
Department of Distance Education

Punjabi University, Patiala

Class : B.A. II (Computer Applications) Semester : 4

Paper : (BAP 203) Data Base Management System (DBMS)

Medium : English Unit : II

Lesson No.

2.1 : Relational Algebra

2.2 : Database Design

2.3 : Normalization

2.4 : Database Integrity And Recovery

2.5 : Database Security

2.6 : Database Concurrency

2.7 : MS-Access

2.8 : Queries in MS-Access

2.9 : Introduction to Forms

2.10 : Reports and Macro

Department website : www.pbidde.org

B.A. Part-II

SEMESTER-II

Paper : BAP-203

DATA BASE MANAGEMENT SYSTEM

LESSON NO. 2.1 AUTHOR : VISHAL GOYAL

RELATIONAL ALGEBRA

Structure:

2.1.0 Introduction

2.1.1 Objectives

2.1.2 Relational Algebra

2.1.3 Summary

2.1.4 Self Understanding

2.1.5 Further Readings

2.1.0 Introduction:

 Relational Algebra is a procedural language that can be used to tell the DBMS how

to build a new relation from one or more relations in the database. While using the

relational algebra user has to specify what is required and what are the procedure or steps

to obtain the required output. Relational algebra is a formal and user friendly language. It

is used as the basis for other high level Data Manipulation Languages (DMLs) for

relational databases. It illustrates the basic operations required of any DML and serve as

the standard of comparison for other relational databases.

2.1.1 Objectives

 After reading this lesson you will be able to learn the concepts of Relational

Algebra.

2.1.2 Relational Algebra

 The relational algebra is a theoretical language with operations that work on one or

more relations to define another relation without changing the original relation(s). Thus,

both the operands and the results are relations and so the output from one operation can

become the input to another operation. This allows expressions to be nested in the

relational algebra just as we nest arithmetic operations. This property is called closure:

relations are closed under the algebra just as numbers are closed under arithmetic

operations.

 There are many variations of the operations that are included in relational algebra

Codd originally proposed Eight operations, but several others have been developed.

 The five fundamental operations in relational algebra are

1) Selection

2) Projection

3) Cartesian Product

4) Union

5) Difference

 They perform most of the data retrieval operations, which can be expressed in

terms of the five basic operations.

B.A. Part-II (Semester-IV) Paper : BAP-203 2

 In relational algebra each operation takes one or more relations as its operands

and produces another relation as its result. Consider an example of mathematical algebra

as shown below

 3+5=8

 Here 3 and 5 are operands and + is an arithmetic operator which gives result as 8.

 Similarly, in relational algebra R1+ R2 = R3. Here R1 and R2 are relations

(operands) and + is the relational operator which gives R3 as a resultant relation.

A) BASIC RELATIONAL ALGEBRA OPERATIONS

 Basic relational algebra operations are also called as traditional set operators , the

various traditional set operators are :

1) UNION

2) INTERSECTION

3) DIFFERENCE

4) CARTESIAN PRODUCT

UNION

 In mathematical set theory, the union of two sets is the set of all elements

belonging to both sets. The set, which results from the union, must not of course contain

duplicate elements. It is denoted by U. Thus the union of sets:

 S1 = { 1 , 2 , 3 , 4, 5 } and

 S2 = { 4 , 5 , 6, 7 , 8 }

 would be the set { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } .

 A union operation on two relational tables follows the same basic principle but is

more complex in practice. In order to perform the Union operation, both operand relations

must be union compatible i.e. they must have same number of columns drawn from the

same domain (means must be of same data type}

 Suppose two tables, R and S have the following tuples at some instant in time and

that their header parts are as shown below:

 R

Cust_name Cust_status

Sham Good

Rahul Excellent

Mohan Bad

Sachin Excellent

Dinesh Bad

B.A. Part-II (Semester-IV) Paper : BAP-203 3

 S

Cust_name Cust_status

Karan Bad

Sham Good

Sachin Excellent

Rohan Average

 These can certainly be combined into one table containing a valid relation by the

relational union operator (R U S) as follows :

R U S

Cust_name Cust_status

Sham Good

Rahul Excellent

Mohan Bad

Sachin Excellent

Dinesh Bad

Karan Bad

Rohan Average

INTERSECTION

 In mathematics an intersection of two sets produces a set, which contains all the

elements that are common to both sets. Thus the intersection of two sets:

 S1 = { 1 , 2 , 3 , 4 , 5 } and

 S2 = { 4 , 5 , 6 , 7 , 8 }

 would be { 4 , 5 } .

