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B.A. PART -1 MATHEMATICS : PAPER-II
(SEMESTER-I) DIFFERENTIAL EQUATIONS

LESSON NO. 1.1 Author : Dr. Chanchal

LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER-I

Structure :

Objectives
I. Introduction
II. Order and Degree of a Differential Equation
III. Solution of a Differential Equation
IV. Formation of a Differential Equation
V. Differential Equations of First Order and First Degree

V.(a) Variables Separable Form
V.(b) Homogeneous Equations
VI. Self Check Exercise
VII. Suggested Readings

Objectives

The prime objective of this lesson is to study the basic features of an ordinary
differential equation such as order and degree, types of solution, how to form a
differential equation etc. Further, this lesson also deals with the solutions of
differential equation with first order and first degree.

I. Introduction

Firstly, we introduce the concept of differential equation as :A differential equation
is an equation which involves differential coefficients or differentials. For example :

L &’y L dy o]
(i) e +3d—X+2=O (11)—31nX

These differential equations are of two types :

The one in which differential coefficients,called derivatives are w.r.t. a single
independent invariable, called the ordinary differential equation and the other in
which differential coefficients are w.r.t. more than one independent variables, called
the partial differential equations. But, in this unit, we confine ourselves to the study
of ordinary differential equations only.
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II. Order and Degree of a Differential Equation
Order of a Differential Equation : The order of a differential equation is the

order of the highest differential coefficient occuring in it. For example :

2
Orderof 4Y 1 x ¥ 15 0is 2.
dx dx

In simple words, Order of a differential equation is defined as the order of the
highest order derivative of the dependent vairable with respect to the independent
variable involved in the given differential equation.

On the basis of degree, the differential equation can be classified as linear and
non-linear as :

A differential equation is said to be linear if the unkown function and all of its
derivatives occuring in the equation occur only in the first degree and are not
multiplied together.

2
The differential equations j—yzsinx,j—};+y20 are linear whereas
X X

2 2 3
(%} 1 x> (j_yj =0 is non-linear.
X X

It should be noted that a linear differential equation is always of the first degree
but every differential equation of the first degree need not be linear. For example,

2 2
the differential equation j y _{d_y) +y? =0 is not linear, though its degree is 1.

x2 \dx

Example 1 : Write the order and degree of the differential equation == =2

Sol. The given differential equation is =——— " = =2
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This can be written as

V] @ ay ¥ (Y
1+[—yj =2 o 1+(—yj =4 &Y
dx dx dx dx?

degree of differential equation is 2 and order is also 2.

III. Solution of a Differential Equation

A solution of a differential equation is a relation between the variables such that

N

this relation and the derivatives obtained from this relation satisfy the given
differential equation.

Solution of a differential equation is also called integral of the differential equation.
The solution of a differential equation is further classified into following three types:

Classification :
General (or Primitive) Solution : The solution of a differential equation which

involves as many arbitrary constants as the order of the differential equation, is
called the general solution. It is also called complete solution.

Particular Solution :

A particular solution of a differential equation is that which contains no arbitrary
constant and is obtained from the general solution by giving particular values to
the arbitrary constants.

Singular Solution :

A singular solution of the differential equation is that which contains no arbitrary
constant and cannot be obtained from the general solution by giving particular
values to the arbitrary constants.

IV. Formation of a Differential Equation

We follow the method given below to form the differential equation of an equation in
x and y.

Step I : Write down the given equation.

Step II : Differentiate it w.r.t. X, as many times as the number of arbitrary constants.
Step III : Eliminate the arbitrary constants from the given equation and equations
obtained in Step II.

The resulting equation is the required differential equation.

Example 2 : Form the differential equation of the family of curves

y:AX+E
X
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Sol. The given equation is y _Ax+2 o (1)
X

dy B
—=A-— ... (2)

dx X

d’y 2B
dx? x°

® &y
2 dx?

From (3), B=

2 2
From (2), d_y:A_Ed_Z:Azfd_Z+d_y
dx 2 dx 2 dx* dx

Putting value of A and B in (1), we get,

2 2 2 2 2
y:X—dZ+xd—y+X—dZorx2 d}27+xd—y—y:0
2 dx dx 2 dx dx dx

which is required differential equation.
V. Differential Equations of First Order and First Degree

A general differential equation of first order and first degree is an equation of the
form j—yzf(x,y) or M dx + N dy = 0 where M and N may be both functions of
b4

x and y.

Existance and Uniqueness Theorem

If f(x, y) and d_)< and are continuous functions of x and y in a region D of the xy-
plane and if P (x,, y,) € D, then there exists one and only one function ¢ (x), say,
which is in some neighbourhood of P (contained in D) is a solution of the differential

. dy :
equation ax (X,¥) and is such that ¢ (X)) = ¥,

Now, differential equations with first order and first degree are of several types
followed by a special rule or method for solving them. In the coming subsections,
we study that types alongwith their methods.

V.(a) Variables Separable

If in an equation it is possible to get all the functions of x and dx to one side, and all
the functions of y and dy to the other, the variables are said to be separable.
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Thus, in the equation j—y = XY where X is a function of x only and Y is a function of
X

y only, the variables are separable as this equation can be written as d7y =X dx.

Example 3 : Solve the differential equation tany. j_y =sin (x +y) + sin (x - y).
X

Sol. The given differential equation is

d . . d .
tan y.—y= sin (x +y) + sin (x —y) or tan y.—y=2 sin X cos y
dx dx

Separating the variables, we get,

t .
Y gy = 2sinx dx or secy tan y dy = 2 sinx dx
cosy

Integrating, jsec y tany dy =2 fsin x dx

secy = — 2 cos X + ¢, which is the required solution.
Note : We may be given some equations of the form j—y: f(ax + by + ¢), which are
X

originally, not in variables separable form, but can be reduced to that form and
solved under the following rule :

Rule : Equations Reducible to Variable Separable

d
To solve —y=f(aX+bY+C)
dx

(1) Put ax + by + c = t.
(ii) Separate the variables and integrate.
(iii) In the solution put t = ax + by + c.

V.(b) Homogeneous Equations
Firstly, we define a homogeneous function of n* degree in x and y as :-
Def. : A homogeneous function of the nth degree in x and y is that which can be

put in the form X"f[ij.
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3
x® 1+(yj
x% +y° X
x> +y? 2
y x{1+(yj}
X

f (x, y) is a homogeneous function of degree 1.

Consider f(x,y)=

Now, A homogeneous differential equation of the first degree is an equation of the

d_y — fl(xa Y)

i
o ax (k)

where f, (x, y) and f, (x, y) are homogeneous functions of the same

degree in x and y.

Rule : In order to solve such an equation, we follow the rule :

(1) Put y = vx.
(ii) Separate the variables and integrate
(iii) In the solution, put v="2.

X

Note : Method to solve j—y: f(zj is the same.
x X

As we have discussed in case of variables separable, we may need to solve some
equations which are not homogeneous but can be made homogeneous. Such
equations, which are reducible to homogenous are further of two types as :-

dy _ax+by+c ., a_b
dx a'x+b'y+c' a' b’

Type I:

Rule : (i) Put x=x'"+ h,y =y + k, where h, k are constants.

(ii) Put the constant terms in the numerator and denominator of R.H.S.
each equal to zero and determine h and k.

(iii) Solve the resulting homogeneous equation in X' and y'.

(iv) In the solution, put X' = x — h, y' = y — k and substitute the values of
h and k determined above.
dy ax+by+c a b

= when —=—
dx a'x+b'y+c' a' b

Type II :

Rule : (i) Putax+by-=t

(ii) Separate the variables t and x
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(iii) Integrate and putt = ax + by.

d +y+4
Example 4 : Solve g xryrs
dx x+y-6

d 4
Sol. The given differential equation is d_Z:% ... (1)

dy ax+by+c

Comparing (1) with — = , we get,
dx a'x+b'y+c'
a_b_,
a' b’
Putx+y=tor 1+d—y:$:>d—y:$—1in(1),weget
dx dx dx dx

dt t+4 dt t+4
= or —= +1
t-6 dx t-6

dat _2t-2
dx t-6

Separating the variables, we get,

£=6 4t—dx or ljﬂdt:jmx
2t-2 23t-1

1 )
1 1
E[t—510g|t—1|]:x+c or 5[X+y—510g|x+y—1|]:x+c-

VI. Self Check Exercise
1. Solve the following differential equations :
(1) sec?x tany dx + sec?y tanx dy = 0

. dy = x(2logx+1)
(i1 dx siny+ycosy
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VII.

(iii) xj—i=y—xcos2§
(iv) Px+y+1)dx+ (4x+2y-1)dy =0

Suggested Readings :

R.K. Jain, S.R.K. Lyengar, Advanced Engineering Mathematics, Narosa
Publishing House.

Rai Singhania : Ordinary and Partial Differential Equations, S. Chand &
Company, New Delhi.

Zafar Ahsan, Differential Equations and their Applications, Prentice-Hall of
India Pvt. Ltd., New Delhi - 2nd Ed.



B.A. PART -1 MATHEMATICS : PAPER-II
(SEMESTER-I) DIFFERENTIAL EQUATIONS

LESSON NO. 1.2 Author : Dr. Chanchal

LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER-II

Structure :

Objectives
I. Linear Equation
II. Exact Differential Equation

III. Self Check Exercise
IV. Suggested Readings

Objectives :

We have already discussed about the two types of differential equations of first
order and first degree in lesson 1.1. Here, in this lesson, we discuss about the
other remaining tyes viz. linear equation and exact differential equation and the
equations that can be reduced to the above types.

I. Linear Equation

The standard form of a linear equation of the first order is j—y+ Py =Q, where P and
X

Q are functions of x. This equation is also known as Leibnitz's equation. The solution
of such a linear equation is given by :

y.eIPGIX :Ieejpdx dx +c

j Pdx

Here, the term e is called integrating factor and is denoted by I.F.

