between 1 and 12.

4.7 The comma operator

Earlier in this lesson we have seen that the comma operator (not the comma

separator, which is used to separate function arguments) has only one use in Java: in the

control expression of a for loop. In both the initialization and step portions of the control

expression you can have a number of statements separated by commas, and those

statements will be evaluated sequentially. The previous bit of code uses this ability. Here’s

another example:

//CommaOperator.java

public class CommaOperator

 {

 public static void main(String[] args)

 {

 for(int i = 1, j = i + 10; i < 5;i++, j = i * 2)

 {

 System.out.println("i= " + i + " j= " + j);

 }

 }

 }

The output is:

i= 1 j= 11

i= 2 j= 4

i= 3 j= 6

i= 4 j= 8

You can see that in both the initialization and step portions the statements are

evaluated in sequential order. Also, the initialization portion can have any number of

definitions of one type.

54

4.8 break and continue

Inside the body of any of the iteration statements you can also control the flow of

the loop by using break and continue. break quits the loop without executing the rest of

the statements in the loop. continue stops the execution of the current iteration and goes

back to the beginning of the loop to begin a new iteration. This program shows examples of

break and continue within for and while loops:

//BreakAndContinue.java

// Demonstrates break and continue keywords

public class BreakAndContinue

 {

 public static void main(String[] args)

 {

 for(int i = 0; i < 100; i++)

 {

 if(i == 58) break; // Out of for loop

 if(i % 9 != 0) continue; // Next iteration

 System.out.println(i);

 }

 int i = 0;

 // An "infinite loop":

 while(true)

 {

 i++;

 int j = i * 27;

 if(j == 1269) break; // Out of loop

 if(i % 10 != 0) continue; // Top of loop

 System.out.println(i);

 }

 }

 }

In the for loop the value of i never gets to 100 because the break statement breaks

out of the loop when i is 58. Normally, you’d use a break like this only if you didn’t know

when the terminating condition was going to occur. The continue statement causes

execution to go back to the top of the iteration loop (thus incrementing i) whenever i is not

evenly divisible by 9. When it is, the value is printed.

 The second portion shows an “infinite loop” that would, in theory, continue forever.

However, inside the loop there is a break statement that will break out of the loop. In

addition, you’ll see that the continue moves back to the top of the loop without completing

the remainder. (Thus printing happens only when the value of i is divisible by 9.)

The output is:

0

9

18

55

27

36

45

54

10

20

30

40

The value 0 is printed because 0 % 9 produces 0.

A second form of the infinite loop is for(;;). The compiler treats both while(true) and

for(;;) in the same way so whichever one you use is a matter of programming taste.

4.9 goto

The goto keyword has been present in programming languages from the beginning.

Indeed, goto was the genesis of program control in assembly language: “if condition A,

then jump here, otherwise jump there.” If you read the assembly code that is ultimately

generated by virtually any compiler, you’ll see that program control contains many jumps.

However, goto jumps at the source-code level and that’s what brought it into disrepute. If

a program will always jump from one point to another, isn’t there some way to reorganize

the code so the flow of control is not so jumpy?

 goto fell into true disfavor with the publication of the famous “Goto considered

harmful” paper by Edsger Dijkstra, and since then goto-bashing has been a popular sport,

with advocates of the cast-out keyword scurrying for cover. As is typical in situations like

this, the middle ground is the most fruitful. The problem is not the use of goto but the

overuse of goto and in rare situations goto is the best way to structure control flow.

Although goto is a reserved word in Java, it is not used in the language; Java has no goto.

However, it does have something that looks a bit like a jump tied in with the break and

continue keywords. It’s not a jump but rather a way to break out of an iteration

statement. The reason it’s often thrown in with discussions of goto is because it uses the

same mechanism: a label. A label is an identifier followed by a colon, like this:

label1:

The only place a label is useful in Java is right before an iteration statement. And

that means right before – it does no good to put any other statement between the label and

the iteration. And the sole reason to put a label before iteration is if you’re going to nest

another iteration or a switch inside it. That’s because the break and continue keywords

will normally interrupt only the current loop, but when used with a label they’ll interrupt

the loops up to where the label exists:

label1:

outer-iteration

 {

 inner-iteration

 {

 //…

 break; // 1

56

 //…

 continue; // 2

 //…

 continue label1; // 3

 //…

 break label1; // 4

 }

 }

In case 1, the break breaks out of the inner iteration and you end up in the outer

iteration. In case 2, the continue moves back to the beginning of the inner iteration. But

in case 3, the continue label1 breaks out of the inner iteration and the outer iteration, all

the way back to label1. Then it does in fact continue the iteration, but starting at the

outer iteration. In case 4, the break label1 also breaks all the way out to label1, but it

does not re-enter the iteration. It actually does break out of both iterations. Here is an

example using for loops:

//LabeledFor.java

// Java’s "labeled for loop"

public class LabeledFor

 {

 public static void main(String[] args)

 {

 int i = 0; // i is initialized only once

outer: // Can't have statements here

for(; true ;)

 { // infinite loop

 inner: // Can't have statements here

 for(; i < 10; i++)

 {

 prt("i = " + i);

 if(i == 2)

 {

 prt("continue");

 continue;

 }

 if(i == 3)

 {

 prt("break");

 i++; // Otherwise i never

 // gets incremented.

 break;

 }

 if(i == 7)

57

 {

 prt("continue outer");

 i++; // Otherwise i never

 // gets incremented.

 continue outer;

 }

 if(i == 8)

 {

 prt("break outer");

 break outer;

 }

 for(int k = 0; k < 5; k++)

 {

 if(k == 3)

 {

 prt("continue inner");

 continue inner;

 }

 }

 }

 }

// Can't break or continue

// to labels here

 }

 static void prt(String s)

 {

 System.out.println(s);

 }

 }

The above program uses the prt() method that has been defined at the end of the

program to print a string. Note that break breaks out of the for loop and that the

increment- expression doesn’t occur until the end of the pass through the for loop. Since

break skips the increment expression, the increment is performed directly in the case of i

== 3. The continue outer statement in the case of i == 7 also goes to the top of the loop

and also skips the increment, so it too is incremented directly.

The output is:

i = 0

continue inner

i = 1

continue inner

i = 2

continue

58

i = 3

break

i = 4

continue inner

i = 5

continue inner

i = 6

continue inner

i = 7

continue outer

i = 8

break outer

If not for the break outer statement, there would be no way to get out of the outer

loop from within an inner loop, since break by itself can break out of only the innermost

loop. (The same is true for continue.) Of course, in the cases where breaking out of a loop

will also exit the method, you can simply use a return. Here is a demonstration of labeled

break and continue statements with while loops:

//LabeledWhile.java

// Java's "labeled while" loop

public class LabeledWhile

{

public static void main(String[] args)

 {

 int i = 0;

 outer:

 while(true)

 {

 prt("Outer while loop");

 while(true)

 {

 i++;

 prt("i = " + i);

 if(i == 1)

 {

 prt("continue");

 continue;

 }

 if(i == 3)

 {

 prt("continue outer");

 continue outer;

 }

59

 if(i == 5)

 {

 prt("break");

 break;

 }

 if(i == 7)

 {

 prt("break outer");

 break outer;

 }

 }

 }

 }

static void prt(String s)

 {

 System.out.println(s);

 }

}

 The same rules hold true for while:

1. A plain continue goes to the top of the innermost loop and continues.

2. A labeled continue goes to the label and re-enters the loop right after that label.

3. A break “drops out of the bottom” of the loop.

4. A labeled break drops out of the bottom of the end of the loop denoted by the label.

The output of this method makes it clear:

Outer while loop

i = 1

continue

i = 2

i = 3

continue outer

Outer while loop

i = 4

i = 5

break

Outer while loop

i = 6

i = 7

break outer

It’s important to remember that the only reason to use labels in Java is when you

have nested loops and you want to break or continue through more than one nested level.

In Dijkstra’s “goto considered harmful” paper, what he specifically objected to was the

labels, not the goto. He observed that the number of bugs seems to increase with the

60

number of labels in a program. Labels and gotos make programs difficult to analyze

statically, since it introduces cycles in the program execution graph. Note that Java labels

don’t suffer from this problem, since they are constrained in their placement and can’t be

used to transfer control in an ad hoc manner. It’s also interesting to note that this is a

case where a language feature is made more useful by restricting the power of the

statement.

4.10 switch

The switch is sometimes classified as a selection statement. The switch statement

selects from among pieces of code based on the value of an integral expression. Its form is:

switch(integral-selector)

 {

 case integral-value1 : statement; break;

 case integral-value2 : statement; break;

 case integral-value3 : statement; break;

 case integral-value4 : statement; break;

 case integral-value5 : statement; break;

 // …

 default: statement;

 }

Integral-selector is an expression that produces an integral value. The switch

compares the result of integral-selector to each integral-value. If it finds a match, the

corresponding statement (simple or compound) executes. If no match occurs, the default

statement executes. You will notice in the above definition that each case ends with a

break, which causes execution to jump to the end of the switch body. This is the

conventional way to build a switch statement, but the break is optional. If it is missing,

the code for the following case statements execute until a break is encountered. Although

you don’t usually want this kind of behavior, it can be useful to an experienced

programmer. Note the last statement, for the default, doesn’t have a break because the

execution just falls through to where the break would have taken it anyway. You could put

a break at the end of the default statement with no harm if you considered it important

for style’s sake. The switch statement is a clean way to implement multi-way selection

(i.e., selecting from among a number of different execution paths), but it requires a selector

that evaluates to an integral value such as int or char. If you want to use, for example, a

string or a floating-point number as a selector, it won’t work in a switch statement. For

non-integral types, you must use a series of if statements. Here’s an example that creates

letters randomly and determines whether they’re vowels or consonants:

//VowelsAndConsonants.java

// Demonstrates the switch statement

public class VowelsAndConsonants

 {

 public static void main(String[] args)

 {

61

 for(int i = 0; i < 100; i++)

 {

 char c = (char)(Math.random() * 26 + 'a');

 System.out.print(c + ": ");

 switch(c)

 {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u':

 System.out.println("vowel");

 break;

 case 'y':

 case 'w':

 System.out.println("Sometimes a vowel");

 break;

 default:

 System.out.println("consonant");

 }

 }

 }

 }

 Since Math.random() generates a value between 0 and 1, you need only multiply it

by the upper bound of the range of numbers you want to produce (26 for the letters in the

alphabet) and add an offset to establish the lower bound. Although it appears you’re

switching on a character here, the switch statement is actually using the integral value of

the character. The singly-quoted characters in the case statements also produce integral

values that are used for comparison. Notice how the cases can be “stacked” on top of each

other to provide multiple matches for a particular piece of code. You should also be aware

that it’s essential to put the break statement at the end of a particular case, otherwise

control will simply drop through and continue processing on the next case.

Calculation details

The statement:

char c = (char)(Math.random() * 26 + 'a');

deserves a closer look. Math.random() produces a double, so the value 26 is converted to

a double to perform the multiplication, which also produces a double. This means that ‘a’

must be converted to a double to perform the addition. The double result is turned back

into a char with a cast. First, what does the cast to char do? That is, if you have the value

29.7 and you cast it to a char, is the resulting value 30 or 29? The answer to this can be

seen in this example:

//CastingNumbers.java

62

// What happens when you cast a float or double

// to an integral value?

public class CastingNumbers

 {

 public static void main(String[] args)

 {

 double above = 0.7,below = 0.4;

 System.out.println("above: " + above);

 System.out.println("below: " + below);

 System.out.println("(int)above: " + (int)above);

 System.out.println("(int)below: " + (int)below);

 System.out.println("(char)('a' + above): " +(char)('a' + above));

 System.out.println("(char)('a' + below): " +(char)('a' + below));

 }

 }

The output is:

above: 0.7

below: 0.4

(int)above: 0

(int)below: 0

(char)('a' + above): a

(char)('a' + below): a

So the answer is that casting from a float or double to an integral value always

truncates. The second question has to do with Math.random(). Does it produce a value

from zero to one, inclusive or exclusive of the value ‘1’? In math lingo, is it (0,1), or [0,1],or

(0,1] or [0,1)? (The square bracket means “includes” whereas the parenthesis means

“doesn’t include.”) The answer is that 0.0 is included in the output of Math.random() and

1.0 is not. Or, in math lingo, it is [0,1).

4.11 Arrays

An array is a container object that holds a fixed number of values of a single type.

The length of an array is established when the array is created. After creation, its length is

fixed. You've seen an example of arrays already, in the main method of the "Hello World!"

application. This section discusses arrays in greater detail.