In above example both the tables are union compatible and can be intersected together.

The intersection operation on the R and S tables defined above would be

Cust_name Cust_status

Sham Good

Sachin Excellent

 The intersection operator is used in the similar fashion to the union operator, but

provides an ‘and ‘ function.

DIFFERENCE

 In mathematics, the difference between two sets S1 and S2 produces a set, which

contains all the members of one set, which are not in the other. It is denoted by “ – “ sign.

B.A. Part-II (Semester-IV) Paper : BAP-203 4

The order in which the difference is taken is obviously significant. Thus the difference

between two sets:

S1 = { 1 , 2 , 3 , 4 , 5 }

Minus

S2 = { 4 , 5 , 6 , 7 , 8 }

Would be { 1 , 2 , 3 } and between

S2 = { 4 , 5 , 6 ,7 , 8 }

Minus

S1 = { 1, 2 , 3 , 4 , 5 }

would be { 6 , 7 , 8 }

 As for the other set operations discussed so far, the difference operation can also be

performed on tables that are union compatible. The difference operation on the R and S (R – S)

defined above would return.

R – S

Cust_name Cust_status

Rahul Excellent

Mohan Bad

Dinesh Bad

And for S – R

Cust_name Cust_status

Karan Bad

Rohan Average

 It is used in a similar fashion to the union and intersection operators , but provides

a qualifying “not” function .

Minus is not associative

 In order to prove this mathematically consider three sets A, B, C with following

members

A = { 1 , 2 , 3 , 4 , 5 }

B = { 2 , 3 }

C = { 1 , 4 }

(A MINUS B) MINUS C = { 1 , 4 , 5 } MINUS { 1 , 4 } = { 5 }

A MINUS { B MINUS C) = { 1 , 2 , 3 , 4 , 5 } MINUS { { 2 , 3 }MINUS { 1 , 4 }} = { 1 , 2

, 3 , 4 , 5 } MINUS { 2 , 3 } = { 1 , 4 , 5 }

 Both the cases give different result. So minus is not an associative operator.

B.A. Part-II (Semester-IV) Paper : BAP-203 5

Minus is not commutative

 It means that A MINUS B is different from B MINUS A . In order to prove it we

again take the above values of A and B .

 A MINUS B = { 1 , 4 , 5 }

 B MINUS A is empty or null because there is not any value, which is in B but not

in A.

CARTESIAN PRODUCT

 In mathematics, the Cartesian product of two sets is the set of all ordered pairs of

elements such that the first element in each pair belongs to the first set and the second

element in each pair belongs to the second set. It is denoted by cross (x). It is for example,

given two sets:

 S1 = { 1 , 2 , 3 } and

 S2 = { 4 , 5 , 6 }

The Cartesian product S1 x S2 is the set :

 { (1, 4), (1, 5), (1 , 6), (2, 4), (2, 5), (2 , 6), (3, 4), (3, 5), (3 , 6) }

 Consider the two tables with sample population as below

Female

Name Job

Komal Clerk

Amita Sales

Sonia Production

Nidhi Clerk

Male

Name Job

Rohit Clerk

Amit Sales

Sohan Production

Nitin Clerk

 Assume that the tables refer to male and female staff respectively. Now, in order to

obtain all possible inter-staff marriages, the Cartesian product can be taken giving the

Table MALE_FEMALE.

B.A. Part-II (Semester-IV) Paper : BAP-203 6

Male-Female

Female_Name Female_Job Male_Name Male_Job

Komal Clerk Rohit Clerk

Komal Clerk Amit Sales

Komal Clerk Sohan Production

Komal Clerk Nitin Clerk

Amita Sales Rohit Clerk

Amita Sales Amit Sales

Amita Sales Sohan Production

Amita Sales Nitin Clerk

Sonia Sales Rohit Clerk

Sonia Sales Amit Sales

Sonia Sales Sohan Production

Sonia Sales Nitin Clerk

Nidhi Clerk Rohit Clerk

Nidhi Clerk Amit Sales

Nidhi Clerk Sohan Production

Nidhi Clerk Nitin Clerk

 In order to preserve unique names for attributes, the original attribute names have

had to be concantenated with the original tablenames. The new table has also been given

an identity.