Example 1 : Solve (1 + y?) dx = (tan'y — x) dy.
OR

Solve (1+y2)+(x—em“_ly)j—y=0.
X

Sol. The given equation is (1 + y?) dx = (tan'y - x) dy
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dx dx _
or 1+y’)——=tan'y-x or 1+y*)—=+x=tan™
07) & tanty (109) S tany
dx 1 tan'y
or -t 2 X= 2
dy 1+y 1+y
dx 1 tan™'y
C i ith —+Px=0Q,weget,P = ,Q=
omparing wi dy Q,we g sy Q 1y
1
I.F. = eIpdy = ejﬁdy —etanly
solution of given equation is
tan™1 tan_l Y tan!
x.e y:'[—e Ydy+c (1)

1+y?

['.'x.eIde :J'Q.ejpdydy+c}

1
l+y

Put tan'y = t, ..

dy =dt

2

1= J.tetdt =te' - Il.et dt=te' —e' =(t-1)e' =(tan 'y —1)e= ¥

tan 1

from (1), xe™ ¥ =e™ 'V (tanly —1)+c.

Like the previous cases, there may be equations which may not be linear but can
be reduced to linear form and solved accordingly. Such type of equations are
discussed below :

1. Bernoulli's Equation : An equation of the form j—y+ Py = Qy" where P, Q
X

are functions of x is not linear, but it can be reduced to linear and solved accordingly
under the following rule :
Rule : (i) Divide throughout by y".

(i) Put y!™=t.

(iii) Solve the linear equation in t and then put t = y'™.

2. General Equation : An equation of the form f'(y)j—y+Pf(y) =Q, where P
X

and Q are functions, can be reduced to linear by substituting f(y) = t so that
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£ S—Y:% and the original equation is reduced to the linear form in variable 't'
x dx

as -

dt

= =Pt+Q
II. Exact Differential Equation
The equation M dx + N dy = O (where M and N are functions of x and y), is said to be
exact if M dx + N dy is the exact differential of a function of x and y, i.e., if

M dx + N dy = du, where u is a function of x and y.
For example : The differential equation sin x cos y dy + cos x sin y dx = 0 is an exact
differential equation as

sin x cos y dy + cos x sin y dx = d (sin X cos y).

Art 1 : Find the necessary and sufficient condition that the equation M dx + N

dy=0 (where M and N are functions of x and y with the condition that M, N, %,%
are continuous functions of x and y) may be exact.
Proof : (i) Necessary Condition
Assume M dx + N dy = O is exact.
M dx + N dy = du, where u is function of x and y.
But duza—udXJra—udy
ox ay
de+Ndy:@dX+@dy
0x oy
. . au ou
Equating coeffs. of dx and dy on both sides, M :& and N =5
M__Pu N__u
dy oy ox ox  Ox dy
2 2
But o’u - o°u ou and -~ are given to be continuous}
ay ox 0% ay 0x 6}7 ay 0x
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oM ON
Ezg, which is the required necessary condition.

(ii) Condition is sufficient

oM ON
Assume that —=—

oy 0Ox
We have to prove that M dx + N dy = O is exact.
Let [Mdx=u (1)

where integration is performed on the supposition that y is constant.

0 ou ou
&Ude}&, or M=—" .. 2
2
Also a—M: oy (3)
oy 0Oy ox
2 2
But a—M:a—N(given) and ou = ou (Assumption)
oy 0x 0y 0x 0x Oy

N  o%u ON 0 (ou
from (3), — = or —=—|—
ox Ox\ 0y

X 0x dy
Integrating both sides w.r.t. x, regarding y as constant,
ou
N =—+1(y), (say) e (4)
oy

From (2) and (4), we get,

MdX+Ndy:Z—zdx+{%+f(y)} dy :{Z—zdx+%dyj+f(y) dy

Mdx+ Ndy =du+f(y) dy ... (9)
which is an exact differential

[~ f(y) dy is an exact differential as f(y) dy = d {J.f(y) dy}]

M dx + N dy = O is exact.

condition is sufficient.

Cor. If the condition is satisfied, solve the equation M dx + N dy = O
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Proof : The given equation is Mdx + Ndy = 0
or du+f(y)dy=0 [+ of (5)]
Integrating both sides, we get,

u+ [f(y)dy =c ... (6)

But u= | Mdx [+ of (1)]

y constant

and f (y) = terms in N not containing x
from (6), we get, [ of (4)]

I Mdx + I(terms in N not containing x) dy = ¢

y constant

which is the required solution.
Example 6 : Show that the differential equation 2x sin 3y dx + 3x>cos 3y dy = O is
exact and hence solve it.
Sol. The given differential equation is 2x sin 3y dx + 3x2cos 3y dy = O
Comparing it with M dx + N dy = 0, we get,
M = 2x sin 3y, N = 3x2?cos 3y

Now M _ 6x cos 3y and N _ 6x cos 3y
oy ox

. oM ON
Since —=—
oy 0Ox

given equation is exact and its solution is

J' Mdx + J (terms in N not containing x) dy = c

y cons tant

or 2 (sin3y) [xdx+0=c

Integrating Factor :

In case of linear differential equation, we have noticed a term integrating factor.
Now, we define that term as :

Def. : An integrating factor (abbreviated I.F.) of a differential equation is a factor
such that if the equation is multiplied by it, the resulting equation is exact.

Note : 1. The number of integrating factors of the equation Mdx + Ndy = O is infinite.
2. The integrating factors can be judged sometimes by insepction otherwise by
the specific rules, as discussed below :
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Integrating Factors by Inspection

Group of terms L.F. Exact differential
1 y
- — dl <
1. x dy -y dx 2 (xj
1
R
y y
L d [log Z}
Xy X
1
2 d [tan'l X}
X +y X
1 -1 }
d|———|,n=1
2. xdy +ydx (xy)° { Ln - 1) (xy)*!
d (log|xy|),n=1
—t— la = n#l
3. de+ydy (X2+y2)n 2(n_1)(X2+y2)n71 4

d[%log (x> +y2)},n:1

Five Rules for Finding Integrating Factors :
Rule I : If the equation M dx + N dy = O is homogeneous in x and y i.e., if M and N

1
are homogeneous functions of the same degree in x and y, then m is an L.F.

provided Mx + Ny = O.
Note : 1. This method is suitable when Mx + Ny consists of only one term.
Otherwise it is better to put y = vx.

2. If Mx + Ny = O, then this method fails and the solution is given by

.'.‘Z‘:cor|y|zclx|-
X
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Rule II : If an equation M dx + N dy = O is of the form

is an I.F. provided Mx — Ny = O.

1
+ = _
f(xy)ydx +f,(xy) xdy = O, then x—Ny

Note : This rule fails if M x — Ny = 0 and the solution is given by |xy | = c.

M _0ON
. . ay Ox . .
Rule III : If in an equation M dx + N dy = 0O, —  isa function of x only say f(x),
then eIf(X)dX is an L.F.
oN_om
. . ox Oy . .
Rule IV : If in an equation M dx + Ndy = 0, —y isa function of y only say f(y),
then eIf[y}dy is an L.F.
Rule V : If an equation is
x2y? (my dx + nx dy) + x*y®* (m' y dx + n'x dy) = 0, then x"y*is an I.F. where

a+h+1 b+k+1 a+h+1 b+k+1

m n m n

Example 3 : Solve y ( xy + 2x%y?) dx + x (xy — x%y?) dy = O.
Sol. The given differential equation is
vy (xy + 2x?y?) dx + x (xy - x%y?}) dy = O ... (1)
which is of the form f, (x y) ydx + f,(x y) x dy = O
comparing with M dx + N dy = 0, we get,
M=y (xy + 2x%?), N = x (xy - x%y?)
1 1 1

3.,3

:Mx—Ny:xy(xy+2x2y2—xy+xgy2):3x y

LF.

1
multiplying both sides of (1) by W7 we get,

1+2xy
3x’%y

dx+1_xg,dy=0
3xy

which is exact and its solution is
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L %dx+g'[1d +lj—ldy:c
3y ' x X 3 y
-1 2 1
or —+=log|x|-=1o =cC
3%y 3 glx| 3 glyl
_ 2
or —1+logx—=30=C,say-
Xy |yl

d
Example 4 : Solve the differential equation (x + 2y?) d_i =y.

Sol. Given differential equation is

dy

(x+2y°)===y or (x+2y’)dy =y dx
dx
or ydx—(x+2y%) dy =0 ... (1)
Comparing (1) with M dx + Ndy = 0, we get, M=y, N = — (x + 2y
M_ N,
oy ox
N _oM
Now X _“1-1_-2_gq)
M y y

-2
—d _
LF. = e_[f(}’)dy _ CJ y y _ e—210gy _ elogy 2 _ y—2 _ 1

1

Multiplying both sides of (1) by v’ we get

1

—dx —(% + 2yj dy =0 which is exact and its solution is
y y

I ldx—j2ydx=c

y constant
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X 2 _ 3 _
or Z—y°=cor x-y =cy

which is the required solution.

III. Self Check Exercise

d
1. &+y)SL=y

dx
2. (x+1)ﬂ+1:e"’y

dx
*(xdy - yd
3. Solve de+ydyw
X" +y
4. Solve the differential equationy (x +y + 1) dx + x (x + 3y + 2) dy = O,
y>0

S. Find the integrating factor and hence solve

y3 X2 1 5

(y+?+?]dx+z(x+xy Jdy =0.