An array of ten elements

63

Each item in an array is called an element and each element is accessed by its

numerical index. As shown in the above illustration, numbering begins with 0. The 9th

element, for example, would therefore be accessed at index 8. The following

program, ArrayDemo, creates an array of integers, puts some values in it, and prints each

value to standard output.

class ArrayDemo {

 public static void main(String[] args) {

 int[] anArray; // declares an array of integers

 anArray = new int[10]; // allocates memory for 10 integers

 anArray[0] = 100; // initialize first element

 anArray[1] = 200; // initialize second element

 anArray[2] = 300; // etc.

 anArray[3] = 400;

 anArray[4] = 500;

 anArray[5] = 600;

 anArray[6] = 700;

 anArray[7] = 800;

 anArray[8] = 900;

 anArray[9] = 1000;

 System.out.println("Element at index 0: " + anArray[0]);

 System.out.println("Element at index 1: " + anArray[1]);

 System.out.println("Element at index 2: " + anArray[2]);

 System.out.println("Element at index 3: " + anArray[3]);

 System.out.println("Element at index 4: " + anArray[4]);

 System.out.println("Element at index 5: " + anArray[5]);

 System.out.println("Element at index 6: " + anArray[6]);

 System.out.println("Element at index 7: " + anArray[7]);

 System.out.println("Element at index 8: " + anArray[8]);

 System.out.println("Element at index 9: " + anArray[9]);

 }

}

The output from this program is:

Element at index 0: 100

Element at index 1: 200

Element at index 2: 300

Element at index 3: 400

Element at index 4: 500

Element at index 5: 600

Element at index 6: 700

Element at index 7: 800

Element at index 8: 900

Element at index 9: 1000

64

In a real-world programming situation, you'd probably use one of the

supported looping constructs to iterate through each element of the array, rather than

write each line individually as shown above. However, this example clearly illustrates the

array syntax. You'll learn about the various looping constructs (for, while and do-while) in

the Control Flow section.

Declaring a Variable to Refer to an Array

The above program declares anArray with the following line of code:

 int[] anArray; // declares an array of integers

Like declarations for variables of other types, an array declaration has two

components: the array's type and the array's name. An array's type is written as type[],

where type is the data type of the contained elements; the square brackets are special

symbols indicating that this variable holds an array. The size of the array is not part of its

type (which is why the brackets are empty). An array's name can be anything you want,

provided that it follows the rules and conventions as previously discussed in

the naming section. As with variables of other types, the declaration does not actually

create an array — it simply tells the compiler that this variable will hold an array of the

specified type.

Similarly, you can declare arrays of other types:

byte[] anArrayOfBytes;

short[] anArrayOfShorts;

long[] anArrayOfLongs;

float[] anArrayOfFloats;

double[] anArrayOfDoubles;

boolean[] anArrayOfBooleans;

char[] anArrayOfChars;

String[] anArrayOfStrings;

You can also place the square brackets after the array's name:

float anArrayOfFloats[]; // this form is discouraged

However, convention discourages this form; the brackets identify the array type and

should appear with the type designation.

Creating, Initializing, and Accessing an Array

One way to create an array is with the new operator. The next statement in

the ArrayDemo program allocates an array with enough memory for ten integer elements

and assigns the array to the anArray variable.

anArray = new int[10]; // create an array of integers

If this statement were missing, the compiler would print an error like the following, and

compilation would fail:

ArrayDemo.java:4: Variable anArray may not have been initialized.

The next few lines assign values to each element of the array:

anArray[0] = 100; // initialize first element

65

anArray[1] = 200; // initialize second element

anArray[2] = 300; // etc.

Each array element is accessed by its numerical index:

System.out.println("Element 1 at index 0: " + anArray[0]);

System.out.println("Element 2 at index 1: " + anArray[1]);

System.out.println("Element 3 at index 2: " + anArray[2]);

Alternatively, you can use the shortcut syntax to create and initialize an array:

int[] anArray = {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000};

Here the length of the array is determined by the number of values provided

between { and }.

You can also declare an array of arrays (also known as a multidimensional array) by

using two or more sets of square brackets, such as String[][] names. Each element,

therefore, must be accessed by a corresponding number of index values.

In the Java programming language, a multidimensional array is simply an array

whose components are themselves arrays. This is unlike arrays in C or Fortran. A

consequence of this is that the rows are allowed to vary in length, as shown in the

following MultiDimArrayDemo program:

class MultiDimArrayDemo {

 public static void main(String[] args) {

 String[][] names = {{"Mr. ", "Mrs. ", "Ms. "},

 {"Smith", "Jones"}};

 System.out.println(names[0][0] + names[1][0]); //Mr. Smith

 System.out.println(names[0][2] + names[1][1]); //Ms. Jones

 }

}

The output from this program is:

 Mr. Smith

 Ms. Jones

Finally, you can use the built-in length property to determine the size of any array.

The code System.out.println(anArray.length); will print the array's size to standard output.

Copying Arrays

The System class has an arraycopy method that you can use to efficiently copy data

from one array into another:

public static void arraycopy(Object src,

 int srcPos,

 Object dest,

 int destPos,

 int length)

The two Object arguments specify the array to copy from and the array to copy to.

The three int arguments specify the starting position in the source array, the starting

position in the destination array and the number of array elements to copy.

http://download.oracle.com/javase/tutorial/java/nutsandbolts/examples/MultiDimArrayDemo.java

66

The following program, ArrayCopyDemo, declares an array of char elements,

spelling the word "decaffeinated". It uses arraycopy to copy a subsequence of array

components into a second array:

class ArrayCopyDemo {

 public static void main(String[] args) {

 char[] copyFrom = { 'd', 'e', 'c', 'a', 'f', 'f', 'e',

 'i', 'n', 'a', 't', 'e', 'd' };

 char[] copyTo = new char[7];

 System.arraycopy(copyFrom, 2, copyTo, 0, 7);

 System.out.println(new String(copyTo));

 }

}

The output from this program is : caffein

4.12 Summary

Java uses all of C’s execution control statements. All conditional statements use the

truth or falsehood of a conditional expression to determine the execution path. Java

doesn’t allow you to use a number as a Booleank. You have to use the Boolean values –

true and false. The if-else statement is used to take a decision based on whether the given

condition is true or not. The return keyword has two purposes: it specifies what value a

method will return (if it doesn’t have a void return value) and it causes that value to be

returned immediately. while, do-while and for control looping and are sometimes

classified as iteration statements. A statement repeats until the controlling Boolean-

expression evaluates to false. Inside the body of any of the iteration statements you can

also control the flow of the loop by using break and continue. break quits the loop

without executing the rest of the statements in the loop. continue stops the execution of

the current iteration and goes back to the beginning of the loop to begin a new iteration.

Java has no goto. However, it does have something that looks a bit like a jump tied in with

the break and continue keywords. The switch statement selects from among pieces of

code based on the value of an integral expression.

4.13 Short Answer Type Questions

1. Differentiate between while and do while?

2. What is return statement used for?

3. What do you mean by iteration?

4.14 Long Answer Type Questions

1. Write a program to calculate grade of a student based on the marks entered by the

user in five subjects.

2. Explain with the help of an example how to use a label with break and continue in

place of goto in java.

3. WAP to compare two numbers.

4. WAP to determine if year is leap year or not.

5. WAP to show the use of Switch statement.

http://download.oracle.com/javase/tutorial/java/nutsandbolts/examples/ArrayCopyDemo.java

67

4.15 Suggested Readings

 The Complete Reference by Herbert Scheild

 Programming with Java by E.Balagurusamy

 Java : A Beginner's Guide by Herbert Schildt

 Introduction to Java Programming by Y.Daniel Liang.

 Object Oriented Programming in Java by G.T. Thampi

 Java Programming by C. Xavier

68

BCA SEM-5 Paper : BCAB3104T

Java Programming

Lesson No. 5 Author : Kanwal Preet Singh

Converted into SLM by: Dr. Vishal Singh

Introduction to Classes

5.1 Objectives

5.2 Introduction

5.3 Introduction to Java Classes

5.4 Constructing objects with new

5.5 Object References

5.6 The Member Access Separator

5.7 Methods

5.8 Member Variables vs. Local Variables

5.9 Passing Arguments to Methods

5.10 Setter Methods

5.11 Returning Values From Methods

5.12 Summary

5.13 Practice Questions

5.14 Suggested Readings

5.1 Objectives

After reading this lesson you will be able to understand:

 Classes

 Objects

 Object References

 Member Variables

 Methods

 Passing arguments to methods

5.2 Introduction

In classic, procedural programming you try to make the real world problem you're

attempting to solve fit a few, predetermined data types: integers, floats, Strings and arrays

perhaps. In object oriented programming you create a model for a real world system.

Classes are programmer-defined types that model the parts of the system. A class is a

programmer defined type that serves as a blueprint for instances of the class. You can still

have ints, floats, Strings, and arrays; but you can also have cars, motorcycles, people,

buildings, clouds, dogs, angles, students, courses, bank accounts and any other type

that's important to your problem.

69

Classes specify the data and behavior possessed both by themselves and by the

objects built from them. A class has two parts: the fields and the methods. Fields describe

what the class is. Methods describe what the class does. Using the blueprint provided by a

class, you can create any number of objects, each of which is called an instance of the

class. Different objects of the same class have the same fields and methods, but the values

of the fields will in general differ. For example, all people have eye color; but the color of

each person's eyes can be different from others. On the other hand, objects have the same

methods as all other objects in the class except in so far as the methods depend on the

value of the fields and arguments to the method. This dichotomy is reflected in the

runtime form of objects. Every object has a separate block of memory to store its fields,

but the bytes in the methods are shared between all objects in a class.

Following the principles of Object Oriented Programming (OOP), everything in Java

is either a class, a part of a class or describes how a class behaves. Objects are the

physical instantiations of classes. They are living entities within a program that have

independent lifecycles and that are created according to the class that describes them.

Just as many buildings can be built from one blueprint, many objects can be instantiated

from one class. Many objects of different classes can be created, used, and destroyed in

the course of executing a program. Programming languages provide a number of simple

data types like int, float and String. However very often the data you want to work with

may not be simple ints, floats or Strings. Classes let programmers define their own more

complicated data types.

All the action in Java programs takes place inside class blocks. In Java almost

everything of interest is either a class itself or belongs to a class. Methods are defined

inside the classes they belong to. Even basic data primitives like integers often need to be

incorporated into classes before you can do many useful things with them. The class is the

fundamental unit of Java programs.

5.3 Introduction to Java Classes

A class is nothing but a blueprint or a template for creating different objects which

defines its properties and behaviors. Java class objects exhibit the properties and

behaviors defined by its class. A class can contain fields and methods to describe the

behavior of an object.

Methods are nothing but members of a class that provide a service for an object or

perform some business logic. Java fields and member functions names are case sensitive.

Current states of a class’s corresponding object are stored in the object’s instance

variables. Methods define the operations that can be performed in java programming. A

class has the following general syntax:

//Contents of SomeClassName.java

[public] [(abstract | final)] class SomeClassName [extends SomeParentClass] [

implements SomeInterfaces]

{

 // variables and methods are declared within the curly braces

}

70

 A class can have public or default (no modifier) visibility. The visibility indicates

scope or accessibility from other objects. public means visible everywhere. The

default (ie. omitted) is package friendly or visible within the current package only.

 The second optional group indicates the capability of a class to be inherited or

extended by other classes. It can be either abstract, final or concrete (no modifier).

abstract classes must be extended and final classes can never be extended by

inheritance. The default (ie. omitted) indicates that the class may or may not be

extended at the programmers discretion.

 It must have the class keyword and class must be followed by a legal identifier.

 It may optionally extend one parent class. By default, it will extend

java.lang.Object.

 It may optionally implement any number of comma-separated interfaces.

 The class's variables and methods are declared within a set of curly braces '{}'.

 Each .java source file may contain only one public class. A source file may contain

any number of default visible classes.

 Finally, the source file name must match the public class name and it must have a

.java suffix.

Here is an example of a Horse class. Horse is a subclass of Mammal, and it implements

the Hoofed interface.

public class Horse extends Mammal implements Hoofed

{

 //Horse's variables and methods go here

}

Example : The Car Class

Suppose you need to write a traffic simulation program that watches cars going

past an intersection. Each car has a speed, a maximum speed and a license plate that

uniquely identifies it. In traditional programming languages you'd have two floating point

and one string variable for each car. With a class you combine these into one thing like

this.

class Car

 {

 String licensePlate; // e.g. "PB11R2300"

 double speed; // in kilometers per hour

 double maxSpeed; // in kilometers per hour

 }

These variables (licensePlate, speed and maxSpeed) are called the member

variables, instance variables or fields of the class. Fields tell you what a class is and what

its properties are.

An object is a specific instance of a class with particular values for the fields. While a class

is a general blueprint for objects, an instance is a particular object.

71

5.4 Constructing objects with new

To instantiate an object in Java, use the keyword new followed by a call to the

class's constructor. First declare an instance variable of the class as follows:

Class_name instance_variable;

Then create an object of the class using new operator and assign it to the instance

variable declared above as:

instance_variable = new class_name();

For example Here's how you'd create a new Car variable called c and the assign to it an

object of Class Car:

 Car c;

 c = new Car();

The first word, Car, declares the type of the variable c. Classes are types and

variables of a class type need to be declared just like variables that are ints or doubles.

The equals sign is the assignment operator and new is the construction operator. Finally

notice the Car() method. The parentheses tell you this is a method and not a data type like

the Car on the left hand side of the assignment. This is a constructor, a method that

creates a new instance of a class. You'll learn more about constructors shortly. However if

you do nothing, then the compiler inserts a default constructor that takes no arguments.

This is often condensed into one line like this:

 Car c = new Car();

5.5 Object References

In Java, a class is a type, similar to the built-in types such as int and boolean. So,

a class name can be used to specify the type of a variable in a declaration statement, the

type of a formal parameter or the return type of a function. For example, a program could

define a variable named std of type Student with the statement

Student std;

However, declaring a variable does not create an object! This is an important point,

which is related to this Very Important Fact:

In Java, no variable can ever hold an object. A variable can only hold a reference to

an object.