B) SPECIAL RELATIONAL OPERATIONS

 There are four special relational algebra operations which are as under

1) SELECTION

2) PROJECTION

3) JOIN

4) DIVISION

Selection

 The selection operator yields a horizontal subset of a given relation that is that

subset of tuples or rows of a table should be selected within the given relation for which a

particular condition is satisfied.

B.A. Part-II (Semester-IV) Paper : BAP-203 7

 In mathematics a set can have any number of subsets. A set is said to be a subset

of another if all its members are also members of the other set. Thus, in the following

example:

S1 = { 1 , 2 , 3 , 4 , 5 }

S2 = { 2 , 3 , 4 }

 S2 is a subset of S1. Since the body part of a table is a set, it is possible for it to

have subsets, that is a selection from its tuples can be used to form another relation.

 However, this would be a meaningless operation of no new information were to be

gained from the new relation. On the other hand a subset if say an EMPLOYEE relation ,

which contained all tuples where the employee represent those employees who earn more

than some given values of salary, would be useful. What is required is that some explicit

restriction be placed on the sub-setting operation.

 Restriction as originally defined was defined on relations only and is achieved using

the comparison operators such as equal to (=), not equal to (!=), greater than (>), less

than (<), greater than or equal to (>=) and less than or equal to (<=).

Example : Consider the database having following tables :

 The Supplier table

SNo Sname Status City

S1 Suneet 20 Qadian

S2 Ankit 10 Amritsar

S3 Amit 30 Amritsar

S4 Raj 20 Amritsar

 The Parts table

Pno Pname Color Weight City

P1 Nut Red 12 Qadian

P2 Bolt Red 17 Amritsar

P3 Screw Blue 17 Jalandhar

P4 Screw Red 14 Qadian

 The Shipment table

SNo Pno Qty

S1 P1 250

S2 P2 300

S3 P3 500

S4 P1 250

S5 P2 500

S6 P2 300

B.A. Part-II (Semester-IV) Paper : BAP-203 8

 Here in Supplier table

Sno - Supplier number of supplier that is unique

Sname - Supplier name

City - City of the supplier

Status - Status of the city e.g A grade cities may have status 10 , B grade

cities may have status 20 and so on .

Examples :

 S WHERE CITY = ‘ Qadian ‘

Sno Sname Status City

S1 Suneet 20 Qadian

 P WHERE WEIGHT < 15

Pno Pname Color Weight City

P1 Nut Red 12 Qadian

P4 Screw Red 14 Qadian

 SP where Sno = ‘ S1’ and Pno = ‘P1’

Sno Pno Qty

S1 P1 300

PROJECTION

 The projection operation on a table simply forms another table by copying specified

columns (both header and body parts) from original table eliminating any duplicated rows.

The projection operator yields a vertical subset of a given relation – that is, the subset

obtained by selecting specified attributes, in a specified left to right order, and then

eliminating duplicate tuples within the attributes selected. It is denoted by pi (). For

example consider the table EMPLOYEE as shown :

Table Employee

Personnel_number Name Age Salary

123 Sham 23 7500

124 Karan 43 10000

125 Rahul 23 10000

B.A. Part-II (Semester-IV) Paper : BAP-203 9

 The projections of the ‘ age ‘, the ‘ age and salary ‘ and the ‘ personnel _number

and name ‘ columns would return the three tables , say , A , B and C respectively :

A

 age (employee)

Age

23

43

B

 age,salary (employee)

Age Salary

23 7500

43 10000

23 10000

C

 personnel_number,name (employee)

Personnel_number Name

123 Sham

124 Karan

125 Rahul

JOIN

 The most general form of join operation is called a theta join, where theta has the

same meaning as ‘compares with’ as it was used in the context of the restriction

operation. That is, it stands for any of the comparative operators equals, not equals,

greater than and so forth. A theta join is performed on two tables, which have one or more

columns in common which are domain compatible.

 It forms a new table which contains all the columns from both the joined tables

whose tuples are those defined by the restriction applied.