IV. Suggested Readings:

1. R.K. Jain, S.R.K. Lyengar, Advanced Engineering Mathematics, Narosa
Publishing House.

2. Rai Singhania : Ordinary and Partial Differential Equations, S. Chand &
Company, New Delhi.

3. Zafar Ahsan, Differential Equations and their Applications, Prentice-Hall of
India Pvt. Ltd., New Delhi - 2nd Ed.
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LESSON NO. 1.3 Author : Dr. Chanchal

LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER
WITH CONSTANT COEFFICIENTS

Structure :

Objectives
I. Introduction
II. Solution of Homogeneous Linear Equation with Constant Coefficients
III. Solution of Non-Homogeneous Linear Equation with Constant Coefficients
III.(a) Five Rules for Finding Particular Integrals
Iv. Method of Variation of Parameters
V. Method of Undetermined Coefficients

VI. Self Check Exercise
VII. Suggested Readings

Objectives

After studying the linear differential equations of first order, in this lesson, we will
learn to find out the solutions of linear differential equations of order more than
one. Such equations are of two types : the one with constant coefficients and the
other with vairable coefficients. In this lesson, we focus on the methods for finding
solutions of linear differential equations of higher order with constant coefficients.

I. Introduction

In this lesson, we will be studying in detail about the solutions of linear homogeneous
and non-homogeneous equations of higher order with constant coefficients. Firstly,
we introduce these equations as :-

The non-homogeneous linear differential equation of order n with constant
coefficients is

dny dn—ly
P, —+P, +..+Py= (1
0 dx™ 1 an—l y Q ( )

where P, P, P,,...., P_are constants and Q is a function of x. Also P # 0.
The corresponding homogeneous linear differential equation is
18
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n n-1
PO%+P1d—nz+...+Pny:0- (Here, =0)
X

II. Solution of Homogeneous Linear Equation with Constant Coefficients
The given differential equation is

n-2
+P "y

P
0 dx™' 7 dx™?

+P, +..+Py=0, where P, P,, ...., P_are real

dx"
constants, P = O.
Step 1. Write the equation in the symbolic form (S.F.)
(P,D"+ P.D™'+ P,D"2+ ... + P)y =0
@ ., d°

. d
By putting — =D, =D"..., =D"
( yP gdx dx? J

Step 2. Write down the auxiliary equation (A. E.) as
P.D"+ P D™+ .. +P =0
[By equating to zero the symbolic coeff. of y]|
and solve it for D as it is an ordinary algebraic quantity.
Step 3. From the roots of the A.E., write down the corresponding part of the
complete solution (C.S.) as follows :

Roots of A.E. Corresponding part of
C.S.
(a) (i) Two real and different roots m,, m, c,e™* +c,e™?"
(ii) Two real and equal roots m,, m, e™*(c, +c,x)
(iii) Three real and equal roots m , e*™(c, + c,x +c,x7%)
m, m,. o
and so on. ox
. a. o ax .
(b) (i) One pair of Complex and e*(c, cos Bx + ¢, sin x|

different roots = if§

(ii) Two pairs of complex and equal e* [(c,*c,x) cos Bx +
roots *if, *if. (c,*+ ¢,x) sin B x]
and so on

Example 1 : Solve (D?+ 1)*(D2+ D + 1)2y = 0.
Sol. The given differential equation is (D2+ 1)3(D2+ D + 1)2y = 0
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The A.E. is (D2+ 1)3(D%2+ D + 1)2=0

Either (D?+ 1)3=0 or (D2+ D + 1)2=0
-1£J1-4 -1++1-4
. D?2=-1, -1, -1 or D= ,
2 2
-1+i43 -1+i+/3
~D=%1i,%i, +i or D= 1\/7, 1\/7
2 2
. we have D:Oii,Oii,Oii,—liﬁi,—liﬁi
2 2 2 2
.. the C.S. is

y =e”[(c,+c,x+cx?’) cos X+ (c,+ c ;X + ¢ ,x°) sin x|

- 3 .3
+e 2 | (c, + cgx)cos ?x + (cg + CypX) sin oY X
or y=(c,+cx+cx?’)cosx+(c,+cx+cx’)sinx

X

= 3 .3
+e 2| (c, +cgX) cos ?x +(cq +¢,oX) sin -5 x|

III. Solution of Non-Homogeneous Linear Equation with Constant
Coefficients

The given differential equation is

d"y
dx"

n-1 n-2
d y+P2d y

P
0 dx™™* dx"2

+P, +...+P y =6, where P,P, P,, ...., P_are constants, and Q

is a function of x.
Step 1. Write the equation in the S.F.
(P,D*+ P D'+ PD*?+ ... +P )y =Q
Step 2. Write down the A.E.
P, D"+ P.D>'+ P,D"? + ... + P_= 0, and solve it for D.
Step 3. From the roots of the A.E., write down the corresponding part of the C.F.

by the same rule by which we write the C.S. if the R.H.S. of the given equation were
zero, instead of Q.

Step 4. Find the particular integral given by, P.L :ﬁ Q
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The methods to find P.I. are discussed in the succeding part.
Step 5. The C.S.isy=C.F. + P.L.

Note : 1. ﬁ is the inverse of the operater f(D)

2. % Q is the particular integral of the equation f(D) y = Q.
1
3. BQ = JQ dx, no arbitrary constants being added.
1 ax —ax . .
4, D a Q=e _[Qe dx, no arbitrary constant being added.
]' ax X2 ax 1 ax Xn ax
also, ——— e =—e" and —e =—e™.
(D-a) 2 (D-a) In

III.(a) Five Rules for Finding Particular Integrals

1
Rule I : Rule to evaluate — e*,f(a)# 0

f(D)

1 ax
1. Put D = a and we get ﬁ e™ :% provided f(a) = O
2. If f (a) = 0, then there is case of failure and in that case

1 1 ax
ﬁ (S = Xd— €
f(D
dD[ O]

Note : If by using the above rule, we again get zero in the denominator, we repeat
the rule and so on.

Rule II : Rule to evaluate

1 .
Ccos ax, —- sinax

f(D?) f(D?)
1. Put D?= -a?and we get,
1
——— cosax (or sin ax) = cos ax (or sin ax) provided f (-a?) # O
o7 ( )= ) ( ) (-a?)
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2. If f (-a?) = 0, then case of failure and we have,

1
———~ Cos ax (or sin ax) = X———— cos ax (or sin ax)
fiD’) 9 (1))

dD

1
Rule III : Rule to evaluate ﬁxm, where m is a positive integer.

1
1. To evaluate ——X", we resolve L into partial fractions and then expand
f(D) f(D)

each partial fraction in ascending powers of D.

For example : Consider the partial fraction

x™ we can expand it as :-

1 . 1 m 1 m 1 DY' .
X = X = xPt=—-]1-=
D-a -a+D ( Dj a a
—a 1_7
a
1_ 2 Dm m+1
=——|l+—+ 5+ttt }xm
al| a a a a

1 1
=—— X" +-mx™ +—mm-1)x" +...+—|m+0
a a a a™
1[ m ., mm-1) __ m
—_ Xm+— m1+ ( - ) m2+n.+l_
al a a a™

Example 2 : Solve the differential equation :

2
d 32’ - d—y+4y—8(x2 +e” +sin 2x)-
dx dx
. . . d2y dy 2 2x :
Sol. The given equation is =2 _ 42 | 4y - 8 (x* + e + sin 2x)
dx? dx

or, in S.F., (D?-4D + 4) y = 8 (x>+ e*+ sin 2x)
The A.E.is D?-4D + 4 =0, or (D-2)?=0
D=2,2
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C.F. = (c, + c,x) e*

P.I.:S[ . 1 X+ — 1 e + —
D?-4D+4  D’-4D+4 D?-4D+4

sin 2x} .. (1)

2
1 1+2.2+3.D—+... x2:l x2+Dx2+§D2x2+...
4| 2 4 4 4
_1 x2+2x+§}=l(2x2+4x+3)
4| 2 8

1 2x 1 2x 1 2x
2—6 22—6 =—¢€
D?-4D +4 22-422)+4 0

and
the rule fails

1 2x 1 2x 1 2x 1 2x
2—6 X. e =X. e =X.
D2 -4D+4 2D - 4 2(2) -4 0

The rule fails again.

1 2 162}( B X262X
D*-4D+4 2 2
d 1 sin 2x = 1 sin 2x——l lsin 2x
At D?_ap+4 —4-4D+4 4°D
1 cos2x
=— = — cos 2x
4 2 8
2_.2x
from (1), P.I. = 8 %(2x2 +ax+3)+ 20 +%cos 2x}
= 2x%2+ 4x + 3 + 4x?e? + cos 2x
C.S. = (c, + c,x) e+ 2x*+ 4x + 3 + 4x%e> + cos 2x.

Rule IV : Rule to evaluate ﬁ(eaX V), where V is any function of x.
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L (eaX V) =e* 1
f(D) f(D+a)

Example 3 : Solve the differential equation : (D2~ 4D + 4) y = e€* cos>x.
Sol. The given equation in S.F. is (D?- 4D + 4) y = e* cos?x
The A.E. is D?-4D +4 =0, or (D-2)2=0

D=2,2
C.F. = (c, + c,x) e**

P.I.:Q;e2X cos’x =e** . 5 L (cos’® x)
D°-4D+4 D+2y-4D+2)+4
=&%(Mj _L e F“%C"S QX}
D 2 2 D D

2
1 oax {X 4 £08 ZX} :ée2X (2x? — cos 2x)

1 ox
C.S.is,y = (c, + c,x) e>+ §e2 (2x2 - cos 2x).

Rule V : Rule to evaluate ﬁ (xV), where V is any function of x.

1 ov)ex L +1{L}
f(D) f(D) dD | f(D)

Example 4 : Solve the differential equation

2
d Z —2d—y+y=xexsinx
dx dx
. .. dy _dy . .
Sol. The given equation is 7 —2——+y=xe" sinx
dx dx

or, in S.F. (D2-2D + 1) y =x e*sin x
the A.E.is D?-2D +1=0, or D=1,1
C.F. = (c, + c,x) e
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PlL=——xe*sinx = xe* sinx

D> -2D+1 (D -1y

=e"m(xsinx):eX .é(xsinx)

. 1. d ( 1 j .
=€ X.—SInxXx+—| — |SIn X
D> dD | D?