You should think of objects as floating around independently in the computer’s

memory. In fact, there is a special portion of memory called the heap where objects live.

Instead of holding an object itself, a variable holds the information necessary to find the

object in memory. This information is called a reference or pointer to the object. In effect, a

reference to an object is the address of the memory location where the object is stored.

When you use a variable of class type, the computer uses the reference in the variable to

find the actual object. In a program, objects are created using an operator called new,

which creates an object and returns a reference to that object. For example, assuming that

std is a variable of type Student, declared as above, the assignment statement:

std = new Student();

would create a new object which is an instance of the class Student, and it would store a

reference to that object in the variable std. The value of the variable is a reference to the

72

object, not the object itself. It is not quite true, then, to say that the object is the “value of

the variable std” (though sometimes it is hard to avoid using this terminology). It is

certainly not at all true to say that the object is “stored in the variable std.” The proper

terminology is that “the variable std refers to the object,” and we will try to stick to that

terminology as much as possible. So, suppose that the variable std refers to an object

belonging to the class Student. That object has instance variables name, test1, test2 and

test3. These instance variables can be referred to as std.name, std.test1, std.test2 and

std.test3. This follows the usual naming convention that when B is part of A, then the full

name of B is A.B. For example, a program might include the lines

System.out.println("Hello, " + std.name + ". Your test grades are:");

System.out.println(std.test1);

System.out.println(std.test2);

System.out.println(std.test3);

This would output the name and test grades from the object to which std refers.

Similarly, std can be used to call the getAverage() instance method in the object by saying

std.getAverage(). To print out the student’s average, you could say:

System.out.println("Your average is " + std.getAverage());

More generally, you could use std.name any place where a variable of type String is

legal. You can use it in expressions. You can assign a value to it. You can even use it to

call subroutines from the String class. For example, std.name.length() is the number of

characters in the student’s name. It is possible for a variable like std, whose type is given

by a class, to refer to no object at all. We say in this case that std holds a null reference.

The null reference is written in Java as “null”. You can store a null reference in the

variable std by saying

std = null;

and you could test whether the value of std is null by testing

if (std == null) . . .

If the value of a variable is null, then it is, of course, illegal to refer to instance

variables or instance methods through that variable—since there is no object, and hence

no instance variables to refer to. For example, if the value of the variable std is null, then it

would be illegal to refer to std.test1. If your program attempts to use a null reference

illegally like this, the result is an error called a null pointer exception. Let’s look at a

sequence of statements that work with objects:

Student std, std1, // Declare four variables of

std2, std3; // type Student.

std = new Student(); // Create a new object belonging

// to the class Student, and

// store a reference to that

// object in the variable std.

std1 = new Student(); // Create a second Student object

// and store a reference to

// it in the variable std1.

73

std2 = std1; // Copy the reference value in std1

// into the variable std2.

std3 = null; // Store a null reference in the

// variable std3.

std.name = "John Smith"; // Set values of some instance variables.

std1.name = "Mary Jones";

// (Other instance variables have default

// initial values of zero.)

After the computer executes these statements, the situation in the computer’s memory

looks like this:

This picture shows variables as little boxes, labeled with the names of the variables.

Objects are shown as boxes with round corners. When a variable contains a reference to

an object, the value of that variable is shown as an arrow pointing to the object. The

variable std3, with a value of null, doesn’t point anywhere. The arrows from std1 and std2

both point to the same object. This illustrates a Very Important Point:

When one object variable is assigned to another, only a reference is copied.

The object referred to is not copied.

When the assignment “std2 = std1;” was executed, no new object was created.

Instead, std2 was set to refer to the very same object that std1 refers to. This has some

consequences that might be surprising. For example, std1.name and std2.name are two

different names for the same variable, namely the instance variable in the object that both

std1 and std2 refer to. After the string "Mary Jones" is assigned to the variable std1.name,

it is also be true that the value of std2.name is "Mary Jones". There is a potential for a lot

of confusion here, but you can help protect yourself from it if you keep telling yourself,

“The object is not in the variable. The variable just holds a pointer to the object.” You can

test objects for equality and inequality using the operators == and !=, but here again, the

semantics are different from what you are used to. When you make a test “if (std1 ==

std2)”, you are testing whether the values stored in std1 and std2 are the same. But the

values are references to objects, not objects. So, you are testing whether std1 and std2

refer to the same object, that is, whether they point to the same location in memory. This

74

is fine, if its what you want to do. But sometimes, what you want to check is whether the

instance variables in the objects have the same values. To do that, you would need to ask

whether

“std1.test1 == std2.test1 && std1.test2 == std2.test2 &&

std1.test3 == std2.test3 && std1.name.equals(std2.name)”.

5.6 The Member Access Separator

Once you've constructed a car, you want to do something with it. To access the fields of

the car you use the . separator. The Car class has three fields

 licensePlate

 speed

 maxSpeed

Therefore if c is a Car object, c has three fields as well:

 c.licensePlate

 c.speed

 c.maxSpeed

You use these just like you'd use any other variables of the same type. For instance:

 Car c = new Car();

 c.licensePlate = " PB11R2300";

 c.speed = 64.0;

 c.maxSpeed = 130.00;

System.out.println(c.licensePlate + " is moving at " + c.speed +

"kilometers per hour.");

The . separator selects a specific member of a Car object by name.

Using a Car object in a different class

The next program creates a new car, sets its fields, and prints the result:

class CarTest

 {

 public static void main(String args[])

 {

 Car c = new Car();

 c.licensePlate = " PB11R2300";

 c.speed = 64.0;

 c.maxSpeed = 130.00;

 System.out.println(c.licensePlate + " is moving at " + c.speed +

 " kilometers per hour.");

 }

 }

This program requires not just the CarTest class but also the Car class. To make

them work together put the Car class in a file called Car.java. Put the CarTest class in a

file called CarTest.java. Put both these files in the same directory. Then compile both files

in the usual way. Finally run CarTest. For example,

% javac Car.java

75

% javac CarTest.java

% java CarTest

PB11R2300 is moving at 64.0 kilometers per hour.

Note that Car does not have a main() method so you cannot run it. It can exist only

when called by other programs that do have main() methods. Many of the applications you

write from now on will use multiple classes. It is customary in Java to put every class in

its own file. Later you'll learn how to use packages to organize your commonly used

classes in different directories. For now keep all your .java source code and .class byte

code files in one directory.

Initializing Fields

Fields can (and often should) be initialized when they're declared, just like local variables.

class Car

 {

 String licensePlate = ""; // e.g. "PB11R2300"

 double speed = 0.0; // in kilometers per hour

 double maxSpeed = 130.0; // in kilometers per hour

}

The next program creates a new car and prints it:

class CarTest2

 {

 public static void main(String[] args)

 {

 Car c = new Car();

 System.out.println(c.licensePlate + " is moving at " + c.speed +

 "kilometers per hour.");

 }

 }

For example,

$ javac Car.java

$ javac CarTest2.java

$ java CarTest

Output is:

is moving at 0.0 kilometers per hour.

5.7 Methods

Data types aren't much use unless you can do things with them. For this purpose

classes have methods. Fields say what a class is. Methods say what a class does. The

fields and methods of a class are collectively referred to as the members of the class.

The classes you've encountered up till now have mostly had a single method,

main(). However, in general classes can have many different methods that do many

different things. For instance the Car class might have a method to make the car go as fast

as it can. For example,

class Car

76

 {

 String licensePlate = ""; // e.g. "PB11R2300"

 double speed = 0.0; // in kilometers per hour

 double maxSpeed = 130.0; // in kilometers per hour

 // accelerate to maximum speed

 // put the pedal to the metal

 void floorIt()

 {

 this.speed = this.maxSpeed;

 }

 }

The fields are the same as before, but now there's also a method called floorIt(). It

begins with the Java keyword void which is the return type of the method. Every method

must have a return type which will either be void or some data type like int, byte, float or

String. The return type says what kind of the value will be sent back to the calling method

when all calculations inside the method are finished. If the return type is int, for example,

you can use the method anywhere you use an int constant. If the return type is void then

no value will be returned.

floorIt is the name of this method. The name is followed by two empty parentheses. Any

arguments passed to the method would be passed between the parentheses, but this

method has no arguments. Finally an opening brace ({) begins the body of the method.

There is one statement inside the method

this.speed = this.maxSpeed;

Notice that within the Car class the field names are prefixed with the keyword this to

indicate that I'm referring to fields in the current object.

Finally the floorIt() method is closed with a } and the class is closed with another }.

Invoking Methods

Outside the Car class, you call the floorIt() method just like you reference fields, using the

name of the object you want to accelerate to maximum and the . separator as

demonstrated below

class CarTest3

 {

 public static void main(String args[])

 {

 Car c = new Car();

 c.licensePlate = " PB11R2300";

 c.maxSpeed = 130.0;

 System.out.println(c.licensePlate + " is moving at " + c.speed +

 " kilometers per hour.");

 c.floorIt();

 System.out.println(c.licensePlate + " is moving at " + c.speed +

 " kilometers per hour.");

77

 }

 }

The output is:

PB11R2300is moving at 0.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

The floorIt() method is completely enclosed within the Car class. Every method in a

Java program must belong to a class. Unlike C++ programs, Java programs cannot have a

method hanging around in global space that does everything you forgot to do inside your

classes.

Implied this

class Car

 {

 String licensePlate = ""; // e.g. "PB11R2300"

 double speed = 0.0; // in kilometers per hour

 double maxSpeed = 130.0; // in kilometers per hour

 void floorIt()

 {

 speed = maxSpeed;

 }

 }

Within the Car class, you don't absolutely need to prefix the field names with this.

like this.licensePlate or this.speed. Just licensePlate and speed are sufficient. The this.

may be implied. That's because the floorIt() method must be called by a specific instance of

the Car class, and this instance knows what its data is. Or another way of looking at it,

the every object has its own floorIt() method.

For clarity, we will use an explicit this, and I recommend you do so too, at least

initially. As you become more comfortable with Java, classes, references, and OOP, you

will be able to leave out the this without fear of confusion. Most real-world code does not

use an explicit this.

5.8 Member Variables vs. Local Variables

class Car

 {

 String licensePlate = ""; // member variable

 double speed; = 0.0; // member variable

 double maxSpeed; = 130.0; // member variable

 boolean isSpeeding()

 {

 double excess; // local variable

 excess = this.maxSpeed - this.speed;

 if (excess < 0) return true;

 else return false;

 }

78

 }

Until now all the programs you've seen were quite simple in structure. Each had

exactly one class. This class had a single method, main(), which contained all the program

logic and variables. The variables in those classes were all local to the main() method. They

could not be accessed by anything outside the main() method. These are called local

variables.

This sort of program is the amoeba of Java. Everything the program needs to live is

contained inside a single cell. It's quite an efficient arrangement for small organisms, but it

breaks down when you want to design something bigger or more complex.

The licensePlate, speed and maxSpeed variables of the Car class, however, belong

to a Car object, not to any individual method. They are defined outside of any methods but

inside the class and are used in different methods. They are called member variables or

fields.

Member variable, instance variable, and field are different words that mean the

same thing. Field is the preferred term in Java. Member variable is the preferred term in

C++. A member is not the same as a member variable or field. Members include both fields

and methods.

5.9 Passing Arguments to Methods

It's generally considered bad form to access fields directly. Instead it is considered

good object oriented practice to access the fields only through methods. This allows you to

change the implementation of a class without changing its interface. This also allows you

to enforce constraints on the values of the fields.

To do this you need to be able to send information into the Car class. This is done

by passing arguments. For example, to allow other objects to change the value of the speed

field in a Car object, the Car class could provide an accelerate() method. This method does

not allow the car to exceed its maximum speed, or to go slower than 0 kph.

 void accelerate(double sp)

 {

 this.speed = this.speed + sp;

 if (this.speed > this.maxSpeed)

 {

 this.speed = this.maxSpeed;

 }

 if (this.speed < 0.0)

 {

 this.speed = 0.0;

 }

 }

The first line of the method is called its signature. The signature

void accelerate(double sp)

79

indicates that accelerate() returns no value and takes a single argument, a double which

will be referred to as sp inside the method. sp is a purely formal argument. Java passes

method arguments by value, not by reference.

Passing Arguments to Methods, An Example

class Car

 {

 String licensePlate = ""; // e.g. "PB11R2300"

 double speed = 0.0; // in kilometers per hour

 double maxSpeed = 130.0; // in kilometers per hour

 // accelerate to maximum speed

 // put the pedal to the metal

 void floorIt()

 {

 this.speed = this.maxSpeed;

 }

 void accelerate(double sp)

 {

 this.speed = this.speed + sp;

 if (this.speed > this.maxSpeed)

 {

 this.speed = this.maxSpeed;

 }

 if (this.speed < 0.0)

 {

 this.speed = 0.0;

 }

 }

 }

class CarTest4

 {

 public static void main(String[] args)

 {

 Car c = new Car();

 c.licensePlate = " PB11R2300";

 c.maxSpeed = 130.0;

 System.out.println(c.licensePlate + " is moving at " + c.speed +

 " kilometers per hour.");

 for (int i = 0; i < 15; i++)

 {

 c.accelerate(10.0);

 System.out.println(c.licensePlate + " is moving at " + c.speed +

80

 " kilometers per hour.");

 }

 }

 }

Here's the output:

PB11R2300is moving at 0.0 kilometers per hour.