B.A. Part-II (Semester-IV) Paper : BAP-203 10

For example consider the tables:

EMPLOYEE_PRODUCT

Name Product

Raja Pen

Sparsh Pen

Raja Pencil

Sparsh Rubber

PRODUCT_CUSTOMER

C_Product Customer

Pen Karan

Pen Suneet

Pencil Suneet

 The tables list employees who make products and customers who buy those

products and can be joined over the columns ‘product’ and ‘c_product’ in both tables since

the values in both columns are domain compatible. The result of a theta join, where the

restriction is that the product attribute values in EMPLOYEE_PRODUCT should be equal

to the product attribute values in PRODUCT_CUSTOMER would be:

Table EMPLOYEE_PRODUCT_CUSTOMER

Name Product C_Product Customer

Raja Pen Pen Karan

Raja Pen Pen Suneet

Raja Pencil Pencil Suneet

Sparsh Pen Pen Karan

Sparsh Pen Pen Suneet

 Note: If both tables have same common column then one of the common column

has to be renamed in the resultant table to preserve the uniqueness of the names in its

header part.

 In the above example the theta operator was ‘equals’ and this , the most common

form of theta join is referred to as an equi-join. Note that an equi-join must always result

in a table which has pairs of columns like ‘product; and ‘c_product’ in the above example,

which contain identical lists of attribute values.

B.A. Part-II (Semester-IV) Paper : BAP-203 11

 By far the most common form of join is a variation of the equi-join where this

duplication of column values is eliminated by taking a projection of the table which

includes only one of the duplicated columns. This is reffered to as a natural join.

 The natural join of the tables in the last example would give the table :

Name Product Customer

Raja Pen Karan

Raja Pen Suneet

Raja Pencil Suneet

Sparsh Pen Karan

Sparsh Pen Suneet

 It may help in understanding the different types of join if the operation is looked at

from a different point of view. The join is actually a composite operator. The theta join is a

Cartesian product operation on the two tables followed by a restriction operation on the

resultant table.

 The tuples of the Cartesian product of the two tables in the earlier example would

be :

Name Product C_Product C_Customer

Raja Pen Pen Karan

Raja Pen Pen Suneet

Raja Pen Pencil Suneet

Sparsh Pen Pen Karan

Sparsh Pen Pen Suneet

Sparsh Pen Pencil Suneet

……. …… …… …..

Raja Pencil Pencil Suneet

 The restriction operation on this product selects only those tuples from this

relation, which confirm to the restriction . In the example, the restriction was that the

‘product’ attributes should have equal values in each tuple and the result of this as shown

below:

Name Product C_Product Customer

Raja Pen Pen Karan

Raja Pen Pen Suneet

Raja Pencil Pencil Suneet

B.A. Part-II (Semester-IV) Paper : BAP-203 12

Sparsh Pen Pen Karan

Sparsh Pen Pen Suneet

 Since theta equated to ‘equals’ this was an equi-join. By carrying out a further projection

operation which eliminates one of the duplicated ‘product’ column resulting from the equi-join,

the natural join is obtained.

 Thus, Join operator is combination of Cartesian product, Selection and Projection

operator.

 The examples given so far have all been of so-called inner joins. The fact that Jones

makes Rubbers is not recorded in any of the resultant tables from the joins, because the

joining values must exist in both tables. If it suffices that the value exist in only one table,

then a so-called outer join is produced.

 An outer join of the EMPLOYEE_PRODUCT and PRODUCT_ CUSTOMER tables

exemplified above would return :

Employee_name Product_name Customer_name

Raja Pen Karan

Raja Pen Suneet

Sparsh Pen Karan

Sparsh Pen Suneet

Raja Pencil Suneet

Sparsh Rubber -

 The expression A JOIN B is defined if and only if, for every unqualified attribute-name that

is common to A and B, the underlying domain is the same for both relations. Assume that this

condition is satisfied. Let the qualified attribute –names for A and B, in their left-to-right order, be

A.A1,.............A.Am AND B.B (m+1)……………., B.B (m+n) respectively;

 Let Ci …….,Cj be the unqualified attribute name that are common to A and B and

let Br………..Bs be the unqualified attribute- names remaining for b (with their relative

order undisturbed) after removal of Ci,………..Cj.