N [ sinx 2 . } X . 2
=e*|x - —-sinx |=e"| —xsinx - sinx
1 D D(-1)

= e*[-x sin X + 2 (—cos X)] = e*(—x sin x — 2 cos X)

= —e*(x sin X + 2 cos X)

C.S.is,y = (c, + ¢c,x) e~ e*(x sin X + 2 cos X).

d? d .
Example 5 : Solve the differential equation 1 }2’ -3 d—y+2y =sine™,
X X

d’y dy .
. i ion i -3 —+2y=sine™
Sol. The given equation is ax’ dx y

orin S.F., (D?-3D + 2)y =sin e™

The A.LE.is D?*-3D +2 =0, or (D-1) (D-2) =0
D=1,2
C.F. = ce*+ ce*

1 - 1 L x
PlL=————sine” =——————sine
D> -3D+2 (D-1)(D-2)
-1 eXI(sine‘X)e‘xdx [ L V=" J‘Ve‘”‘dx}
D-2 D-a

1 _ x -
"5 3 (e* cos e *)=e* Iex cos e *.e ?*dx

=e?* Ie’x cos e *dx = —e* sine”™

C.S.is, y = c e+ ce”™~ e**sin e™
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IV. Method of Variation of Parameters
Let any given linear equation of 2nd order be
Py'+Py +Py=0Q .. (1)
where P (# 0), P,, P,are constants and Q is a function of x.
The corresponding homogeneous equation is
Py"+Py +Py=0 ... (2)
Let y_= cy, + c,y, be the general solution of (2) and therefore, the complementary
solution of (1), where y,, y,are L.I. functions of x over an open interval I.
Now we try to find a particular solution of (1) by considering
y =A[x)y, + By, - (3)
and determine the functions A and B so that (3) is a solution of (1).
Differentiating (3) w.r.t. x, we get,

y' = Ay, + By, + Ay, + By, ]
Choose A'y, + B'y,= 0 ... (9)

(4) becomes, y' = Ay,' + By,' ... (6)
Differentiating (6) w.r.t. x, we get,

y'=Ay"+By,"+A'y'+B'y, . (7)

Substituting the values of y,y', y" from (3), (6) and (7) in (1), we get,
P (Ay,"+By," + Ay, + BYy,) + P, (Ay," + By,) + P,(Ay, + By,) = Q
or  A(Py,"+Py, +Py)+B Py, Py, + Py,

+P,(A'y, +B'y,) = Q . (8)
¥, ¥,are solutions of (2)
<. By, + Py, + Py, =0 0
and Py, +Py, +P,y, =0 - ©)
Using (9), equation (8) becomes
P (A'y,"+BY,)=Q
[ [ 1
or Ay, +B y2=P—Q ... (10)

0

The equation (5) and (10) will give us values of A' and B'

yi Yo

yi Yo

if #0 and this is true as

W (y,, y,) # 0 due to the fact that y , y,are L.I. over L.
Now when the values of A', B' are known then with the use of integration, we can
determine A and B.
Now with A and B determined, (4) gives us a particular solution of (1) and hence we
can find the general solution of (1).



B.A. PART -1 27 MATHEMATICS PAPER-II

d2
Example 6 : Solve d—};+a2y =tan ax, using method of variation of parameters.
X

2

Sol. The given equation is +a’y =tan ax

dx?
or (D2+ a?) y = tan ax ... (1)
The corresponding homogeneous equation is (D?+ a?) y = 0 ... (2)

Its A.E. is D?+a?= 0 or D?= - a2
D=+ai=0z%*ai
the complementary solution of (1) is
y.= €, cos ax + ¢, sin ax
Now we seek a particular solution of (1) by variation of parameters.

Let y = A cos ax + B sin ax ... (3)
Differentiating (3) w.r.t. x, we get,
y'=A'cos ax + B' sin ax — A a sin ax + B a cos ax )]
Choose A' cos ax + B'sin ax =0 ... (9)
(4) becomes, y' = -A a sin ax + B a cos ax ... (6)

Differentiating w.r.t. x, we get
y" = —-A'a sin ax + B' a cos ax — Aa?cos ax — Ba?sin ax ... (7)
Substituting the values of y, y" from (3) and (7) in (1), we get
—A' a sin ax + B' a cos ax — Aa?cos ax — B a?sin ax
+Aa?cos ax + Ba?sin ax = tan ax
.. (8)
or —A' a sin ax + B' a cos ax = tan ax
Now we try to find values of A' and B' from (5) and (8).
Multiplying (5) by asin ax and (8) by cos ax and adding, we get
B' a (sin?ax + cos?ax) = tan ax cos ax

. 1 .
or B'a=sin ax or B'=—sinax
a
B'sinax 1 sin? ax 1(1-cos?ax
Also from (5), A'l=————=—-— = | ==
cos ax a cosax al| cosax

1 1 1
=——(secax —cosax) = —cosax — —sec ax
a a a

Integrating w.r.t. x, we get,
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1 sinax 1 T ax 1 . 1 T ax
A=— -—logftan| —+— | =—sinax-— log|tan| —+—
a a a 4 2 a a 4 2
1. 1
Also B'=—sinax = B =-—-cos ax
a a’

Putting values of A and B in (3), we get,

T ax
tan| —+—
(4 2)

which is particular solution of (1)

a

1 . 1 1 .
y:{—zsmax——Qlog }cosax——zcos ax sinax
a a

General solution of (1) is
y = ¢, cos ax + ¢, sin ax

1 . 1
+|—zsinax - —log
a a

T ax
tan| —+—
[4 2]

V. Method of Undetermined Coefficients

This method is used for finding the P.I. of a linear differential equation
F(D) y = X, where X contains terms in some special forms, as tabulated below

1 .
} COs ax ——-cosaxsinax -
a

S.No. Special Form of X Trial Solution y for P.I.
1. x"or a_ X" A+Ax+......... + A x"
n’ 0 1 n
or a,fax +ax*+ ... +ax"
n
2. €™ or pe*.....ceeenn.. Ae*
3. a_x"ex e (A Ax+AX*+....+A x9
n 0" "1 2 n
ax 2 n
or e (a,+ a,x + a,x*+...+a x")

4. p sin ax or q cos ax A sin ax + B cos ax
or p sin ax + q cos ax

5. pe*sin ax or geP*cos ax eP (A sin ax + B cos ax)
or e’ (p sin ax + q cos ax)

0. x"sin ax or a X" sin ax (Ay+ A +..... + A x") sin ax +
or X" cos ax (A'y+ A X+ ...+ A' X") cos ax
or a_x"cos ax
or (a,tax+ ... + a_x")cos ax

n
or (a, +ax+..... + a x") sin ax
n
Note. In the above table, n is a positive integer and Qs A vernnnn a,p,q a b, A, A,
...... A, A, A, ... A are constants. The constants occuring in second column are

known and the constants occurding in third column are determined by substituting
the trial solution in the given equation i.e., from the identity F(D) y = X.
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2
Example 7 : Solve %+2§—y+4y:2x2+3e"‘ by method of undetermined
X b
coefficients.
ol. The given differential equation is F+2d—+4y:2x +3e* .. (1)
X X

In S.F., (D?+ 2D + 4) y = 2x%2+ 3e*
The A.E.is D2+ 2D +4 =0

:—21\2/4—16 :—21212\/§Z_lii\/§

or D

CF.=e™ (c, cos v3x + ¢, sin v/3x)

None of the terms in X = 2x%2+ 3e*is present in C.F.
the trial solutions corresponding to x*is A + Ax + A x?and to
e*is A, e™ respectively.
trial solution for P.I. is
y=A,FAx+AX)+A e
dy

d_x = IAx1 + 2A2X - Aseix,

d%y

X2

2A, + Aje™

2
Putting the value of d—};, d_y’ yin (1), we get

x“ " dx
2A,+Aje*+ 2A +4A X - 2A e+ 4A + 4A X + 4A X7+ 4A e = 2x° + 3
Equating coefficients of like terms on both sides, we have

Coefficient of e™*; A, - 2A + 4A = 3 = A,=1

1

Coefficient of x*; 4A,= 2 = A= 5
- 1
Coefficient of x ; 4A,+ 4A =0 = A = 3

Constant terms ; 2A,+ 2A + 4A = 0 = A,=0

P.I.:O—lx+lx2 +e™ :—lx +lx2 +e ™
2 2

the C.S is given by

y=CF.+Pl=e"(c, cos v3x + ¢, sin v3x) - %x + %Xg +e™™.
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VI.

VII.

Self Check Exercise

3 2
1L Solve G335 +dy=0
2. Solve (D3+ 1)y =3 +e™.
3. Solve (D2+ D + 1) y = (1 + sin x)?
4, Solve (D?2- 4D + 4) y = x?+ e*+ cos 2x
S. Solve (D*- 1) y = x sin X
6. Solve (D?+ 3D + 2) y =sin e*by the method of variation of parameters.

Suggested Readings :

R.K. Jain, S.R.K. Lyengar, Advanced Engineering Mathematics, Narosa
Publishing House.

Rai Singhania : Ordinary and Partial Differential Equations, S. Chand &
Company, New Delhi.

Zafar Ahsan, Differential Equations and their Applications, Prentice-Hall of
India Pvt. Ltd., New Delhi - 2nd Ed.
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(SEMESTER-I) DIFFERENTIAL EQUATIONS

LESSON NO. 1.4 Author : Dr. Chanchal

LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER WITH
VARIABLE COEFFICIENTS

Structure :

Objectives
I. Introduction
II. Cauchy's Linear Equation
III. Legendre's Linear Equation

IV. Exact Equation
V. Differential Equation of the 2*! Order
V.(a) Method of Variation of Parameters
V.(b) Method of Changing the Independent Variable
VI. Self Check Exercise
VII. Suggested Readings

Objectives

In continuation with the previous lesson no. 2, in this lesson, we will study the
methods for finding the solutions of linear differential equations of higher order
with variable coefficients.