PB11R2300is moving at 10.0 kilometers per hour.

PB11R2300is moving at 20.0 kilometers per hour.

PB11R2300is moving at 30.0 kilometers per hour.

PB11R2300is moving at 40.0 kilometers per hour.

PB11R2300is moving at 50.0 kilometers per hour.

PB11R2300is moving at 60.0 kilometers per hour.

PB11R2300is moving at 70.0 kilometers per hour.

PB11R2300is moving at 80.0 kilometers per hour.

PB11R2300is moving at 90.0 kilometers per hour.

PB11R2300is moving at 100.0 kilometers per hour.

PB11R2300is moving at 110.0 kilometers per hour.

PB11R2300is moving at 120.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

5.10 Setter Methods

Setter methods, also known as mutator methods, merely set the value of a field to a

value specified by the argument to the method. These methods almost always return void.

One common idiom in setter methods is to use this.name to refer to the field and give the

argument the same name as the field. For example,

class Car

 {

 String licensePlate; // e.g. "PB11R2300"

 double speed; // kilometers per hour

 double maxSpeed; // kilometers per hour

 // setter method for the license plate property

 void setLicensePlate(String licensePlate)

 {

 this.licensePlate = licensePlate;

 }

 // setter method for the maxSpeed property

 void setMaximumSpeed(double maxSpeed)

 {

 if (maxSpeed > 0)

 this.maxSpeed = maxSpeed;

 else

81

 this.maxSpeed = 0.0;

 }

 // accelerate to maximum speed

 // put the pedal to the metal

 void floorIt()

 {

 this.speed = this.maxSpeed;

 }

 void accelerate(double sp)

 {

 this.speed = this.speed + sp;

 if (this.speed > this.maxSpeed)

 {

 this.speed = this.maxSpeed;

 }

 if (this.speed < 0.0)

 {

 this.speed = 0.0;

 }

 }

 }

//Using Setter Methods, An Example

class CarTest5

 {

 public static void main(String args[])

 {

 Car c = new Car();

 c.setLicensePlate("New York A45 636");

 c.setMaximumSpeed(130.0);

 System.out.println(c.licensePlate + " is moving at " + c.speed +

 " kilometers per hour.");

 for (int i = 0; i < 15; i++)

 {

 c.accelerate(10.0);

 System.out.println(c.licensePlate + " is moving at " + c.speed +

 " kilometers per hour.");

 }

 }

 }

Here's the output:

PB11R2300is moving at 0.0 kilometers per hour.

PB11R2300is moving at 10.0 kilometers per hour.

82

PB11R2300is moving at 20.0 kilometers per hour.

PB11R2300is moving at 30.0 kilometers per hour.

PB11R2300is moving at 40.0 kilometers per hour.

PB11R2300is moving at 50.0 kilometers per hour.

PB11R2300is moving at 60.0 kilometers per hour.

PB11R2300is moving at 70.0 kilometers per hour.

PB11R2300is moving at 80.0 kilometers per hour.

PB11R2300is moving at 90.0 kilometers per hour.

PB11R2300is moving at 100.0 kilometers per hour.

PB11R2300is moving at 110.0 kilometers per hour.

PB11R2300is moving at 120.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

5.11 Returning Values From Methods

It's often useful to have a method return a value to the class that called it. This is

accomplished by the return keyword at the end of a method and by declaring the data type

that is returned by the method at the beginning of the method. For example, the following

getLicensePlate() method returns the current value of the licensePlate field in the Car

class.

 String getLicensePlate()

 {

 return this.licensePlate;

 }

 A method like this that merely returns the value of an object's field or property is

called a getter or accessor method. The signature String getLicensePlate() indicates that

getLicensePlate() returns a value of type String and takes no arguments. Inside the method

the line

return this.licensePlate;

returns the String contained in the licensePlate field to whoever called this method. It is

important that the type of value returned by the return statement match the type declared

in the method signature. If it does not, the compiler will complain.

Using Getter Methods, An Example

class CarTest6

 {

 public static void main(String args[])

 {

 Car c = new Car();

 c.setLicensePlate("New York A45 636");

 c.setMaximumSpeed(130.0);

 System.out.println(c.getLicensePlate() + " is moving at "

83

 + c.getSpeed() + " kilometers per hour.");

 for (int i = 0; i < 15; i++)

 {

 c.accelerate(10.0);

 System.out.println(c.getLicensePlate() + " is moving at "

 + c.getSpeed() + " kilometers per hour.");

 }

 }

 }

There's no longer any direct access to fields. Here's the output:

PB11R2300is moving at 0.0 kilometers per hour.

PB11R2300is moving at 10.0 kilometers per hour.

PB11R2300is moving at 20.0 kilometers per hour.

PB11R2300is moving at 30.0 kilometers per hour.

PB11R2300is moving at 40.0 kilometers per hour.

PB11R2300is moving at 50.0 kilometers per hour.

PB11R2300is moving at 60.0 kilometers per hour.

PB11R2300is moving at 70.0 kilometers per hour.

PB11R2300is moving at 80.0 kilometers per hour.

PB11R2300is moving at 90.0 kilometers per hour.

PB11R2300is moving at 100.0 kilometers per hour.

PB11R2300is moving at 110.0 kilometers per hour.

PB11R2300is moving at 120.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

PB11R2330is moving at 130.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

5.12 Summary

A class is a blueprint or a template for creating different objects which defines its

properties and behaviors. Java class objects exhibit the properties and behaviors defined

by its class. A class can contain fields and methods to describe the behavior of an object.

To instantiate an object in Java, use the keyword new followed by a call to the class's

constructor. In Java, a class is a type, similar to the built-in types such as int and

boolean. In Java, no variable can ever hold an object. A variable can only hold a reference

to an object. To access the fields of the class you use the . separator. Data types aren't

much use unless you can do things with them. For this purpose classes have methods.

Fields say what a class is. Methods say what a class does. The fields and methods of a

class are collectively referred to as the members of the class. It's generally considered bad

form to access fields directly. Instead it is considered good object oriented practice to

access the fields only through methods. This allows you to change the implementation of a

class without changing its interface. This also allows you to enforce constraints on the

values of the fields.

84

5.13 Some Practice Questions

1. What is the relation between a class and an object?

2. What do you mean by object reference?

3. What are member variables and how are they accessed?

5.14 Suggested Readings

 The Complete Reference by Herbert Scheild, Mc-Graw Hil

 Programming with Java by E.Balagurusamy, Mc-Graw Hill

 Java : A Beginner's Guide by Herbert Scwildt , Mc-Graw Hill

 Introduction to Java Programming by Y.Daniel Cians, Prentice Hall

 Object Oriented Programming in Java by G.T. Thampi

 Java Programming by C. Xavier

85

BCA SEM-5 Paper : BCAB3104T

Java Programming

Lesson No. 6 Author : Kanwal Preet Singh

Converted into SLM by: Dr. Vishal Singh

Constructors

6.1 Objectives

6.2 Introduction

6.3 Constructors

6.4 Default Constructor

6.5 Parameterized Constructors

6.6 Constraints

6.7 Method Overloading

6.8 Constructor Overloading

6.9 Garbage Collection

6.10 “this” Keyword

6.11 Summary

6.12 Short Answer Type Questions

6.13 Long Answer Type Questions

6.14 Suggested Readings

6.1 Objectives

After reading this lesson you will be able to understand:

 Constructors

 Default Constructor

 Parameterized Constructors

 Method Overloading

 Constructor Overloading

 Garbage Collection

 “this” Keyword

6.2 Introduction

In the previous lesson we used setter methods to set the values of the object

variables. There is another way to set these values. This is by use of constructors.

Constructors are also methods that are used to set the values of object variables, but

unlike setter methods they don’t need to be invoked. The constructor methods are invoked

themselves when an object of a class is created. In this lesson, we will also see how to

define different methods with the same name using the concept of method overloading.

6.3 Constructors

A constructor creates a new instance of the class. It initializes all the variables

and does any work necessary to prepare the class to be used. In the line

86

Car c = new Car();

Car() is the constructor. A constructor has the same name as the class. If no constructor

exists Java provides a generic one that takes no arguments, but it's better to write your

own. You make a constructor by writing a method that has the same name as the class.

Thus the Car constructor is called Car(). Constructors do not have return types. They do

return an instance of their own class, but this is implicit, not explicit. The following

method is a constructor that initializes license plate to an empty string, speed to zero and

maximum speed to 120.0.

 Car()

 {

 licensePlate = "";

 speed = 0.0;

 maxSpeed = 120.0;

 }

We can rewrite the program written in previous lesson to include a constructor in the

following way:

class Car

 {

 String licensePlate; // e.g. "PB11R2300"

 double speed; // in kilometers per hour

 double maxSpeed; // in kilometers per hour

 public Car() //Constructor

 {

 licensePlate = "";

 speed = 0.0;

 maxSpeed = 120.0;

 }

 // accelerate to maximum speed

 // put the pedal to the metal

 void floorIt()

 {

 this.speed = this.maxSpeed;

 }

 void accelerate(double sp)

 {

 this.speed = this.speed + sp;

 if (this.speed > this.maxSpeed)

 {

 this.speed = this.maxSpeed;

 }

 if (this.speed < 0.0)

 {

87

 this.speed = 0.0;

 }

 }

 }

class CarTest4

 {

 public static void main(String[] args)

 {

 Car c = new Car();

 c.licensePlate = " PB11R2300";

 c.maxSpeed = 130.0;

 System.out.println(c.licensePlate + " is moving at " + c.speed +

 " kilometers per hour.");

 for (int i = 0; i < 15; i++)

 {

 c.accelerate(10.0);

 System.out.println(c.licensePlate + " is moving at " + c.speed +

 " kilometers per hour.");

 }

 }

 }

Here's the output:

PB11R2300is moving at 0.0 kilometers per hour.

PB11R2300is moving at 10.0 kilometers per hour.

PB11R2300is moving at 20.0 kilometers per hour.

PB11R2300is moving at 30.0 kilometers per hour.

PB11R2300is moving at 40.0 kilometers per hour.

PB11R2300is moving at 50.0 kilometers per hour.

PB11R2300is moving at 60.0 kilometers per hour.

PB11R2300is moving at 70.0 kilometers per hour.

PB11R2300is moving at 80.0 kilometers per hour.

PB11R2300is moving at 90.0 kilometers per hour.

PB11R2300is moving at 100.0 kilometers per hour.

PB11R2300is moving at 110.0 kilometers per hour.

PB11R2300is moving at 120.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

PB11R2300is moving at 130.0 kilometers per hour.

The constructors have the following properties:

 Constructors are special methods.

 Constructor methods have the same name as the class itself.

 Constructors look just like methods, but they have no return type, not even void.

88

 Constructors are invoked only by using the new keyword, not the dot notation like

methods.

6.4 Default Constructor

If you examine the first Car class code, the Car class did not have any constructors.

However, you could still call “new Car()” and get a Car object. What constructor got called?

The Default constructor is a no-arguments constructor that is provided by Java if you

define a class without explicitly defining any constructors. The Default constructor allows

you to create objects of classes that have no specifically designed constructors. The default

constructor does not exist when the class contains any other constructor. One of the most

common mistakes in Java is to rely on a Default constructor that no longer exists. Take,

for example, the following class definition:

class Car

 {

 String licensePlate; // e.g. "PB11R2300"

 double speed; // in kilometers per hour

 double maxSpeed; // in kilometers per hour

 public Car(String licensePlate, double speed, double maxSpeed) //Constructor

 {

 this.licensePlate = licensePlate;

 if(maxSpeed > 0)

 this.maxSpeed = maxSpeed;

 else

 this.maxSpeed = 0.0;

 if (speed > this.maxSpeed)

 this.speed = this.maxSpeed;

 if (speed < 0)

 this.speed = 0.0;

 else

 this.speed = speed;

 }

 }

Given this definition of the Car class, what is wrong with the following code?

 Car wifeCar = new Car(“PB11AE2121”, 60,130);

 Car myCar = new Car();

 myCar.licensePlate = PB11R2300;

 myCar.speed = 80;

 myCar.maxSpeed = 120;

Do you see it? Will “new Car()” compile? No, it won’t, because there is no longer a

constructor that takes no arguments. The Default constructor was there until you

89

provided the additional constructor Car(String, double, double). To fix the above code, you

could add the following constructor to your Car class.