 Then A JOIN B defined to be equivalent to (A TIMES B) [A.A1 ……….A.Am ,

B.Br……….B.Bs]

 where A.Ci = B.Ci

 and ……………..

 and A.Cj = B.Cj……….

 Apply this definition to JOIN operation on Emp and Dept tables with following

attributes:

 EMP(empno,ename,job,sal,deptno)

 DEPT(deptno,dname,loc)

 EMP JOIN DEPT = EMP TIMES DEPT

B.A. Part-II (Semester-IV) Paper : BAP-203 13

 [emp.empno,emp.ename,emp.job,emp.sal,emp.deptno,dept.dname, dept.loc] where

EMP.deptno = DEPT. deptno

 So, w can say that JOIN is a combination of Product, Selection and Projection

operators. JOIN is an associative operator, which means:

 (A JOIN B) JOIN C = A JOIN (B JOIN C) .

 JOIN is also commutative .

 A JOIN B = B JOIN A

DIVISION

 The division operator divides a dividend relation A of degree (means number of

columns in a relation) m+n by a divisor relation B of degree n and produces a resultant

relation of degree m .

Relation A

Sno Pno

S1 P1

S1 P2

S1 P3

S1 P4

S1 P5

S1 P6

S2 P1

S2 P2

S3 P2

S4 P2

S4 P4

S4 P5

Relation B

CASE 1 CASE 2

Pno

 P1

 CASE 3

Pno

P1

P2

P3

P4

P5

P6

Pno

P2

P4

B.A. Part-II (Semester-IV) Paper : BAP-203 14

A DIVIDED BY B

 CASE 1 CASE 2 Case 3

Sno

S1

S2

 In this example dividend relation A has two attributes of Sno,Pno (of degree 2) and

division relation B has only one attribute Pno (of degree 1). Then A divided by B gives a

resultant relation of degree 1. It means it has only one attribute of Sno.

 A SNO * PNO

 --- = ------------------ = SNO

 B PNO

 The resultant relation has those tuples that are common values of those attributes,

which appears in the resultant attribute sno .

 For example ,in CASE 2,

 P2 has Snos S1,S2,S3,S4

 P4 has Snos S1,S4

 S1, S4 are the common supplier who supply both P2 and P4. So the resultant

relation has tuples S1 and S4.

In CASE 3

 There is only one supplier S1 who supply all the parts from P1 to P6.

2.1.3 Summary

 Relational Algebra is a procedural language which specifies the operations to be performed

on the existing relations to derive result relations. Relational Algebric operations can divided into

basic and special relational operators. Relational Calculus is a non procedural language which is

an alternate way of formulating queries. It is based on Predicate Calculus which means to

formulate set of predicates to which the answer to a query must conform instead of specifying a

series of subsequent singular operations together with objects involved in these operations.

2.1.4 Self Understanding

Q1. What is relational Algebra and what are its uses?

Q2. Explain the following operations with examples:

1. Union 2. Intersection 3. Differenc

4. Cartesian Product 5. Division

2.1.5 Further Readings

Bipin C. Desai, An introduction to Database System, Galgotia Publication, New

Delhi.

C. J. D ate, An introduction to database Systems, Sixth Edition, Addison Wesley.

 Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems,

 Addison Wesley.

Sno Sno

S1 S1

S4

B.A. Part-II

SEMESTER-IV

Paper : BAP-203

DATA BASE MANAGEMENT SYSTEM

LESSON NO. 2.2 AUTHOR : VISHAL GOYAL

DATA BASE DESIGN

Structure:

2.2.0 Introduction

2.2.1 Objectives

2.2.2 Functional Dependency

2.2.3 Decomposition

2.2.4 Problems arising out of bad database Design

2.2.5 Summary

2.2.6 Self Understanding

2.2.7 Further Readings

2.2.0 Introduction

 The concept of functional dependency is the basis for Normalization. The

functional dependencies are the consequence of the interrelationships among

attributes of a relation (table) represented by some link or association. It must be taken

care that the database design must be very good and that needs careful decomposition

of the relations into further relations. In the following sections we will study how to

decompose the relations so that it leads to good database design. And if we do not do

decomposition with care it will result in bad database design which includes repetition

of data like problems.