I. Introduction

An equation of the form

dny dn—ly dn—2y
P +P, + +..Py=
O ax®  ldx™' % dx™? 2y =Q
where P, P, P,, ..., P_and Q are functions of x, is called a linear differential equation

with variable coefficients.

In this lesson, we will discuss various methods of solving some well known linear
differential equations with variable coefficients such as Cauchy's linear equation,
Legendre's linear equation and some other types of equations.

II. Cauchy's Linear Equation

A linear equation of the form

31



B.A. PART - 1 32 MATHEMATICS PAPER-II

n n-1
pxn 9V, p yr1 d Y 4. +Py=0Q[)
x" dx™
where P, P ,.... , P_are real constants and Q(x) is a function of x, is called Cauchy's

linear equation.
Such an equation can be solved under the following rule :

Rule : Working rule to solve Cauchy's linear equation
Step 1. Putx=¢* ie.,, z=logx,x>0

Step 2. Put di: 0 so that
z

xD=0,x’D*=0(0-1),..., x"D" =e(e—1)(e—2)...(e—n—1)
Step 3. Putting these in the given equation, we get,

[POO ©0-1)...(0-n—1)+P0(0-1)...(0-n—2)+...+ PHJ ¥ =Q(e”) which is linear equation

with constant coeffs and solve for y in terms of z.

Step 4. Put z = log x to get the required solution.

3 2
s d y+3x2d—y+xj—y+8y:653in(logx)
X

Example 1 : Solve :
P olve : X o a2

Sol. The given differential equation is

x32%+3x2%+xj—i+8y:653in(logx)
or, in S.F.

(x*D® + 3x°D?+ xD + 8) y = 65 sin (log x) ... (1)
Putting x = e* or z =log x, x > 0
and x D = 0, x2D?2= 0 (06 - 1) and x*D3®*= 06 (6 -1) (6 - 2)

where a4 =0, in (1), we get
dz
[6(6-1) (6-2) +30(0-1) + 06+ 8]y =65sin z
or 03— 362+ 20+ 302-30+ 0+ 8) y=65sin z
or (63+ 8) y = 65 sin z ... (2)
AE.is0+8=0
or ®+2)(062-20+4) =0



B.A. PART - 1 33 MATHEMATICS PAPER-II

e:_Q’Qix/;k—16:_272i221\/§:_2,1i\/§i

CF.=c,e +e” (c, cos +/3z + ¢, sin /3z)

and PL=— (65sinz)=65. 1 sin z [ 0% = —12}
0°+8 6(-1)+8
=65.Lsmz:65 _26_8 sin z
(-0—8)(-0+8) 0> - 65
=65. 1-64 (-6sinz -8sinz) = — (—~cos z — 8 sin z) = 8 sin z + cos z
the general solution is
y = C.F. + P.I.
or y=ce > +¢€” (c, cos J3z + C, sin J3z)+ 8sinz +cos z

or y=c¢,x2 +xc, cos (v3log x) + ¢, sin (/3 log x)]

+8 sin (log x) + cos (log x)

[ e’ = x}

III. Legendre's Linear Equation

A linear equation of the form

n n-1

Pa+bxf SV o p @byt &Y
dx

n-1

+..+P y=0Q(x) ... (1)

n

where P, P, P,,...., P_are real constants and Q(x) is a function of x, is called
Legendre's linear equation.

z
Working method to solve Legendre's linear equation is given below :

Rule : Working rule to solve Legendre's linear equation
Step 1. Puta+bx=¢*, ie.,, z=log(a+bx),a+bx>0

Step 2. Put (;ix: 0, so that

(a+bx) D = b0, (a+ bx)>D>=b20 (0 1), ...., (a + bx)"D*= b0 (0— 1).... (e—n—l)

Step 3. Putting in the given equation, we get,
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[ Pb"0(0 ~1)...(6-1=1) + Pb™0 (0-1)...(0-n-2) +..4+ P, | y = Q (ez;aJ

which is a linear equation with constant coefficients and solve for y in terms of z.
Step 4. Put z = log (a + bx) to get the required solution.
Example 2 : Solve (1 + x)’y,+ (1 + x) y, = 2 cos [log (1 + x)].

Sol. The given differential equation is
2
(1+X)2d—32,+(1+x)d—y: 2 cos [log (1 + x)]
dx dx

or, in S.F., [(1 + x)2D?+ (1 + x) D] = 2 cos [log (1 + x)] ... (1)
Putl+x=e*o0rz=1og(l+x),x>-1

d
and (1 +x) D =0, (1 +x)?D?=0 (6 - 1) where E:e

From (1), we get,
[0(O-1) +0]y=2cosz or 02y =2 cos z
The A.LE.is 02=0 = 0=0,0

— 0z —
CF.=(c,+tcz)e”=c +c,z

PL =9i2 (2cosz)=2 e%cosz = Q%COSZ =-2cosz

CS.isy=c,+c,z-2cosz=c, +c,log(l+ x) -2 cos [log (1 + x)].
IV. Exact Equation

n n-1
d%y d y’ ,d—y,yj:Q(x) is said to be exact if it can be

dx” dx™' 77 dx

A differential equation f(

obtained, simply by differentiation, from an equation of the next lower order

n-1 n-2
(j ni’ , j—nz,..., j—y, y] = JQ(X) dx +c, where c is an arbitrary constant.
X X X

Further, the NASC that the differential equation

dny dn—ly dn—2y
P +P, +P. e +Py=
O dx®  ldx™! % dx™? ny =Q
where P (# 0), P,P,, ......... P_and Q are functions of x, may be exact, is given by

P.-P_,+P ,-P . +.... +(-)*'PM =0
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Working method to test exactness. Write the coeffs. P, P, P,, ...., P,

n

representing the missing coeffs (if any) by zero and operate upon them by — D as
shown under.

P, P P, P

n

!

~-P, -P +P, -P._ /P —. ..+ (1) P

P, Pb-P'P,-P'+P P -P _"+P )" —...+(-1)" P

The equation is exact iff remainder

P-P +P' .. +(1)P®=0
And the first integral is
n-1 n- 2 n-—. 3
p, 4 S Y.p-p, )d Y+ (P, - P, P”)d
dx”

+ {Pn,1 P+ (—1)“’1P0[“’”} y = JQ dx +c .

Example 3 : Solve [(x®- 4x) D®+ (9x>-12) D2+ 18x D + 6] y = O.
Sol. The given differential equation is
[(x3- 4x) D3+ (9%x2-12) D?+18x D + 6]y =0

3
or (x3—4x)d}3’+(9x2—12)dy
dx

dy
+18x—L +6y=0 e (1)
dx? dx Y

-D x3 - 4x 9x2% - 12 18x 6

-3x°+ 4 -12x -6

- 4x 6x2- 8 6x 0
Here remainder is zero. Therefore (1) is exact and its first solution is

2

d d
(x° - 4x) dXZ+(6x2—8)§+6xy:cl .. (2)
-D x3 - 4x 6x°—- 8 6x
-3x2+ 4 -6x

x% - 4x 3x?- 4 [0
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Again the remainder is zero. Therefore (2) is exact and its first integral or a second
integral of (1) is

(X3—4X)d—y+(3X2—4)y=C1X+02 ... (3)
dx

-D x3 - 4x 3x?- 4

-3x2+ 4

x% - 4x 0
Again the remainder is zero. Therefore (3) is exact and its first integral or a
third integral of (1) is

2
(x3—4x)y:cl%+c2x+c3'

V.(a) Integrating Factor

Many times, the given equation may not be exact but it can be made exact by
multiplying with the I.F., which can be determined under the following rules :
Rule 1 : If the coefficients P,, P, P,,...., P_of non-exact linear equation are of the
form kxPor sum or difference of the terms of the above type, then we shall suppose
x™is an I.F. We shall multiply the given differential equation by x™ and apply the
condition of exactness. This will give us the value of m and the I.F.

Rule 2 : If the coeffs. P, P, P,, ..., P_are trigonometrical functions of the form sin
X, cos X, tan x etc., then by trial we will find some suitable trigonometrical function
as I.F.

Example 4 : Solve the following equation :

2
d Z +2d—y(tanx)+3y=3 tan’ x sec X.
dx dx
2
Sol. The given equation is d 327 +2 j—y(tan x)+ 3y =3 tan® x sec x ... (1)
b b4

Multiplying both sides of (1) by cos x, we get,

2
cosxdx};+2sinx3—z+3005x.y=3tan2x - (2)
-D cos X 2 sin x 3 cos x
sin x -3 cos x

cos X 3 sin x |0
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remainder = 0O

(2) is exact and its first solution is

cosxj—y+3»sinx.y=3(tanx—x)+c1
X

jl+3 tan x .y = 3 (sec X tan X — X sec X) + ¢, sec X ... (3)
X

(3) is linear equation of first order in y

d
comparing it with i +Py =Q, we get,

P =3 tan x, Q = 3 (sec X tan X - X sec X) + Cc sec X
IP dx:BItanx dx = -3 log cos x = log (cos x)™

1

LF. =P % = (cos x)° =——
cos® x

solution of (3) i.e., that of (1) is

1

cos® x

I3 (sec x tan x — x sec x) sec® xdx +c, Isec x.sec’ xdx +c,

ysec3X=3_[sec“xtanxdx—3'|.xsec4xdx+c1 'fsec4xdx+02

4 3
=3.sec X—3 X tanx+tan X
4 3

3

tan® x tan® x
—I tan x + 3 dx |+c, |tanx + 3 +c,

3
ysec® x =%sec4 x-3 {x[taner tan XJ

2 1, tan® x
+§10g|cosx|—gsec X |+c,+c, |tanx +

which is the required solution.