 Car(){}

6.5 Parameterized Constructors

As you may have already seen above, we can also pass arguments to the

constructors. In fact a constructor without arguments is not of much use as it will

initialize all the objects to the same value. Following is an example of a constructor that

accepts three arguments:

 Car(String licensePlate, double speed, double maxSpeed)

 {

 this.licensePlate = licensePlate;

 if(maxSpeed > 0)

 this.maxSpeed = maxSpeed;

 else

 this.maxSpeed = 0.0;

 if (speed > this.maxSpeed)

 this.speed = this.maxSpeed;

 if (speed < 0)

 this.speed = 0.0;

 else

 this.speed = speed;

 }

Or perhaps you always want the initial speed to be zero, but require the maximum speed

and license plate to be specified, then you can use a two argument constructor in the

following way:

Car(String licensePlate, double maxSpeed)

 {

 this.licensePlate = licensePlate;

 this.speed = 0.0;

 if (maxSpeed > 0)

 this.maxSpeed = maxSpeed;

 else

 this.maxSpeed = 0.0;

 }

Here's the complete class:

class Car

 {

 String licensePlate; // e.g. "PB11R2300"

 double speed; // kilometers per hour

 double maxSpeed; // kilometers per hour

 Car(String licensePlate, double maxSpeed)

90

 {

 this.licensePlate = licensePlate;

 this.speed = 0.0;

 if (maxSpeed > 0)

 this.maxSpeed = maxSpeed;

 else

 this.maxSpeed = 0.0;

 }

 // getter (accessor) methods

 String getLicensePlate()

 {

 return this.licensePlate;

 }

 double getMaxSpeed()

 {

 return this.maxSpeed;

 }

 double getSpeed()

 {

 return this.speed;

 }

 // accelerate to maximum speed

 // put the pedal to the metal

 void floorIt()

 {

 this.speed = this.maxSpeed;

 }

 void accelerate(double deltaV)

 {

 this.speed = this.speed + deltaV;

 if (this.speed > this.maxSpeed)

 {

 this.speed = this.maxSpeed;

 }

 if (this.speed < 0.0)

 {

 this.speed = 0.0;

 }

 }

91

 }

Notice that I've taken out several things:

 the initialization of the fields

 the setter methods

The next program uses the constructor to initialize a car rather than setting the fields

directly.

class CarTest7

 {

 public static void main(String args[])

 {

 Car c = new Car("PB11R2300", 120.5);

 System.out.println(c.getLicensePlate() + " is moving at " + c.getSpeed() +

 " kilometers per hour.");

 for (int i = 0; i < 15; i++)

 {

 c.accelerate(10.0);

 System.out.println(c.getLicensePlate() + " is moving at " + c.getSpeed()

 + " kilometers per hour.");

 }

 }

 }

You no longer need to know about the fields licensePlate, speed and maxSpeed. All

you need to know is how to construct a new car and how to print it. You may ask whether

the setLicensePlate() method is still needed since it's now set in a constructor. The general

answer to this question depends on the use to which the Car class is to be put. The

specific question is whether a car's license plate may need to be changed after the Car

object is created. Some classes may not change after they're created; or, if they do change,

they'll represent a different object. The most common such class is String. You cannot

change a string's data. You can only create a new String object. Such objects are called

immutable.

6.6 Constraints

One of the reasons to use constructors and setter methods rather than directly

accessing fields is to enforce constraints. For instance, in the Car class it's important to

make sure that the speed is always less than or equal to the maximum speed and that

both speed and maximum speed are greater than or equal to zero. You've already seen one

example of this in the accelerate() method which will not accelerate a car past its

maximum speed.

 void accelerate(double deltaV)

 {

 this.speed = this.speed + deltaV;

 if (this.speed > this.maxSpeed)

 this.speed = this.maxSpeed;

92

 if (this.speed < 0.0)

 this.speed = 0.0;

 }

You can also insert constraints like that in the constructor. For example, this Car

constructor makes sure that the maximum speed is greater than or equal to zero:

 Car(String licensePlate, double maxSpeed)

 {

 this.licensePlate = licensePlate;

 this.speed = 0.0;

 if (maxSpeed >= 0.0)

 this.maxSpeed = maxSpeed;

 else

 maxSpeed = 0.0;

 }

6.7 Method Overloading

Overloading is when the same method or operator can be used on many different

types of data. For instance the + sign is used to add ints as well as concatenate strings.

The plus sign behaves differently depending on the type of its arguments. Therefore the

plus sign is inherently overloaded. Methods can be overloaded as well. System.out.println()

can print a double, a float, an int, a long or a String. You don't do anything different

depending on the type of number you want the value of. Overloading takes care of it.

Method overloading results when two or more methods in the same class have the

same name but different parameters. Methods with the same name must differ in their

types or number of parameters. This allows the compiler to match parameters and choose

the correct method when a number of choices exist. Changing just the return type is not

enough to overload a method, and will be a compile-time error. They must have a different

signature. When no method matching the input parameters is found, the compiler

attempts to convert the input parameters to types of greater precision. A match may then

be found without error. At compile time, the right implementation is chosen based on the

signature of the method call. Below is an example of a class demonstrating Method

Overloading

public class MethodOverloadDemo

 {

 void sumOfParams()

 { // First Version

 System.out.println(”No parameters”);

 }

 void sumOfParams(int a)

 { // Second Version

 System.out.println(”One parameter: ” + a);

 }

 int sumOfParams(int a, int b)

93

 { // Third Version

 System.out.println(”Two parameters: ” + a + ” , ” + b);

 return a + b;

 }

 double sumOfParams(double a, double b)

 { // Fourth Version

 System.out.println(”Two double parameters: ” + a + ” , ” + b);

 return a + b;

 }

 public static void main(String args[])

 {

 MethodOverloadDemo moDemo = new MethodOverloadDemo();

 int intResult;

 double doubleResult;

 moDemo.sumOfParams();

 System.out.println();

 moDemo.sumOfParams(2);

 System.out.println();

 intResult = moDemo.sumOfParams(10, 20);

 System.out.println(”Sum is ” + intResult);

 System.out.println();

 doubleResult = moDemo.sumOfParams(1.1, 2.2);

 System.out.println(”Sum is ” + doubleResult);

 System.out.println();

 }

 }

Output is:

 No parameters

 One parameter: 2

 Two parameters: 10 , 20

 Sum is 30

 Two double parameters: 1.1 , 2.2

 Sum is 3.3000000000000003

6.8 Constructor Overloading

Constructor Overloading is a logical extension of method overloading, A

constructor is overloaded when the same constructor with different number and

types of arguments initializes an object with valid initial values. In the section above,

we saw several different versions of the Car constructor, one that took three arguments

and one that took two arguments and one that took no arguments. We can use all of these

in a single class, though here I only use two because there really aren't any good default

values for licensePlate and maxSpeed. On the other hand, 0 is a perfectly reasonable

default value for speed.

94

public class Car

 {

 private String licensePlate; // e.g. " PB11R2300"

 private double speed; // kilometers per hour

 private double maxSpeed; // kilometers per hour

 // constructors

 public Car(String licensePlate, double maxSpeed)

 {

 this.licensePlate = licensePlate;

 this.speed = 0.0;

 if (maxSpeed >= 0.0)

 {

 this.maxSpeed = maxSpeed;

 }

 else

 {

 maxSpeed = 0.0;

 }

 }

 public Car(String licensePlate, double speed, double maxSpeed)

 {

 this.licensePlate = licensePlate;

 if (maxSpeed >= 0.0)

 {

 this.maxSpeed = maxSpeed;

 }

 else

 {

 maxSpeed = 0.0;

 }

 if (speed < 0.0)

 {

 speed = 0.0;

 }

 if (speed <= maxSpeed)

 {

 this.speed = speed;

 }

 else

 {

 this.speed = maxSpeed;

 }

95

 }

 // other methods...

 }

The signature of the first constructor in the above program is Car(String, double).

The signature of the second constructor is Car(String, double, double). Thus the first

version of the Car() constructor is called when there is one String argument followed by

one double argument and the second version is used when there is one String argument

followed by two double arguments. If there are no arguments to the constructor or two or

three arguments that aren't the right type in the right order, then the compiler generates

an error because it doesn't have a method whose signature matches the requested method

call. For example

Error: Method Car(double) not found in class Car.

this in constructors

It is often the case that overloaded methods are essentially the same except that

one supplies default values for some of the arguments. In this case, your code will be

easier to read and maintain (though perhaps marginally slower) if you put all your logic in

the method that takes the most arguments and simply invoke that method from all its

overloaded variants that merely fill in appropriate default values. This technique should

also be used when one method needs to convert from one type to another. For instance

one variant can convert a String to an int, then invoke the variant that takes the int as an

argument. This is straight-forward for regular methods, but doesn't quite work for

constructors because you can't simply write a method like this:

 public Car(String licensePlate, double maxSpeed)

 {

 Car(licensePlate, 0.0, maxSpeed);

 }

Instead, to invoke another constructor in the same class from a constructor you use the

keyword this like so:

 public Car(String licensePlate, double maxSpeed)

 {

 this(licensePlate, 0.0, maxSpeed);

 }

Must this be the first line of the constructor?

For example,

public class Car

 {

 private String licensePlate; // e.g. "PB11R2300"

 private double speed; // kilometers per hour

 private double maxSpeed; // kilometers per hour

 // constructors

 public Car(String licensePlate, double maxSpeed)

 {

96

 this(licensePlate, 0.0, maxSpeed);

 }

 public Car(String licensePlate, double speed, double maxSpeed)

 {

 this.licensePlate = licensePlate;

 if (maxSpeed >= 0.0)

 {

 this.maxSpeed = maxSpeed;

 }

 else

 {

 maxSpeed = 0.0;

 }

 if (speed < 0.0)

 {

 speed = 0.0;

 }

 if (speed <= maxSpeed)

 {

 this.speed = speed;

 }

 else

 {

 this.speed = maxSpeed;

 }

 }

 // other methods...

}

This approach saves several lines of code. In also means that if you later need to

change the constraints or other aspects of construction of cars, you only need to modify

one method rather than two. This is not only easier; it gives bugs fewer opportunities to be

introduced either through inconsistent modification of multiple methods or by changing

one method but not others.

6.9 Garbage Collection

So far, this section has been about creating objects. What about destroying them?

In Java, the destruction of objects takes place automatically. An object exists in the heap,

and it can be accessed only through variables that hold references to the object. What

should be done with an object if there are no variables that refer to it? Such things can

happen. Consider the following two statements (though in reality, you'd never do anything

like this):

Student std = new Student("Hardeep");

97

std = null;

In the first line, a reference to a newly created Student object is stored in the

variable std. But in the next line, the value of std is changed and the reference to the

Student object is gone. In fact, there are now no references whatsoever to that object

stored in any variable. So there is no way for the program ever to use the object again. It

might as well not exist. In fact, the memory occupied by the object should be reclaimed to

be used for another purpose.

Java uses a procedure called garbage collection to reclaim memory occupied by

objects that are no longer accessible to a program. It is the responsibility of the system,

not the programmer, to keep track of which objects are "garbage." In the above example, it

was very easy to see that the Student object had become garbage. Usually, it's much

harder. If an object has been used for a while, there might be several references to the

object stored in several variables. The object doesn't become garbage until all those

references have been dropped.

In many other programming languages, it's the programmer's responsibility to

delete the garbage. Unfortunately, keeping track of memory usage is very error-prone, and

many serious program bugs are caused by such errors. A programmer might accidently

delete an object even though there are still references to that object. This is called a

dangling pointer error and it leads to problems when the program tries to access an object

that is no longer there. Another type of error is a memory leak, where a programmer

neglects to delete objects that are no longer in use. This can lead to filling memory with

objects that are completely inaccessible and the program might run out of memory even

though, in fact, large amounts of memory are being wasted.

Because Java uses garbage collection, such errors are simply impossible. Garbage

collection is an old idea and has been used in some programming languages since the

1960s. You might wonder why all languages don't use garbage collection. In the past, it

was considered too slow and wasteful. However, research into garbage collection

techniques combined with the incredible speed of modern computers have combined to

make garbage collection feasible. Programmers should rejoice.

6.10 “this” Keyword

All instance methods have automatic access to other instance methods and any

data (instance variables) defined for the object. In the example below, the pimpMyRide

method calls the getDescription() method and uses Car instance variables.

public class Car

 {

 String color;

 String type;

 {

 color="red";

 type="sedan";

 }

 String getDescription()

98

 {

 String desc = "This is a " + color + " " + type;

 return desc;

 }

 void pimpMyRide(String newColor, String customized)

 {

 color = newColor;

 type = customized + " " + type;

 System.out.println(getDescription());

 }

 }

Within an instance method or a constructor, the keyword this is a reference to the current

object. In other words, this refers to the current instance. You can use this to refer to any

instance variable or instance method of the object from within an instance method or a

constructor. Rewriting the code above should help demonstrate this.

 public class Car {

 String color;

 String type;

 {

 this.color="red";

 this.type="sedan";

 }

 String getDescription(){

 String desc = "This is a " + this.color + " " + this.type;

 return desc;

 }

 void pimpMyRide(String newColor, String customized) {

 this.color = newColor;

 this.type = customized + " " + this.type;

 System.out.println(this.getDescription());

 }

 }

Even though this code works, the use of this here doesn’t seem to make much sense? In

fact, it might just make things more complex. However, consider the pimpMyRide method

if it were written as shown below.

 void pimpMyRide(String color, String type) {

 color = color; //??? Which color is which

 type = type + " " + type; //??? Which type is which

 System.out.println(getDescription());

 }

The parameters passed into pimpMyRide now conflict with the instance variable

names. This code will compile, but it won’t run correctly, as will be discussed. When

99

parameters passed into a constructor or method have the same name as instance

variables, this is called shadowing a field. Shadowing helps clarify how the parameter will

be used to set or modify an instance variable. To fix the problem, the this keyword helps to

disambiguate what is the object’s instance variable and what is just the parameter.

 void pimpMyRide(String color, String type) {

 this.color = color;

 this.type = type + " " + this.type;

 System.out.println(getDescription());

 }

Static methods do not have access to this because when you enter a static method,

you are not in an object instance. “this” only applies to instances. In the above case, this

helps provide clarity, but if alternative parameter names are used, you can avoid having to

use this. In another case, the this keyword is the only way to accomplish the task.

Consider the Car example with two constructors as specified below.