2.2.1 Objectives

 After completing this lesson, you will be able to:

 Define Functional Dependency and its importance in database design

 Understand decomposition of relation

 Understand the problems that arise due to bad database design

2.2.2 Functional Dependencies

 Functional dependencies play a key role in differentiating good database designs

from bad database design. A functional dependency is a type of constraint that is a

generalization of the notion of key.

2.2.2.1 Basic Concepts

 Functional dependencies are constraints on the set of legal relations. They allow

us to express facts about the enterprise that we are modeling with our database.

Functional Dependency is a many-to-one relationship from one set of attributes

to another within a given relation.

B.A. Part-II (Semester-IV) Paper – BAP-203 16

 We define the notion of a super-key as follows. Let R be a relation schema. A

subset K of R is a super-key of R if, in any legal relation r(R), for all pairs t1 and t2 of

tuples in r such that t1 ≠ t2, then t1[K] ≠ t2[K]. That is no two tuples in any legal relation

in r (R) may have the same value on attribute set K.

 The notion of functional dependency generalizes the notion of super-key.

Consider a relation schema R, and let α R and β R. The functional dependency

α → β

holds on schema R if, in any legal relation r(R) for all pairs of tuples t1 and t2 in r such

that t1[α] = t2 [α], it is also the case that t1[β] = t2[β].

 Using the functional-dependency notation, we say that K is a super-key of R if

K→ R. That is K is a super-key if, whenever t1[K] = t2 [K] it is also the case that t1[R] =

t2 [R] (that is t1 = t2).

Functional dependencies allow us to express constraints that we cannot express

with super-keys. Consider the schema

 Loan-info-schema = (loan-number, branch-name, customer-name, amount) which

is simplification of the lending-schema that we saw earlier. The set of functional

dependencies that we expect to hold on this relation schema is

 loan-number → amount

 loan-number → branch-name

 We would not, however, expect the functional dependency

 loan-number → customer-name

to hold, since in general a given loan can be made to more than one customer (for

example, to both members of a husband – wife pair)

We shall use functional dependencies in two ways:

1 To test relations to see whether they are legal under a given set of

functional dependencies. If a relation r is legal under a set F of functional

dependencies, we say that r satisfies F.

2 To specify constraint on the set of legal relations. We shall thus concern

ourselves with only those relations that satisfy a given set of functional

dependencies. If we wish to constrain ourselves to relations on schema R

that satisfy a set F of functional dependencies, we say that F holds on R.

 Let us consider the relation r of figure below:

A B C D

a1 b1 c1 d1

a1 b2 c1 d2

a2 b2 c2 d2

a2 b3 c2 d3

a3 b3 c2 d4

Sample relation r

B.A. Part-II (Semester-IV) Paper – BAP-203 17

to see which functional dependencies are satisfied. Observe that A→C is satisfied.

There are two tuples that have an A value of a1. These have the same C value – namely

c1. Similarly, the two tuples with an A value of a2 have the same C value, c2. There are

not other pairs of distinct tuples that have the same a value. The functional

dependency C—A is not satisfied however. To see that it is not, consider the tuples t1 =

(a2, b3,c2, d3) and t2 = (a3, b3, c2, d4) these two tuples have the same C values c2, but

they have different A values a2 and a3, respectively. Thus we have found a pair of

tuples t1 and t2 such that t1 [C] = t2 [C] but t1[A]≠t2[A].

 Many other functional dependencies are satisfied by r, including, for example,

the functional dependency AB→D. Note that we use AB as shorthand for {A, B}, to

conform with standard practice. Observe that there is no pair of distinct tuples t1 and

t2 such that t1[AB] = t2[AB]. Therefore, if t1[AB] = t2[AB], it must be that t1 = t2 and thus

t1[D] = t2[D]. So satisfies AB→D.

Some functional dependencies are said to be trivial because they are satisfied by all relations.

For example, A→A is satisfied by all relations involving attribute A. Reading the definition of

functional dependency literally, we see that, for all tuples t1 and t2 such that t1[A] = t2[A] it is the

case that t1[A] = t2[A]. Similarly, AB → A is satisfied by all relations involving attribute A. In

general a functional dependency of the form α → β is trivial if β ≤ α.

 To distinguish between the concepts of a relation satisfying a dependency and a

dependency holding on a schema, we return to the banking example. If we consider the

customer relation (on customer-schema) in Figure below, we see that customer-street →

customer-city is satisfied. However, we believe that in the real world, two cities can have

streets with the same name.