B.A. PART - 1 38 MATHEMATICS PAPER-II

V. Differential Equation of the 2" Order

2
;1 Z +P ;1_y+ Qy =R where P, Q and R are functions of x, is called the
X X

The equation

standard linear differential equation of the second order. If P = 0, the equation

d2y

2 +Qy =R is called the normal form.
X

We discuss some methods below to solve such type of differential equations :
VI.(a) Method of Variation of Parameters

Example 5 : Solve the following equation :
(x+2)y" -(2x+5)y +2y=(x+1)e"
given that its complementary solution is c, (2x + 5) + c, e**.
Sol. The given equation is (x + 2) y' - (2x + 5) y' + 2y = (x + 1) €* ... (1)
Its complementary solution is y_= c, (2x + 5) + c,e*
Now we seek a particular solution of (1) by variation of parameters.

Lety = A (2x + 5) + Be* ... (2)
where A and B are functions of x.
Diff. (2) w.r.t. X, we get y' = 2A + 2Be>*+ A' (2x + 5) + B' e* ... (3)
Choose A' (2x + 5) + B' e*= 0 ... (4)
(3) becomes, y' = 2A + 2Be* ... (9)
and y" =2A'+ 2B' e*+ 4 Be* ... (6)

Substituting the values of y, y', y" form (2), (5), and (6) in (1), we get,
(x + 2) (2A' + 2B' e+ 4Be*) - (2x + 5) (2A + 2Be?*)
+2 [A (2x + 5) + Be*] = (x + 1) e*

. (7)

or 2(x+2)A'+2 (x+2)exB' =(x+ 1) e
Multiplying (4) by 2 (x + 2) and (7) by 1 and subtracting, we get,

A'[2x+5) . 2x+2)-2((x+2)]= —(x+1)e"
or 2x+2)(2x+4)A' =-(x+1)e"
or 4 (x+2)P2A=-(x+1)ex

Ao (x+1)e*

4(x+2)7

Again multiplying (4) by 2 (x + 2), (7) by (2x + 5) and subtracting we get,
Be*[2x+2)-2x+2)2x+5)]=-(x+1)(2x+5)e*
or 2B ex+2)(2x+4)=-(x+1)(2x+ D)
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2x+95)(x+1) o

B'=
4 (x +2)
_ J'(X+1 ——lJ‘x x+1
4 (x +2) 4 (x+2)

~ lf x[(x+2)—1
=—— e | —————
4 (x+2)

MATHEMATICS PAPER-II

}dX:—lJ'ex{ 1 —;Q}dx
4 X+2 (x+2)

[ [ e i)+ £'(x) dx = eXf(x)]

1, 1
=——¢€
4 X+2
2_ -
J-(2x+5(x+1)e_lej-2(x+2) (x2+2) le_de
(x +2) 4 (x+2)

1 x 1 1 x 1
:Z'QJ.e dX_ZJ‘X+2C dX_Z'[(X+2)2 ©

le 1 Li_j—_li _lj 1
2 -1 4|x+2 -1 °(x+27 -1 4° (x+2)
_ 1, 1 S lf 1 . _1I 1
2 4(x—-2) 47 (x+2) (x+2)
1 1 x
=——e +——¢€
2 4 (x+2)

particular solution of (1) is

. 1
e +|—=e
-

the general solution of (1) is y=

-X

. e
4 (x+2)

—-(2x+5)

Yo " 4 (x+2)

:|eQX — _ex

c,(2x + 5) +c,e”~

ex.
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VI.(b) Method of Changing the Independent Variable

2
Example 6 : Solve the following equation : x° d—};+3x5 ﬂ+a2y :%.
dx dx X
d’y dy
. . . 6 =2 4 3 5 = 4 a2 —-
Sol. The given equation is X ax’ X dx y 2
d’y 3dy a’ 1
xR B
... d’y _dy 3 a’ 1
Comparing it with 2 +P&+Qy =R, we get,P:;,Q:F,sz—8

Changing the independent variable from x to z, the equation (1) reduces to

d’ d
dZZ+P1d_}ZI+Q1y:R1 - (2)
dz d’z
P—+—
where Plde—gXZ7Q1: Qz’Rlz R2
I I )
dx dx dx
a’
We choose z in such a way that Q, = Q 5= x° 5= constant=a’(say)
o) ()
dx dx
5 dz dz 1
=l,or —=—
dx dx x°
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3 1 3 1
2 Ux &£ 1
Now p ===~ =2-0 andR, =%-=—=-2z
1 1 x
() ’
2
equation (2) reduces to +a’y =2z

dz?

or (D?+ a?) y = -2z
A.E.is D?+ a?2=0, or D?=-a? or D =z*ia

. a . a
C.F. =c,cos az + ¢,sin az = ¢, €os | —— |+, 8in| ——
b:¢ 2x

lete solution i a in -2 1
complete solution is Y:C1COS§—C2 smw.‘.@_
VI. Self Check Exercise
1. Solve the following differential equations :
d’y dy
i X +-L=x
(@ dx® dx
(ii) (x?D?- 3xD + 5) y = sin (log x)
2. Solve ((1 + 2x)°D2- 6 (1+ 2x) D + 16) y = 8 (1 + 2x)?
2
3.  Solve (2x2+3x) d—Z r6x+3) Y 1oy - (x + 1)e*
dx dx
d*y dy —
4, Solve Xd 3 —(2X—1)d—X+(X—1)y=0 by the method of variation of
b

parameters.
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VII.

d? d .
dXZ—cotxé—ysmzx:O by the change of independent

5. Solve

variables.
Suggested Readings :
R.K. Jain, S.R.K. Lyengar, Advanced Engineering Mathematics, Narosa
Publishing House.
Rai Singhania : Ordinary and Partial Differential Equations, S. Chand &
Company, New Delhi.
Zafar Ahsan, Differential Equations and their Applications, Prentice-Hall of
India Pvt. Ltd., New Delhi - 2nd Ed.
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Differential Equations

LESSON NO. 2.1

Series Solutions of Differential Equations

Objectives
I. Introduction
II. Power Series Method

III. Frobenius Method

IV. Solving Bessel's Differential Equation of Order n
V. Solving Legendre's Equation of Order n

VI. Solving Hermite's Differential Equation

VII. Self Check Exercise

I. Introduction :

Firstly, we introduce some basic terms :

I Power Series : An infinite series of the form
z A (x-o)" = Aj + A (x-0) + A (X-0)°+ ..ooniinnnns in (x-a),
n=0

is called power series about ‘o’
Where A, A, A, .cooeiit. are real constants called coefficients of the power series
and ‘o’ is known as centre of power series.

00

Moreover, the power series , Z A _(x-a)”, where As are real is said to be convergent
n=0

at x = x iff

K
Il{lg}o z A _(x-a)* exists finitely otherwise the series is called divergent.
n=0
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d2
Po(x)dT§+Pl(x)—y+P2(x)y—O, Py(x)£0 e, (1)
o 9, ()Y + Q(x)y =0 2)
2 LrQy=0

in series, we have two methods :
Power Series Method
2. Robenius Method.

Now, we discuss these methods one by one.

2.1.2 Power Series Method

Existence Theorem :

If a is an ordinary point of equation (1) or (2), then each solution of (1) or (2) is
analytic at x=a and may be expressed as a power series of x-a, with radius of
convergence R>0. [This method is used to solve equation (1) or (2) about an
ordinary point o]

Steps Involved in Power Series Method :

o0

StepLilety=A + A (x-o) + A, (x-a)*....... = Z A _(x-o)* be a solution of (1), where A,
n=0
A, A, ... A_are to be determined.
d d?
Step II: Calculate & and —}27 as
dx dx
d 0
LA A +2A (x-a) + BA (x-0)2 +.eeeenenn. = Z nA (x-o)!
dX 1 2 3 o n
d d—zy—A+6A + 12A 2+ —i 1)A n-2
an FRCE 2A, 4(x-0) 2A, (x-0)? +......... = ~ n(n-1)A_(x-o)

2

d d
Step III: Substituting these values of y, % and d—z in (1), we get
b
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Case 4. When o-f is an integer and one value of k makes a coefficient of y
indeterminate.

Now, we proceed to solve some important differential equations.

2.1.4 Bessel's Differential Equation of Order n (Case-I : when roots of

indicial equation differ by a non-interger)

d? d
Solve x° —}2’ rx Y (x?

o dx —n2) y = 0 where 2n is not on integer.

+(x

) ) . . d’y 1dy x*>-n?
Solution : The given equation can be written as > —5+—-——+———y =0,
dx® xdx x

| 22
ere P(x)=—,Q(x S are not analytic at x = 0 but xP(x) = 1, x2Q(x) = x>-n?
Here P Q .
X X

are analytic at x=0. .. x=0 is a regular singular point, so solution in series exist.

k had .
Step-I Let Y=X Zai X', wherea, #0 pe 5 solution of given differential equation.
i=0

So, y = ZaiXKJri

- :—i = a; (k+i)x*"" and

dz_Y:Za. (k +1) (k +i—1) <2
= dx? '
: dy 4% . . : : .
Now using values of y, d—xandd—2 in the given differential equation, we
X

have
o0 o0

x2 Zai (k+1) (k+i-1)x572 4x Zai (k +1) x5 1 (x% —n?) Zai & _o
i=0 =0 P

or Zai (k +1) (k +i—1) x5 +Z:ai (k +1i) x7 + Zai xK2 _p? Zai xk =0



B.A. Part - 1 7 Mathematics — Paper II

_IN ki |10 = Tap=az=as
Y1_{zaix }k—a[aoxk+azxk+2+a4xk+4+ ......... ](
k=0

Put k = n,

o =X a0y, i x* —o x® +
Y ° 2n+2) ) @n+2)2n+4)(2)(4) T (2n+2)2n+4)(2n+6)(2)(d)6)

ag 2 ag X4 aq X6

~ vi= Xn[ao 212 220 )(n+2) (12)22  222(n+1)(n+2)(n+3) (123)2°

) ) 4

= y, =x"a, n+1) @m+1)n+2)2 [3n+)n+2)(n+3)

and

a) . (e AN

—x g, [1- - _ =
Y2 mE R T ) a4 ) (ne2) 2 (CnsDen+2) (<33

Moreover, the general solution is y = Ay, + By,

Similarly, the students can easily find out the solutions of Bessil's Squations
of order O (Case-II) and order 1 (Case-III) for n=0 and n=1 respectively.
2.1.5 Legendre's Equation of Order n (Case IV : Roots of indicial equation
differ by an integer and make a coefficient indeterminate)
d?y