 Car(){

 carCount++;

 serialNumber = carCount;

 }

 Car(String c, String t){

 carCount++;

 serialNumber = carCount;

 color = c;

 type = t;

 }

Do you notice some similarities between the two constructors? What happens if the

way serial numbers are handled is changed? In this case, you would have to modify two

constructors where duplicate code is used to deal with serial numbers. This is not a very

good reuse design! How can the common code be isolated and reused in these

constructors? Constructors can call other constructors in the same class using this. Using

this is similar to calling a method from within your constructor: you must match the

appropriate argument list. To call another constructor, use this on the first line of another

constructor.

 Car(){

 carCount++;

 serialNumber = carCount;

 }

 Car(String c, String t){

 this();

 color = c;

 type = t;

 }

100

By having the second constructor call the first one, you don't need to repeat code. Any

change made to the first constructor will also affect the second constructor.

Setting up one constructor to call another is called constructor chaining.

Using the this keyword is awkward at first, but there are only two uses for it:

 • Referring to the current instance (e.g., this.color or) this.getDescription()

 • Referring to another constructor (e.g., this(<arg>) from inside a constructor.)

6.11 Summary

Constructors are methods that are used to set the values of object variables, but

unlike setter methods they don’t need to be invoked. The Default constructor is a no-

arguments constructor that is provided by Java if you define a class without explicitly

defining any constructors. The Default constructor allows you to create objects of classes

that have no specifically designed constructors. We can also pass arguments to

constructors in the same way as to ordinary methods. Method overloading results when

two or more methods in the same class have the same name but different parameters.

Methods with the same name must differ in their types or number of parameters.

Constructor Overloading is an extension of method overloading, A constructor is

overloaded when the same constructor with different number and types of arguments

initializes an object with valid initial values. In Java, the destruction of objects takes place

automatically. Java uses a procedure called garbage collection to reclaim memory

occupied by objects that are no longer accessible to a program. It is the responsibility of

the system, not the programmer, to keep track of which objects are "garbage." Within an

instance method or a constructor, the keyword this is a reference to the current object. In

other words, this refers to the current instance. You can use this to refer to any instance

variable or instance method of the object from within an instance method or a constructor.

6.12 Some Practice Questions

1. What are constructors? Explain different properties of constructors.

2. What happens when you don’t define a constructor in a class?

3. Explain method overloading and constructor overloading in detail?

6.13 Suggested Readings

 The Complete Reference by Herbert Scheild, Mc-Graw Hill

 Programming with Java by E.Balagurusamy, Mc-Graw Hill

 Java : A Beginner's Guide by Herbert Schildt, Mc-Graw Hill

 Introduction to Java Programming by Y.Daniel Cians, Prentice Hall

 Object Oriented Programming in Java by G.T. Thampi

 Java Programming by C. Xavier

101

BCA SEM-5 Paper: BCAB3104T

Java Programming

Lesson No. 7 Author : Kanwal Preet Singh

Converted into SLM by: Dr. Vishal Singh

Passing Objects and Access Specifiers

7.1 Objectives

7.2 Introduction

7.3 Passing Objects as Arguments

7.4 Returning objects

7.5 Recursion

7.6 Java Access Specifiers

7.7 Static Variables

7.8 Static Method

7.9 Static Initialization Block

7.10 Summary

7.11 Short Answer Type Questions

7.12 Long Answer Type Questions

7.13 Suggested Readings

7.1 Objectives

After reading this lesson you will be able to understand:

 How to pass objects as arguments

 How to return objects

 Recursion

 Access Specifiers

 Static variables and methods

7.2 Introduction

We can pass objects as arguments to methods just as other variables. Similarly a

method can return s to the object to the calling method. In this lesson, we will see how to

pass objects as arguments and how to return objects to the calling method. We will also

discuss the concept of recursion in which a method calls itself again and again. There are

four access specifiers used in Java – public, default, protected and private which restrict

the accessibility of the variables to different parts of the program. In the end we will

discuss static members which are those members that belong to the class rather than to

the object.

7.3 Passing Objects as Arguments

So far we have only been passing simple types as parameters to methods. However,

we can also pass objects to methods. Consider the following example:

102

// Objects may be passed to methods.

class Test

 {

 int a, b;

 Test(int i, int j)

 {

 a = i;

 b = j;

 }

 // return true if o is equal to the invoking object

 boolean equals(Test o)

 {

 if(o.a == a && o.b == b)

 return true;

 else

 return false;

 }

 }

class PassOb

 {

 public static void main(String args[])

 {

 Test ob1 = new Test(105, 20);

 Test ob2 = new Test(105, 20);

 Test ob3 = new Test(-10, -10);

 System.out.println("ob1 == ob2: " + ob1.equals(ob2));

 System.out.println("ob1 == ob3: " + ob1.equals(ob3));

 }

}

The output is:

ob1 == ob2: true

ob1 == ob3: false

In the above example, we pass an object of class Test to the method equals(). The

method compares the class variables of the object that invoked it with object that has been

passed to the method and returns true if they are equal.

There are two ways that a computer language can pass an argument to a

subroutine. The first way is call-by-value. This method copies the value of an argument

into the formal parameter of the subroutine. Therefore, changes made to the parameter of

the subroutine have no effect on the argument use to call it. The second an argument can

be passed is call-by-reference. In this method a reference to an argument is passed to the

parameter. Inside the subroutine this reference is used to assist the actual argument

103

specified in the call i.e. changes made to the parameter will affect the argument used to

call the subroutine. Java uses both methods, depending upon what is passed.

 In Java, when you pass a simple type to a method, it is passed by value. When you

pass an object to a method, it is passed by a reference. When we create a variable of a

class type, we are only creating a reference to an object. Thus, when we pass this reference

to a method the parameter that receives it will refer to the same object as that referred to

by the argument which means that objects are passed to methods by use of call-by-

reference. This will be clear from the following example:

// Simple Types are passed by value. Objects are passed by reference.

class Test

 {

 int a, b;

 Test(int i, int j)

 {

 a = i;

 b = j;

 }

 //Pass by value

 void meth(int i, int j)

 {

 i *= 2;

 j /= 2;

 }

 // pass an object

 void meth(Test o)

 {

 o.a *= 2;

 o.b /= 2;

 }

 }

class CallByRef

 {

 public static void main(String args[])

 {

 int a=5, b=10;

 Test ob = new Test(5, 10);

 System.out.println("a and b before call: " + a + " " + b);

 ob.meth(a, b);

 System.out.println("a and b after call: " + a + " " + b);

 System.out.println("ob.a and ob.b before call: " +ob.a + " " + ob.b);

 ob.meth(ob);

104

 System.out.println("ob.a and ob.b after call: " + ob.a + " " + ob.b);

 }

 }

The output is:

a and b before call: 5 10

a and b after call: 5 10

ob.a and ob.b before call: 5 10

ob.a and ob.b after call: 10 5

It is clear from the above example that when we pass a simple type to a method it is

passed by value and when we pass an object to a method it is passed by reference. In fact

when an object reference is passed to a method, the reference itself is passed by use of

call-by-value. However, since the value being passed referred to n object, the copy of that

value will still refer to the same object that its corresponding argument does.

7.4 Returning objects

A method can return any type of data including objects that we create. In the

following program, the incrByTen() method returns an object in which the value of a is ten

greater than it is in the invoking object.

// Returning an object.

class Test

 {

 int a;

 Test(int i)

 {

 a = i;

 }

 Test incrByTen()

 {

 Test temp = new Test(a+10);

 return temp;

 }

 }

class RetOb

 {

 public static void main(String args[])

 {

 Test ob1 = new Test(2);

 Test ob2;

 ob2 = ob1.incrByTen();

 System.out.println("ob1.a: " + ob1.a);

 System.out.println("ob2.a: " + ob2.a);

 ob2 = ob2.incrByTen();

 System.out.println("ob2.a after second increase: " + ob2.a);

105

 }

 }

7.5 Recursion

The term recursion generally refers to the technique of repeatedly splitting a

task into "the same task on a smaller scale". In practice, it often means making a

method that calls itself. A method called in this way is often called a recursive method.

Java supports recursion. Recursion is the process of defining something in terms of itself.

As it relates to java programming, recursion is the attribute that allows a method to call

itself. A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number.

The factorial of a number N is the product of all the whole numbers between 1 and N. for

example, 3 factorial is 1×2×3, or 6. Here is how a factorial can be computed by use of a

recursive method.

class Factorial

 {

 int fact(int n)

 {

 int result;

 if (n ==1) return 1;

 result = fact (n-1) * n;

 return result;

 }

 }

class Recursion

 {

 public static void main (String args[])

 {

 Factorial f =new Factorial();

 System.out.println(“Factorial of 3 is “ + f.fact(3));

 System.out.println(“Factorial of 4 is “ + f.fact(4));

 System.out.println(“Factorial of 5 is “ + f.fact(5));

 }

 }

The output from this program is shown here:

 Factorial of 3 is 6

 Factorial of 4 is 24

 Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may seem

a bit confusing. Here is how it works. When fact() is called with an argument of 1, the

function returns 1; otherwise it returns the product of fact(n-1)*n. to evaluate this

expression, fact() is called with n-1. this process repeats until n equals 1 and the calls to

the method begin returning.

106

 To better understand how the fact() method works, let’s go through a short example.

When you compute the factorial of 3, the first call to fact() will cause a second call to be

made with an argument of 2. this invocation will cause fact() to be called a third time with

an argument of 2. This call will return 1, which is then be called a third time with an

argument of 1. This call will return1, which is then multiplied by 2 (the value of n in the

second invocation). This result (which is 2) is then returned to the original invocation of

fact() and multiply by 3 (the original value of n). This yields the answer, 6. You might find

it interesting to insert println() statements into fact() which will show at what level each

call is and what the intermediate answers are. The following diagram shows how it works:

 fact(3)

 fact(2)

 fact(1)

 return 1

 return 2*1 = 2

 return 3*2 = 6

When a method calls itself, new local variables and parameters are allocated

storage on the stack, and the method code is executed with these new variables from the

start. A recursive call does not make a new copy of the method. Only the arguments are

new. As each recursive call returns, the old local variables and parameters are removed

from the stack and execution resumes at the point of the call inside the method. Recursive

methods could be said to “telescope” out and back.

 Recursive versions of many routines may execute a bit more slowly than the

iterative equivalent because of the added overhead of the additional function calls. Many

recursive calls to a method could cause a stack overrun. Because storage for parameters

and local variables, it is possible that the stack could be exhausted. If this occurs, the java

run-time system will cause an exception. However, you probably will not have to worry

about this unless a recursive routine runs wild.

Our factorial implementation exhibits the two main components that are required

for every recursive function. The base case returns a value without making any

subsequent recursive calls. It does this for one or more special input values for which the

function can be evaluated without recursion. For fact(), the base case is N = 1. The

reduction step is the central part of a recursive function. It relates the function at one (or

more) inputs to the function evaluated at one (or more) other inputs. For fact(), the

reduction step is N * fact(N-1). All recursive functions must have these two components.

Furthermore, the sequence of parameter values must converge to the base case. For fact(),

the value of N decreases by one for each call, so the sequence of parameter values

converges to the base case N = 1.

 The main advantage to recursive methods is that they can be used to create clearer

and simpler versions of several algorithms than can their iterative relatives. For example, the

QuickSort sorting algorithm is quite difficult to implement in an iterative way.

7.6 Java Access Specifiers

107

access to classes, constructors, methods and fields are regulated using access

modifiers i.e. a class can control what information or data can be accessible by other

classes. To take advantage of encapsulation, you should minimize access whenever

possible. Java provides a number of access modifiers to help you set the level of access

you want for classes as well as the fields, methods and constructors in your classes. A

member has package or default accessibility when no accessibility modifier is specified.

The following Access Modifiers are provided in Java:

 private

 protected

 default

 public

public access modifier

Fields, methods and constructors declared public (least restrictive) within a public

class are visible to any class in the Java program, whether these classes are in the same

package or in another package.

private access modifier

The private (most restrictive) fields or methods cannot be used for classes and

Interfaces. It also cannot be used for fields and methods within an interface. Fields,

methods or constructors declared private are strictly controlled, which means they cannot

be accessed by anywhere outside the enclosing class. A standard design strategy is to

make all fields private and provide public getter methods for them.

protected access modifier

The protected fields or methods cannot be used for classes and Interfaces. It also

cannot be used for fields and methods within an interface. Fields, methods and constructors

declared protected in a superclass can be accessed only by subclasses in other packages.

Classes in the same package can also access protected fields, methods and constructors as

well, even if they are not a subclass of the protected member’s class.

default access modifier

Java provides a default specifier which is used when no access modifier is present.

Any class, field, method or constructor that has no declared access modifier is accessible

only by classes in the same package. The default modifier is not used for fields and

methods within an interface.

Class Access Control Modifiers

1. A class can have either the public or the default access control level.

2. You make a class public by using the public access control modifier.

3. A class whose declaration bears no access control modifier has default

 access.

Understand the effects of public and private access

class Test

 {

 int a; // default access

 public int b; // public access

108

 private int c; // private access

 void setc(int i)

 {

 c = i;

 }

 int getc()

 {

 return c;

 }

 }

class AccessTest

 {

 public static void main(String args[])

 {

 Test ob = new Test();

 ob.a = 10;

 ob.b = 20;

 // ob.c = 100; Not Possible. Can’t access private member outside its class

 ob.setc(100);

 System.out.println("a, b, and c: " + ob.a + " " + ob.b + " " + ob.getc());

 }

 }

We will come back to the access specifiers when we have done packages. We can

understand default and protected access specifiers only when we have full understanding

of packages.