Customer-name Customer-street Customer-city

Jones Main Harrison

Smith North Rye

Hayes Main Harrison

Curry North Rye

Lindsay Park Pittsfield

Turner Putnam Stamford

Williams Nassau Princeton

Adams Spring Pittsfield

Johnson Alma Palo Alto

Glenn Sand Hill Woodside

Brooks Senator Brooklyn

Green Walnut Stamford

The customer relation

B.A. Part-II (Semester-IV) Paper – BAP-203 18

 Thus, it is possible, at some time to have an instance of the customer relation in which

customer-street→ customer-city is not satisfied. So we would not include customer-street→

customer-city in the set of functional dependencies that hold on Customer-schema.

 In the loan relation (on loan-schema) of figure below, we see that the dependency loan-

number → amount is satisfied. In contrast to the case of customer-city and customer-street in

customer-schema, we do believe that the real world enterprise that we are modeling requires

each loan to have only one amount. Therefore we want to require that loan-number→ amount

be satisfied by the loan relation at all times. In other words, we require that the constraint loan

number→ amount hold on loan-schema.

The loan relation:

Loan-number Branch-name Amount

L-17 Downtown 1000

L-23 Redwood 2000

L-15 Perryridge 1500

L-14 Downtown 1500

L-93 Mianus 500

L-11 Round Hill 900

L-29 Pownal 1200

L-16 North Town 1300

L-18 Downtown 2000

L-25 Perryridge 2500

L-10 Brighton 2200

In the branch relation of Figure below, we see that branch-name→ assets is

satisfied, as is assets→ branch-name. We want to require that branch-name→ assets

hold on branch-schema. However we do not wish to require that assets→ branch-name

hold since it is possible to have several branches that have the same asset value.

Branch-name Branch-

city

Assets

Downtown Brooklyn 9000000

Redwood Palo Alto 2100000

Perryridge Horseneck 1700000

Mianus Horseneck 400000

Round Hill Horseneck 8000000

Pownal Bennington 300000

North Town Rye 3700000

Brighton Brooklyn 7100000

The branch relation

B.A. Part-II (Semester-IV) Paper – BAP-203 19

 In what follows, we assume that, when we design a relational database, we first

list those functional dependencies that must always hold. In the banking example our

list of dependencies includes the following:

 On branch-schema:

Branch-name→ branch-city

Branch-name→ assets

 On customer-schema:

customer-name→ customer-city

customer-name→ customer-street

 On Loan-schema:

Loan-number→ amount

Loan-number→ branch-name

 On Borrower-schema:

No functional dependencies

 On Account-schema:

 Account-number→ branch-name

Account-number→ balance

 On depositor-schema:

No functional dependencies

2.2.2.2 Closure of a set of Functional dependencies

 It is not sufficient to consider the given set of functional dependencies. Rather,

we need to consider all functional dependencies that hold. We shall see that given a set

F of functional dependencies, we can prove that certain other functional dependencies

hold. We say that such functional dependencies are “logically implied” by F.

 More formally given a relational schema R, a functional dependency f on R is

logically implied by a set of functional dependencies F of R if every relation instance

r(R) that satisfied F also satisfies f.

 Suppose we are given a relation schema R = (A, B, C, G, H, I,) and the set of

functional dependencies

 A→ B

 A → C

 CG→ H

 CG→ I

 B→ H

 The functional dependency

 A→ H

is logically implied. That is, we can show that, whenever our given set of functional

dependencies holds on a relation, A → H must also hold on the relation. Suppose that

t1 and t2 are tuples such that

B.A. Part-II (Semester-IV) Paper – BAP-203 20

 t1[A] = t2 [A]

since we are given that A → B, it follows from the definition of functional dependency

that

 t1[B] = t2 [B]

then, since we are given that B → H, it follows from the definition of functional

dependency that

 t1[H] = t2 [H]

 Therefore it shows that whenever t1 and t2 are tuples such that t1 [A] = t2[A] it

must be that t1[H] = t2[H]. But that is exactly the definition of A → H.