2—2x3—§+n(n+1)y=0 ...... (1)

Solve (1 - x?)—2
dx

Assuming as in Bessel's equation

Step-I: Lety = Zaixk“, ay # 0 be a trial solution of (1)
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Similarly, a5=%[3.4—n(n+1)] =—;—g(n2+n—12) =—;—g(n+4)(n—3)

- e (-1 0-3) =L (n+4)(n+2)(n-1(n-3) etc,
Now, on using these values iny = x*[a ,+ a,x + a,x*+...... ], we get

y=x° {ao rax+ (—%"j (4<% + 2L+ 1)(n 1)

+(n+3)(n:t)n(n—2) ag x* 4 0t 4)(n+25)§n—1)(n—3) a X5 o ]
— y=a, [1—%(n+1)nx2+(n+3)(n_41')(n)(n_2)x4+ ......... } +
’h+2)(n-1
-ap{l—% +§—;(n+4)(n+2)(n—1)(n—3)+ ...... ]
So, Y=29 {l_n(r;;rl)xg+(n+3)(n;j)n(n—2)x4+ ....... } +a,; [x——(n+2;§n_l)x3

N (x+4)(n+2)(n—1)(n—3)x5

TR |

is the general solution of Legendre's Differential Equation of order ‘n’.

2.1.6 Hermite's Differential Equation (Case IV)

d’y _,_dy
Solve d?_QX&—Fpr:O ..... 1)

where p is any constant.

Sol.: Step-I: Let the trial solution of (1) be ¥ = [ao xK +a; x5 - a, xK*2 4 :I ,a,%0
d _
Now, d_y = [aok (%) +a, (k+1)x" +a, (k+2) x5+
X
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yzao[l—z—px2+22p(p—_2)x4+ ............ }+al[x—2(p—_l)x3+22wx5+ ...... }
£2 Z4 /3 Z5

as the general solution of Hermite's differential equation.

2.1.7 Self Check Exercise :

1. Solve Bessel's equation of order O.

2. Solve Bessel's equation of order 1.

3 Solve in series 2Xﬂ+(l+X)d—y—2y=0
' dx? dx ’

42
4. Solve in series (1—X2)d—§+2y=0.
X
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Case-III : If n = O, then we obtain Bessel's equation of order ‘O’ as :

Whose general solution can be easily obtained by Frobenius method, given by
y = Au(x) + Bv(x)
Where

X2 X4 X6
Aulx) = a, | 172t Ty

2 4
Bv(x) = a, u(x) legx + a, [;—2—(1+1)X—+ ..... ]

Bessel's Functions

1
Let in equation (1) a, = LN

o0
where Jn = J-eittnildt
0

Known as gamma function.

X" X2 X4

Su) = T 2 (el) | 2t 22(n )(n+2)

0 (_l)rxn+2r
=ontr Ar\/(n +1)(n+1)(n+2)...(n +k)

0 (_1)1' Xn+2r

:u(x)==z

= 2n+2r ZI'\/(I] ir +1) ...........

(using Property of gamma function nfz Jn +1 for any non-negative real n.)

The above u(x) given by equation (3) is a particular solution of Bessel's equation
and is known as Bessel's function of first kind of order ‘n’ denoted by J_(x).
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If:-  We have Ja(X)= i(—l)r I (ijmr

~ Ir F(n+r+1)(2

_xg“f(“?)(z)“””

Zr(n+r+1)

-1) (n+2r) (/2)n+2r

; ZrT (n+r+1)

(—1)r (2n +2r —n) (%)rﬁ—Qr [ n+2r=2n-n+ Zr}

:z ZrT(n+r+1) =2n+2r-n

. (—1)r2X n+2r . (—l)r % n+2r
L S L7

e ZrT (n+r+1)

(_]_)r (%)n—HQr . (_1)r (%)nJrQr

=+Xz 2T (n-)+r+1) _an: ZrT (n+r+1)

d
3. Prove that Q&UH(X)) = Jn—l(x) —Jnu (X)

It can be proved very easily by adding recurrence formula 1 and 2,

However, the above recurrence formula can be proved independently also
as

From the definition of J,(x), we have
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o e A Ol

“rT((n+1)+r+1) & ZtD(n+1)+t
=xJn_1(X) +x Jp41(x)
=x[Jpa®)+Jpux] L (IV)
d . -n
5 s Jo(x) ==x""T (%)
Now
[X_an(X)] =nx g (x)+x 7 (x)
~=x 1 (01, (3
X
From recurrence formula 1
=—x"oax) (V)
d n n
6. = X" (x) =x"T, (%)

Consider (;ix X" (x) = an;l(x) + nxnfl.Jn(x)

=x" {J;l(x)-l—EJn(x)}
X
On using recurrence formula 2, we get

= Xan—l (X) :

Theorem : Show that

whereJ _, (x)iscalled Bessel's
() T, (x)=(=1)"7,(x) : - D
n n function of firstkind of order'—n'.
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Using Ji(x) = -Jo(x), J1(x) = ~J§(x)

We have

x J1(x) = ~Jo(x) - x Jo (x)

= —xJ{)’(x)JrJ'o(x)——xJz (x)
1
= J, = Jb —;Jo

The result no (iii) can also be proved very easily.
Example : Prove that

2
() J_l(x) —J; cos X,
2 .
(11) J (X) = E Sin X,

1
2
Solution :

(i) Using the definition of J,(x)

To(x)= 2nr?n ) [l_ 2.(2); +2) " 2.4.(2n +X2) (2n+4)" }

On putting n = — %

Tlx)= z%xrfy) [l_ 2.(21) ’ 2.4(1.3)} - ;(“%*%H(-: Js=+m)

2

Similarly (ii) part, can also be proved.

2.2.3 Generating Function for J,(x)
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Which by def. is Jp(x)

Mathematics — Paper II

Also when we compare the coefficient of Z™" we get J_,(X), so we can write

o, (5(2-19))= Z20,0

n=-—o0

Example: Prove that

d 2 n, n+l_,
&Jn+‘]n+l :2[;Jn_7 n+l

Solution :

d x) 7' X) 1, .
T =2 I () I T () 0

n

From recurrence formula I, we have

' n
Tn =20 (x)-Inir 9

and from Recurrence relation II, we have

() =—1% 41 (x)
X
o (=20 4 ()

X

Putting these values of J'n and J'nJr1 in (i),

We have

di J%l +J121+1 :2(|:Jn(+£‘]n _Jn+1):|
X X

—(n+1
+Jn+1 [%Jnﬂ +Jni|]
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Hence J§ +2(Jf +J3 + I3+, )=1
2.2.4 Orthogonality of Bessel's Functions :
Theorem : Prove that the Bessel functions Jp(Ax), Jp(AoX)------- are orthogonal
w.r.t. x on [0, R] where R is any fixed +ve real and Ay, Ao, ........ are roots of
Jn(AR)=0 (neINU{0}).
Proof :

Consider J (A/x), J,(Apx), *¢#*m and [, m = 1, 2, --——-- i

Also differential equation satisfied by J,(u) is

2
s d%y dy 2 2 _ ;
u E+UE+(U —-n )y—O ................. (1)
U=A, X=X ] ll=>dX !
Put U= T ' T W
m T Ay,

dy dy dx _ 1 dy

du dx'du A, dx

ﬁ_i(d_y)_i 1 dy
= qu? duldu) duln, dx

d(ld_y} dx 1 d%

T Py e

So the d.e. X becomes

2
%xﬁ,XZd—%Lxmxd—H(xﬁ,xZ —n?)y=0
N dx® A dx
d’y d
xzcb(—ngx%Jr(kzmxz—nz)y:O ................... (ii)
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= (%2 _ﬁm)!xJn(x )T (X Jax

Since L,, Ay are roots of Jy(AR) =0

=1, (AaR)=7,(2,R)=0

S (@-n )z x 3y (A% (hpx)dx =0(, # 2,

R
= [xda(rxa(rpx)ax =0
0

= Bessel's functions Jn(kzx) and Jy(Apx) OR in general

Jn(xlx), Jn(kzx) ........... etc. are orthogonal w.r.t x on [0, R].
2.2.5 Self-Check Exercise

Jo 1 _J§
L. J, x Jb
2. i(an ((x )) ax"J, (OLX)
dx "
: Jn(x): 1
3 I 2 T(n+)
12
4 [Io(e(x)dx = b,
V4
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Now

dzy r+k-2
dX—Z:Zar (r+k)(r+k-1)x

d2y

Using these values of y’_y’_ in (1), we have

dx dx?

Mathematics — Paper II

(1 —xz)Zar (ktr)(k+r=1)x 2 oy za, (k+1)x*" " +n(n+1)Za,x""" =0

Ta, (k+1)(k+1-1)x*"? -%a, (k+1)(k+r-1)x** —23a, (k+1)x**" +n(n+1)Za,x*"" =0

za, (k+1)(k+r-1)x*"? +Zar[(n+l)[1 —2(k+r)—(k+r)(k+r—1)}<k+r =0

Equation to zero the lowest power coeff. i.e. xk-2

agk(k—-1)=0=a, #0,k(k-1)=0 (indical eq.)

which gives the value k = 0, k=1
Comparing Coeff. of xk-!

akk+1)=0
For k=0 a, is arbitrary
fork=1 2a,=0=a,=0

on comparing coeff. of xk*r :
k+r+2)(k+r+1l)a +2
=[(k+r)(k+r-1)+2(k+2)-n(n + 1))a,
=[k+r)+(k+r1)-nn+ 1)a

=(k+r+n+1)(k+r-n)a

(k+r+n+1)(k+r—n){:1
(k+r+2)(k+r+1)

Aryn =

. :(k+n+1)(k+0—n)a :(k+n+1)(k—n)a
: (k+2)(k+1) 0 (k+1)(k+2) 0

_(k+n+2)(k+l—n)
BT k) (k)

_(k+3+n)(k+3-n)  (k+3+n)(k+2+n)(k+0-n)(k+2-n)

a, =

(k+a)(k+3) ° (k+1)(k+2)(k+3)(k+4)

)
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:1.3.5—(2n—1) . n(n-1) Xn_2+n(n—1)(n_2)(n_3)xn_4+
Zn " 2(2n-1) 24(2n-1)(2n-3) ©~ 7 —(©)

y

and is denoted by P_ (x), called Legendre's function of first kind.