7.7 Static Variables

Adding a couple of additional fields to the car example should help to clarify the

class variable concept. First, each car has a serialNumber (called a vehicle identification

number or VIN). This is pretty simple. Based on what you have already learned, simply

add a serialNumber instance variable to the Car class.

public class Car

 {

 String color;

 String type;

 int serialNumber;

 ... // The rest of the class goes here. This symbol (...) is used

 // throughout this text to indicate that not all the code is

 // is shown but only the code that is pertinent at the time.

 }

This serialNumber, however, must be a unique integer for each car created. In this

case, the serialNumber should be unique for each car object created from the Car class. To

109

make sure each car has a unique serialNumber, you can use the Car class and a class

variable to keep track of the total number of cars created.

public class Car

 {

 String color;

 String type;

 int serialNumber;

 static int carCount;

 ...

 }

Here the modifier “static” was added to the carCount variable in this class. The

carCount variable is related to the class, not any single Car object. To access this variable,

you use the name of the class and the class variable name. For example, the line of code

below sets the carCount to 1.

 Car.carCount = 1;

Oddly, you can use either the class name (Car) or any object reference of that type to

access class variables, so the following code would do the same thing:

 Car myCar = new Car(“black”, “Ranger”);

 myCar.carCount = 1;

This makes it look like carCount is an instance variable, doesn’t it? Therefore, it is

considered clearer and preferred, to use the class name when accessing class/static

variables.

Note that the carCount variable is created and initialized not when an object is instantiated

but when the class is first loaded into the JVM by the class loader! That is because the

carCount data is associated with the class (Car) and not any single instance of the class

(myCar). No matter how many Cars get created, there is still just one carCount. Recall that

what is needed is to set the serialNumber for every Car and that number must be unique.

The carCount class variable can be used to achieve this goal. However, to pull this off, more

work on the constructors for the Car class is needed.

 Car()

 {

 carCount++;

 serialNumber = carCount;

 }

 Car(String c, String t)

 {

 color = c;

 type = t;

 carCount++;

 serialNumber = carCount;

 }

110

This code increments the number of Cars (carCount) every time a Car is created

and then assigns carCount to the car object’s serialNumber. Now each Car has a unique

serial number, created from the class’s carCount. When each car is created, the

constructor increases the value of carCount by one. The carCount variable represents the

total number of cars that have been created so far. Now take a look at the code below to

visualize what is happening.

 Car car1, car2, car3; //create 3 object references.

 car1 = new Car(“red”,”Sedan”);

 car2 = new Car(“blue”, “Station Wagon”);

 car3 = new Car(“white”, “Coupe”);

When the declaration of a Car reference is made (Car car1), the class loader must

load the Car class into the JVM. At that time, carCount is initialized and available. Every

object type used in an application has a respective Class object stored in a special place on

the JVM’s heap. This Class object contains all of the details about the object type:

 What properties it has

 What the properties' types are

 What methods the class has and what arguments the methods take

 What code is executed when a method is called and so forth.

Static data is stored in the Class object on the JVM’s heap.

All three cars have their own independent color, type, and serialNumber, but they share

one car Count variable.

111

Class variables are global (only one exists in memory per class). All instances share

the one carCount, which is obtained through the class. Each instance has its own color,

type and serialNumber. All code in the JVM can reference static information of a class

depending on the access modifier.

7.8 Static Method

The static keyword can also be applied to a method. A static method, like a static

variable, is associated with the class, not the objects (instances). Static methods are also

called class methods (versus nonstatic methods, which are instance methods). Methods

you have seen so far are instance methods. Below, another instance method, drive(), is

added to the Car class.

 public class Car

 {

 String color;

 String type;

 void drive()

 {

 System.out.println(“Put ‘er in gear and drive it like you stole it”);

 }

 ...

 }

To call an instance (nonstatic) method, you must have an object reference.

 Car c = new Car();

 c.drive(); //Correct

 Car.drive(); //Wrong (what car are you driving?)

To define a static method, simply add the static keyword as a modifier to the method as

shown below.

public class Car

 {

 ...

 static void resetCarCount()

 {

 carCount = 0;

 }

 ...

 }

To call a static method, you only need the name of the class.

 Car c = new Car();

 c.resetCarCount(); //Legal but confusing

 Car.resetCarCount(); //Proper way to code

 As shown above, just as with class variables, you can call on a static method using

any object of that type. However, this makes it look like resetCarCount() is an instance

112

method, doesn’t it? Again, it is considered clearer and preferred, to use the class name

when accessing static methods.

 Static methods do not have access to object data. Looking at the example below,

what color are you changing if you called resetCarCount?

public class Car

 {

 ...

 static void resetCarCount()

 {

 carCount = 0;

 color = “blue”; //Wrong - which instance’s color are you changing?

 }

 ...

 }

Now you might be asking yourself, “What’s the point of static methods?” If so, that’s a good

and fair question. Static methods essentially have two purposes.

1) They are used to access (update or fetch) class variable data. Although this can be

done with any instance of the class, it is considered more appropriate to use class

methods for this purpose. In some cases, you may not have an instance of an object

created before the data is needed. You don’t want to have to create an object just to

be able to access class variables.

2) Static methods provide functionality without the need for an object/instance. For

example, mathematical formulas are great reasons to have static methods. Should you

have to create an instance of some object to compute sine, cosine or tangent? Examine

the Math class to see some excellent uses of static methods. There is no need to create

an instance of Math to compute the absolute value of a number!

7.9 Static Initialization Block

Classes can also have initialization blocks. More precisely, they can have static

initialization blocks. Like a normal initialization block, a static initialization block is a

normal block of code enclosed in braces { } preceded by the static keyword.

public class Car

 {

 ...

 static

 {

 carCount = 1;

 }

 ...

 }

A class can have any number of static initialization blocks and they can appear

anywhere in the class. They are often grouped together for better maintenance. The static

initialization blocks are called in the order they appear in the code. Static initialization

113

code blocks get executed once when the class is loaded. Just like static methods, they can

only initialize static variables of the class.

7.10 Summary

We can pass objects as arguments to methods just as other variables. Similarly a

method can return s to the object to the calling method. The term recursion generally

refers to the technique of repeatedly splitting a task into "the same task on a smaller

scale". In practice, it often means making a method that calls itself. A method called in

this way is often called a recursive method. The access to classes, constructors, methods

and fields are regulated using access modifiers i.e. a class can control what information or

data can be accessible by other classes. There are four access specifiers used in Java –

public, default, protected and private. Static members are those members that belong to

the class rather than to the object. There exists only one copy of static variables for all the

class objects and static methods can access only the static variables and other static

methods.

7.11 Short Answer Type Questions

1. Explain the concept of recursion?

2. Write a program to print Fibonacci series using recursion?

3. Why do we use static variables?

7.12 Long Answer Type Questions

1. Explain in detail with the help of an example how to pass objects as arguments and

how to return objects to the calling method in java.

2. Explain in detail the different access specifiers used in Java.

7.13 Suggested Readings

 The Complete Reference by Herbert Scheild, Mc-Graw Hill

 Programming with Java by E.Balagurusamy, Mc-Graw Hill

 Java : A Beginner's Guide by Herbert Schildt, Mc-Graw Hill

 Introduction to Java Programming by Y.Daniel Cians, Prentice Hall

 Object Oriented Programming in Java by G.T. Thampi

 Java Programming by C. Xavier

114

BCA SEM-5 Paper: BCAB3104T

Java Programming

Lesson No. 8 Author : Kanwal Preet Singh

Converted into SLM by: Dr. Vishal Singh

Nested and Inner Classes

8.1 Objectives

8.2 Introduction

8.3 Nested Classes

8.4 Static Nested Classes

8.5 Inner Classes

8.6 Strings

8.7 Java String Functions

8.8 Summary

8.9 Review Questions

8.10 Suggested Readings

8.1 Objectives

After reading this lesson you will be able to understand:

 Nested Classes

 Static Nested Classes

 Inner Classes

 Strings

 Java String Functions

8.2 Introduction

We can define a class within another class. Such classes are called nested classes.

Nested classes are divided into two categories: static and non-static. There are several

compelling reasons for using nested classes and they are discussed in this chapter. The

other topics that we will discuss in this lesson are strings and inheritance. String is a

special class built into the Java language defined in the java.lang package. The String

class represents character strings. String literals in Java programs, such as "abc", are

implemented as instances of this class.

8.3 Nested Classes

The Java programming language allows you to define a class within another class.

Such a class is called a nested class and is illustrated here:

class OuterClass

 {

 ...

 class NestedClass

 {

 ...

115

 }

 }

 Nested classes are divided into two categories: static and non-static. Nested classes that

are declared static are simply called static nested classes. Non-static nested classes are

called inner classes.

class OuterClass

 {

 ...

 static class StaticNestedClass

 {

 ...

 }

 class InnerClass

 {

 ...

 }

 }

A nested class is a member of its enclosing class. Non-static nested classes (inner

classes) have access to other members of the enclosing class, even if they are declared

private. Static nested classes do not have access to other members of the enclosing class.

As a member of the OuterClass, a nested class can be declared private, public, protected,

or package private. (Recall that outer classes can only be declared public or package

private.)

Why Use Nested Classes?

There are several compelling reasons for using nested classes, among them:

 It is a way of logically grouping classes that are only used in one place.

 It increases encapsulation.

 Nested classes can lead to more readable and maintainable code.

Logical grouping of classes—If a class is useful to only one other class, then it is logical

to embed it in that class and keep the two together. Nesting such "helper classes" makes

their package more streamlined.

Increased encapsulation—Consider two top-level classes, A and B, where B needs

access to members of A that would otherwise be declared private. By hiding class B within

class A, A's members can be declared private and B can access them. In addition, B itself

can be hidden from the outside world. More readable, maintainable code—Nesting small

classes within top-level classes places the code closer to where it is used.

8.4 Static Nested Classes

As with class methods and variables, a static nested class is associated with its

outer class. And like static class methods, a static nested class cannot refer directly to

instance variables or methods defined in its enclosing class — it can use them only

through an object reference.

116

Note: A static nested class interacts with the instance members of its outer class (and

other classes) just like any other top-level class. In effect, a static nested class is

behaviorally a top-level class that has been nested in another top-level class for packaging

convenience.

Static nested classes are accessed using the enclosing class name:

OuterClass.StaticNestedClass

For example, to create an object for the static nested class, use this syntax:

OuterClass.StaticNestedClass nestedObject = new OuterClass.StaticNestedClass();

The definition of a static nested class looks just like the definition of any other

class, except that it is nested inside another class and it has the modifier static as part of

its declaration. A static nested class is part of the static structure of the containing class.

It can be used inside that class to create objects in the usual way. If it has not been

declared private, then it can also be used outside the containing class, but when it is used

outside the class, its name must indicate its membership in the containing class. This is

similar to other static components of a class: A static nested class is part of the class itself

in the same way that static member variables are parts of the class itself.

For example, suppose a class named WireFrameModel represents a set of lines in

three-dimensional space. (Such models are used to represent three-dimensional objects in

graphics programs.) Suppose that the WireFrameModel class contains a static nested

class, Line, that represents a single line. Then, outside of the class WireFrameModel, the

Line class would be referred to as WireFrameModel.Line. Of course, this just follows the

normal naming convention for static members of a class. The definition of the

WireFrameModel class with its nested Line class would look, in outline, like this:

public class WireFrameModel

 {

 . . . // other members of the WireFrameModel class

 static public class Line

 {

 // Represents a line from the point (x1,y1,z1)

 // to the point (x2,y2,z2) in 3-dimensional space.

 double x1, y1, z1;

 double x2, y2, z2;

 } // end class Line

 . . . // other members of the WireFrameModel class

 } // end WireFrameModel

Inside the WireFrameModel class, a Line object would be created with the

constructor "new Line()". Outside the class, "new WireFrameModel.Line()" would be used. A

static nested class has full access to the static members of the containing class, even to

the private members. Similarly, the containing class has full access to the members of the

nested class. This can be another motivation for declaring a nested class, since it lets you

117

give one class access to the private members of another class without making those

members generally available to other classes.

When you compile the above class definition, two class files will be created. Even

though the definition of Line is nested inside WireFrameModel, the compiled Line class is

stored in a separate file. The name of the class file for Line will be

WireFrameModel$Line.class.

8.5 Inner Classes

As with instance methods and variables, an inner class is associated with an

instance of its enclosing class and has direct access to that object's methods and fields.

Also, because an inner class is associated with an instance, it cannot define any static

members itself. Objects that are instances of an inner class exist within an instance of the

outer class. Consider the following classes:

class OuterClass

{

 ...

 class InnerClass

 {

 ...

 }

}

An instance of InnerClass can exist only within an instance of OuterClass and has

direct access to the methods and fields of its enclosing instance. The next figure illustrates

this idea.

An Instance of InnerClass Exists Within an Instance of OuterClass. To instantiate

an inner class, you must first instantiate the outer class. Then, create the inner object

within the outer object with this syntax:

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

In Java, a nested class is any class whose definition is inside the definition of

another class. Nested classes can be either named or anonymous. A named nested class,

like most other things that occur in classes, can be either static or non-static.

Non-static nested classes are referred to as inner classes. Inner classes are not, in

practice, very different from static nested classes, but a non-static nested class is actually

associated with an object rather than to the class in which it is nested. This can take some

getting used to.

Any non-static member of a class is not really part of the class itself (although its

source code is contained in the class definition). This is true for inner classes, just as it is

118

for any other non-static part of a class. The non-static members of a class specify what will

be contained in objects that are created from that class. The same is true -- at least

logically -- for inner classes. It's as if each object that belongs to the containing class has

its own copy of the nested class. This copy has access to all the instance methods and

instance variables of the object, even to those that are declared private. The two copies of

the inner class in two different objects differ because the instance variables and methods

they refer to are in different objects. In fact, the rule for deciding whether a nested class

should be static or non-static is simple: If the nested class needs to use any instance

variable or instance method from the containing class, make the nested class non-static.

Otherwise, it might as well be static.

From outside the containing class, a non-static nested class has to be referred to

using a name of the form variableName.NestedClassName, where variableName is a

variable that refers to the object that contains the class. This is actually rather rare,

however. A non-static nested class is generally used only inside the class in which it is

nested, and there it can be referred to by its simple name.

In order to create an object that belongs to an inner class, you must first have an

object that belongs to the containing class. (When working inside the class, the object

"this" is used implicitly.) The inner class object is permanently associated with the

containing class object, and it has complete access to the members of the containing class

object. Looking at an example will help, and will hopefully convince you that inner classes

are really very natural. Consider a class that represents poker games. This class might

include a nested class to represent the players of the game. This structure of the

PokerGame class could be:

public class PokerGame { // Represents a game of poker.

 private class Player { // Represents one of the players in this game.

 .

 .

 .

 } // end class Player

 private Deck deck; // A deck of cards for playing the game.

 private int pot; // The amount of money that has been bet.

 .

 .

 .

} // end class PokerGame

If game is a variable of type PokerGame, then, conceptually, game contains its own copy of

the Player class. In an instance method of a PokerGame object, a new Player object would

be created by saying "new Player()", just as for any other class. (A Player object could be

created outside the PokerGame class with an expression such as "game.new Player()".

Again, however, this is very rare.) The Player object will have access to the deck and pot

instance variables in the PokerGame object. Each PokerGame object has its own deck and

pot and Players. Players of that poker game use the deck and pot for that game; players of

119

another poker game use the other game's deck and pot. That's the effect of making the

Player class non-static. This is the most natural way for players to behave. A Player object

represents a player of one particular poker game. If Player were a static nested class, on

the other hand, it would represent the general idea of a poker player, independent of a

particular poker game.

8.6 Strings

String is a special class built into the Java language defined in the java.lang

package. The String class represents character strings. String literals in Java programs,

such as "abc", are implemented as instances of this class. Strings are immutable; that is,

they cannot be modified once created. For example:

String str = "This is string literal";

On the right hand side a String object is created represented by the string literal. Its object

reference is assigned to the str variable. The Java language provides special support for

the string concatenation operator (+), and for conversion of other objects to strings. For

example:

String str = "First part" + " second part";

// --- Is the same as:

String str = "First part second part";

Integers will also be converted to String after the (+) operator:

String str = "Age=" + 25;

Each Java object has the String toString() inherited from the Object class. This method

provides a way to convert objects into Strings. Most classes override the default behavior

to provide more specific (and more useful) data in the returned String. The String class

provides a nice set of methods for string manipulation. Since String objects are immutable,

all methods return a new String object. For example:

 name = name.trim();

The trim() method returns a copy of the string with leading and trailing whitespace

removed. Note that the following would do nothing useful:

 name.trim(); // wrong!

This would create a new trimmed string and then throw it away.

If 2 or more Strings have the same set of characters in the same sequence then they share

the same reference in memory. Below illustrates this phenomenon.

String str1 = “My name is bob”;

String str2 = “My name is bob”;

String str3 = “My name ”+ “is bob”; //Compile time expression

String name = “bob”;

String str4 = “My name is” + name;

String str5 = new String(“My name is bob”);

In the above code all the String references str1, str2 and str3 denote the same String

object, initialized with the character string: “My name is bob”. But the Strings str4 and

str5 denote new String objects.

//String Equality

120

public class StringsDemo1

 {

 public static void main(String[] args)

 {

 String str1 = "My name is bob";

 String str2 = "My name is bob";

 String str3 = "My name " + "is bob"; //Compile time expression

 String name = "bob";

 String str4 = "My name is " + name;

 String str5 = new String("My name is bob");

 System.out.println("str1 == str2 : " + (str1 == str2));

 System.out.println("str2 == str3 : " + (str2 == str3));

 System.out.println("str3 == str1 : " + (str3 == str1));

 System.out.println("str4 == str5 : " + (str4 == str5));

 System.out.println("str1 == str4 : " + (str1 == str4));

 System.out.println("str1 == str5 : " + (str1 == str5));

 System.out.println("str1.equals(str2) : " + str1.equals(str2));

 System.out.println("str2.equals(str3) : " + str2.equals(str3));

 System.out.println("str3.equals(str1) : " + str3.equals(str1));

 System.out.println("str4.equals(str5) : " + str4.equals(str5));

 System.out.println("str1.equals(str4) : " + str1.equals(str4));

 System.out.println("str1.equals(str5) : " + str1.equals(str5));

 }

 }

Output is:

str1 == str2 : true

str2 == str3 : true

str3 == str1 : true

str4 == str5 : false

str1 == str4 : false

str1 == str5 : false

str1.equals(str2) : true

str2.equals(str3) : true

str3.equals(str1) : true

str4.equals(str5) : true

str1.equals(str4) : true

str1.equals(str5) : true

The == operator is used when we have to compare the String object references. If

two String variables point to the same object in memory, the comparison returns true.

Otherwise, the comparison returns false. Note that the ‘==’ operator does not compare the

content of the text present in the String objects. It only compares the references the 2

Strings are pointing to. The equals method is used when we need to compare the content

121

of the text present in the String objects. This method returns true when two String objects

hold the same content. The following section briefly discusses the different functions of the

String class that can be used on the objects of String class.

8.7 Java String Functions

The following program explains the usage of the some of the basic String methods like ;

1. compareTo(String anotherString): Compares two strings lexicographically. It

compares char values similar to the equals method. The compareTo method returns

a negative integer if the first String object precedes the second string. It returns

zero if the 2 strings being compared are equal. It returns a positive integer if the

first String object follows the second string.

2. charAt(int index): Returns the character at the specified index.

3. getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin): Copies characters from

this string into the destination character array.

4. length(): Returns the length of this string.

5. equals(Object anObject): Compares this string to the specified object.

6. equalsIgnoreCase(String anotherString): Compares this String to another String,

ignoring case considerations.

7. toUpperCase(): Converts all of the characters in this String to upper case using the

rules of the default locale.

8. toLowerCase(): Converts all of the characters in this String to upper case using the

rules of the default locale.

9. concat(String str): Concatenates the specified string to the end of this string.

10. indexOf(int ch): Returns the index within this string of the first occurrence of the

specified character.

11. indexOf(int ch, int fromIndex): Returns the index within this string of the first

occurrence of the specified character, starting the search at the specified index.

12. indexOf(String str): Returns the index within this string of the first occurrence of

the specified substring.

13. indexOf(String str, int fromIndex): Returns the index within this string of the first

occurrence of the specified substring, starting at the specified index.

14. lastIndexOf(int ch): Returns the index within this string of the last occurrence of

the specified character.

15. lastIndexOf(int ch, int fromIndex): Returns the index within this string of the last

occurrence of the specified character, searching backward starting at the specified

index.

16. lastIndexOf(String str): Returns the index within this string of the rightmost

occurrence of the specified substring.

17. lastIndexOf(String str, int fromIndex): Returns the index within this string of the

last occurrence of the specified substring, searching backward starting at the

specified index.

18. substring(int beginIndex): Returns a new string that is a substring of this string.

122

19. substring(int beginIndex, int endIndex): Returns a new string that is a substring of

this string.

20. replace(char oldChar, char newChar): Returns a new string resulting from

replacing all occurrences of oldChar in this string with newChar.

21. trim(): Returns a copy of the string, with leading and trailing whitespace omitted.

22. toString(): This object (which is already a string!) is itself returned.

The following program demonstrates the use of String methods:

// Program to demonstrate String methods.

public class StringsDemo2

 {

 public static void main(String[] args)

 {

 String str1 = "My name is bob";

 char str2[] = new char[str1.length()];

 String str3 = "bob";

 String str4 = "cob";

 String str5 = "BoB";

 String str6 = "bob";

 System.out.println("Length of the String str1 : " + str1.length());

 System.out.println("Character at position 3 is : "

 + str1.charAt(3));

 str1.getChars(0, str1.length(), str2, 0);

 System.out.print("The String str2 is : ");

 for (int i = 0; i < str2.length; i++)

 {

 System.out.print(str2[i]);

 }

 System.out.println();

 System.out.print("Comparision Test : ");

 if (str3.compareTo(str4) < 0)

 {

 System.out.print(str3 + " < " + str4);

 }

 else if (str3.compareTo(str4) > 0)

 {

 System.out.print(str3 + " > " + str4);

 }

 else

 {

 System.out.print(str3 + " equals " + str4);

 }

 System.out.println();

123

 System.out.print("Equals Test");

 System.out.println("str3.equalsIgnoreCase(5) : "

 + str3.equalsIgnoreCase(str5));

 System.out.println("str3.equals(6) : " + str3.equals(str6));

 System.out.println("str1.equals(3) : " + str1.equals(str3));

 str5.toUpperCase(); //Strings are immutable

 System.out.println("str5 : " + str5);

 String temp = str5.toUpperCase();

 System.out.println("str5 Uppercase: " + temp);

 temp = str1.toLowerCase();

 System.out.println("str1 Lowercase: " + str1);

 System.out.println("str1.concat(str4): " + str1.concat(str4));

 String str7temp = " \t\n Now for some Search and Replace Examples ";

 String str7 = str7temp.trim();

 System.out.println("str7 : " + str7);

 String newStr = str7.replace('s', 'T');

 System.out.println("newStr : " + newStr);

 System.out.println("indexof Operations on Strings");

 System.out.println("Index of p in " + str7 + " : " + str7.indexOf('p'));

 System.out.println("Index of for in " + str7 + " : " + str7.indexOf("for"));

 System.out.println("str7.indexOf(for, 30) : " + str7.indexOf("for", 30));

 System.out.println("str7.indexOf('p', 30) : "+ str7.indexOf('p', 30));

 System.out.println("str7.lastIndexOf('p') : "+ str7.lastIndexOf('p'));

 System.out.println("str7.lastIndexOf('p', 4) : " + str7.lastIndexOf('p', 4));

 System.out.print("SubString Operations on Strings");

 String str8 = "SubString Example";

 String sub5 = str8.substring(5); // "ring Example"

 String sub3_6 = str8.substring(3, 6); // "Str"

 System.out.println("str8 : " + str8);

 System.out.println("str8.substring(5) : " + sub5);

 System.out.println("str8.substring(3,6) : " + sub3_6);

 }

}

Output is:

Length of the String str1 : 14

Character at position 3 is : n

The String str2 is : My name is bob

Comparision Test : bob < cob

Equals Teststr3.equalsIgnoreCase(5) : true

str3.equals(6) : true

str1.equals(3) : false

str5 : BoB

124

str5 Uppercase: BOB

str1 Lowercase: My name is bob

str1.concat(str4): My name is bobcob

str7 : Now for some Search and Replace Examples

newStr : Now for Tome Search and Replace ExampleT

Indexof Operations on Strings

Index of p in Now for some Search and Replace Examples : 26

Index of for in Now for some Search and Replace Examples : 4

str7.indexOf(for, 30) : -1

str7.indexOf(’p', 30) : 36

str7.lastIndexOf(’p') : 36

str7.lastIndexOf(’p', 4) : -1

SubString Operations on Stringsstr8 : SubString Example

str8.substring(5) : ring Example

str8.substring(3,6) : Str

8.8 Summary

The Java programming language allows you to define a class within another class.
Such a class is called a nested class. Nested classes are divided into two categories: static
and non-static. Nested classes that are declared static are simply called static nested
classes. Non-static nested classes are called inner classes. String is a special class built
into the Java language defined in the java.lang package. The String class represents
character strings. String literals in Java programs, such as "abc", are implemented as
instances of this class. There are different functions of the String class that can be used
on the objects of String class.
8.9 Review Questions

1. Differentiate between static nested and inner classes?

2. Can we access inner class objects outside the class it is defined in? How?

3. What is inheritance? Explain with the help of an example. How can we access base

class constructors? Explain with example.

8.10 Suggested Readings

 The Complete Reference by Herbert Scheild, Mc-Graw Hill

 Programming with Java by E.Balagurusamy, Mc-Graw Hill

 Java : A Beginner's Guide by Herbert Schildt, Mc-Graw Hill

 Introduction to Java Programming by Y.Daniel Cians, Prentice Hall

 Object Oriented Programming in Java by G.T. Thampi

 Java Programming by C. Xavier

Last Updated on July 2023

Mandatory Student Feedback Form

https://forms.gle/KS5CLhvpwrpgjwN98

Note: Students, kindly click this google form link, and fill this feedback form once.

https://forms.gle/KS5CLhvpwrpgjwN98