To define Legendre's functions, we obtain the power series solution of
Legendre's equation in descending powers of x.

We assume that :

y=axt+axf+ax*?+ +oa x4

is trial solution of the given Legendre's equation.

g—y:aoka_lJral(k—l)xK_z+a2(k—2)xK_3+ ..... +(k—n)a,x<" 4
X

2
%:aok(k—l)x“‘z+a1(k—1)(k—z)nK-3+a2(k—z)(k_3)x*<*4+ .........
X

+(k-n)(k-n-1)a,x* "2+ ..
Using these values in Legendre's differential equation, we get

(l—xz)[aok(k—l)xK_z+a1(k—l)(k—2)xK_3+ ........ ]

+n(n+1)[aoxK +ax T ra, x5 J =0

Now equate to zero, the coefficient of x* x*' x*2, ... etc. we get
x*:  -ak(k-1)-2ka *n(n+1)a =0 = [k(k-1)+2K-n(n+1)]a,=0
- [ +k=n(n+1)]a, =0
= (k+n+1)(k—n)ay=0
Since a, #0,
x<t: —a(k-1)(k-2)-2(k-1)a, +n(n+1)a,=0

[(k-1)(k=2)+2(k-1)-n(n+1)]a, =0

= (k—1+n+1)(k—1-n)a, =0
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required solution of Legendre's equation

It should be noted that as we have taken n to be a +ve integer, (C) becomes
a terminating power series and this (C) is also known as Legendres polynomials of
degree n.

Zn

Case-II :- Also from (B), if we take a = m and n is a +ve integer

then (B) takes the following form and is denoted by Q_(x), called Legendre's
function of second kind.

~ Zn e (n+1)(n+2) 3 (n+1)(n+2)(n+3)(n+4) -
Q,(x)= 135(2n+1) 2(2n +3) 2(2n+3)(2n +5)

which is a non-termianting power series when n is taken as +ve integer.

(.. The general solution of Legendre's Equation is y = AP_(x) + BQ_(x) where A
and B are arbitrary constants.)

Note :- In P _(x)....... we had taken a; as

1.35...(2n+1)  1234..(2n-1)(2n) _ Z2n _ , _ Z2n
/n o (24, 2n)/n 2"(sn)’ 2" (/n)

Zm | o n(n-l) ., n(n-1)(n=2)(n-3) ,,

= Pn(x): " 71X —3X O F ~ X e
2" (n) 2(2n-1) 24(2n—1)(2n-3)
_ 4 o 4(211—2) 2, 4(2n—4) et |
2 (ZnY 2“4(n—1)4(n—2)x T 2z

v (-1)£(2n-2r)
= Palx)= z 2" zrZ(n-r)4(n-2r)

n-2r

if n is odd

if n is even or zero

Therefore, the above P (x) represents the particular solution of Legendre's
equation.
We now find P (x), P (x), P,(x), P,(x) etc.
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—  Py(x) =%(5x2 -3)x

P,(x)
For n=4r=0,1,2

By(x) = (D81 a0, (D(£8-2)  un  (C)(£8-4) 4y
T 0(za-0)(za-0) 2441(44—1)(44—2)X 2442(44—2)(44—4)X
/8 4 /6 5 Z4

= X' —— X"+ .1
16 £4 Z4 2" /3 /2 27 /2 /220

_8><7><6><120X4_ 720 _xl4 24
24x24x16 16x16x2 4x16

8 4

35,0 15,0,3
8
1
N P4(x):§(35x4—15x2+3)

Similarly we can find the values of P (x) etc.
2.3.2 Rodrigue's Formula

1 dn(X2 —l)n

Prove that : Pn(x)z2n T
n X

Proof. Taking y = (x2 - 1)»

d_y =2n X(X2 _1)1171 = 2nx(x2 _1)“

dx ()

(x2 —I)S—Z—Zm(y =0

Now differentiate the above result w.r.t. X, (n + 1) times by using Leibnitz
theorem.
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So,

Now,

Now

dxn*Z

+ncz[ > (x-1)" ](n(x—l)(x+1)n_2)+ .........

+"cpn(x - 1) Yn(x + 1)+, Zn.(x - 1)"

on taking x = 1

n
4yl Zn.2"
dx" .

A=2"/n

%=APH(X) =2" /nP,(x)

=2" /nP, (x)

P()= o (e

2" s/ dx”

Mathematics — Paper II

which is the required Roderigue's formula for Legendre's functions P (x).

We can also find Legendre's polynomials P (x), P,(x), P,(x) etc. from Rodrigue's
formula as :
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Rodrigue's formula is given by -

sol. P.(x)=

n+l n n+l
Py (x) = (x2 1) = (k1) (1)

= " T ax T2 Zndx™
Using Leibnitz's theorem :
1 n dn+l n dn n n-1
= x—1 X+1) + n+l x+1) n(x-1
e S RE TS PO
i, 4y D(x=1)""2 n+l i(x+1)n : (x-1)"
C, PE (x+1) n(n-1)(x-1) "+...+ Cn o 0
a dmt o Obtained from the 2nd
+(x +1) : (x —1)
dx™ last term
atx =1,
1 n-l n(n+l)
Pl (1)= (n+1)n.(2)"" sn=
()= () (2)" 20 =2
1
= 111(1):11(112+ ) 2 (1)
. : n(n+l) .
Similarly we can prove that P, (—1) R (this will be obtained from second

term from the beginning.)
2.3.3 Generating Function for P _(x)

-2 &
Prove that (1—2’“‘”2) =Y t"P,(x) where x| <1and |t] <1
n=0

Sol. Now, (1—2xt+t2)_1/2=(1—(2xt—t2)_1/2)
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Solution :
Legendre's differential equation satisfied by P (x) is

d’y , dy
(l—xz)d7—2x&+n(n+l)y:0

or d;i_(l—xz)ﬂ:l+n(n+l)y=0 ....... (A)

%_(l—xz)g}+m(m+l)y= 0....(B)

Usingy = P_(x), and y = P_(x)
(A) and (B) become :

__(l—xz)(ﬂ)(r;—ix)}—i-n(n—i-l)Pn(x) =0.....(1)

i_(l_xz)sz)EX):|+m(m+1)P (x)=0.....(ii)

Now, multiply (1) by P_(x) and (ii) by P_(x) and subtract

P, (x)%{(l_xz)df’z(x)}_l)n (x)%{l_xz dp, (x)}

< dx
= [m(m+l)—n(n+l)]Pm(X)Pn (x)

_ Pn(x)%[(l—xz)%}—Pm(x)%[(l—f)%} _(m(m-+1)=n(n+1))P, (x)P, (x)

on integrating both sides w.r.t. x between -1 & 1, we have

j {Pn () (1-x7) 4 |- () 17) ﬂdx

=—[m(m+l)—n(n+l)]j[Pm(X)Pn(X)dx:l
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1 1

-1
I (1 —2xt+ tz) ax =2t J- ((Pn (X))2 dx + 0) (from the previous result)
-1 -1

Now we evaluate LHS

ie. Jl'(l—th+t2)71dx
5

1
1
:jl(l—zxwtz)dx

b2t
_Zt’[l(l—th—i-tz)dX

= -1 :log (1 —2xt+t? )11

:—1:log(1—2xt+t2)—log(1+2t+t2ﬂ

2t
:__l_log(l—tz)—log(l—i-t)z}

2tL

Lo (H_tj

t g 1-t

1' 2 3 2 3
=—t——F+—...... Ht——F—
e S

B 3 5
1 P }

t| 5
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-1/

—_71(1—2xt+t2) 2(—2x+2t):(1—2xt+t2)2nPn(x)tn_l
(x=)ZP, (x)t" =(1-2xt+ " )3P, (n) "

=¥nP, (n)tn_l —2xZnP, (x)t" +ZnP" (n)tm—l

[ xP,t" =3P, (x) """ = TP, (x)t"" ~2n%n(x)t" + P, (n) " |

xZ(2n+1)P,t" = =nP, (x)t" +Z(n+1)P, (x)t"* ... (ii)
To get (A), we compare the coeff. of t*1,
x(2n-2+1)P,_ (x)=(n-1)P, (x)+(n—1)PI'172 (x)
x(2n-1)P,_; (x)=nP, (x)+(n-1)P,_, (x) (A)
Recurrence relation (A) is valid when n > 2

If we compare the coefficients of t" in (ii) we arrive at B.
If we differentiate (i) w.r.t. 'x', to get

_%(1 —2xt+t? )73/2 (=2t)==P, (x)t" ...(ii)

Also —%(1 _oxt+t2 )_3/2 (—2x+2t)=ZnP, (x)t" . (iv)

multiply (iii) by (x — t) and (iv) by t and then equate to have :

(x—t)ZP, (x)t" ==nP, (x)t"

nXP, (x)-2P, (x)t"" =2nP, (x)t"

which when compared for coefficients of t! gives relation D.
Now (iii) can be rewritten as :

(1—2xt+t2)_3/2 = iP; ()" )

n=0

Also (iv) can be rewritten as :
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