 Let f be a set of functional dependencies logically. The closure of F, denoted by F+, is

the set of all functional dependencies implied by F. Given F, we can compute f directly from

the formal definition of functional dependency. If F were large, this process would be lengthy

and difficult. Such a computation of F+ requires arguments of the type just used to show

that A → H is in the closure of our example set of dependencies.

 Axioms or rules of inference provide a simpler technique for reasoning about functional

dependencies. In the rules that follow, we use Greek letters for sets of attributes, and

uppercase Roman letters from the beginning of the alphabet for individual attributes. We use

αβ to denote α U β.

 We can use the following three rules to find implied functional dependencies. By

applying these rules repeatedly, we can find all of F+, given F. This collection of rules is

called Armstrong’s axioms in honor of the person who first proposed it.

 Reflexivity rule. If α is a set of attributes and β α, then

α → β holds.

 Augmentation rule. If α → β holds and γ is a set of attributes, then

 γα → γβ holds.

 Transitivity rule. If α → β holds and β→ γ holds, then α → γ holds.

 Armstrong’s axioms are sound, because they do not generate any incorrect

functional dependencies. They are complete, because for a given set F of functional

dependencies, they allow us to generate all F+.

 Although Armstrong’s axioms are complete, it is tiresome to use them directly

for the computation of F+. To simplify matters further, we list additional rules. It is

possible to use Armstrong’s axioms to prove that these rules are correct.

 Union rule. If α → β holds and α → γ holds, then α → βγ holds.

 Decomposition rule. If α → βγ holds, then α → β holds and α → γ holds.

 Pseudotransitivity rule. If α → β holds and γβ→ δ holds, then αγ→ δ

holds.

 Let us apply our rules to the example of schema R = (A, B, C, G, H, I) and the

set F of functional dependencies {A→ B, A→ C, CG→ H, CG→ I, B→ H}. We list several

members of F+ here.

B.A. Part-II (Semester-IV) Paper – BAP-203 21

 A→ H. Since A→ B and B→ H hold, we apply the transitivity rule.

Observe that it was much easier to use Armstrong’s axioms to show that

A→ H holds than it was to argue directly from the definitions, as we did

earlier in this section.

 CG→ HI. Since CG→ H and CG→ I, the union rule implies that CG→ HI.

 AG→ I. Since A→ C and CG→ I, the pseudotransitivity rule implies that

AG→ I holds.

Another way of finding that AG→ I holds is as follows. We use the augmentation

rule on A→ C to infer AG→ CG. Applying the transitivity rule to this dependency and

CG→ I, we infer AG→ I.

Figure below shows a procedure that demonstrates formally how to use

Armstrong’s axioms to compute F+. In this procedure, when a functional dependency is

added to F+, it may be already present, and in that case there is no change to F+. We

will also see an alternative way of computing F in next section.

The left-hand and right-hand sides of a functional dependency are both subsets

of R. Since a set of size n has 2n subsets, there are a total of 2 x 2 n = 2 n+1 possible

functional dependencies, where n is the number of attributes in R. Each iteration of

the repeat loop of the procedure, except the last iteration, adds at least one functional

dependency to F+. Thus, the procedure is guaranteed to terminate.

2.2.2.3 Closure of Attribute Sets

To test whether a set α is a super-key, we must devise an algorithm for computing

the set of attributes functionally determined by α. One way of doing this is to compute F+,

take all functional dependencies with α as the left-hand side, and take the union of the

right-hand sides of all such dependencies. However doing so can be expensive, since F+ can

be large.

 An efficient algorithm for computing the set of attributes functionally determined by

α is useful not only for testing whether α is a super-key, but also for several other tasks, as

we will see later in thus section.

F+ = F
 repeat
 for each functional dependency f in F+
 apply reflexivity and augmentation rules on f
 add the resulting functional dependencies to F+
 for each pair of functional dependencies f1 and f2 in F+
 if f1 and f2 can be combined using transitivity
 add the resulting functional dependency to F+
 until F+ does not change any further

B.A. Part-II (Semester-IV) Paper – BAP-203 22

 Let α be a set of attributes. We call the set of all attributes functionally

determined by α under a set F of functional dependencies the closure of α under F; we

denote it by α+. Figure below shows an algorithm written in pseudocode to compute α+.

The input is a set F of functional dependencies and the set α of attributes. The output

is stored in the variable result.

 To illustrate how the algorithm works, we shall use it to compute (AG)+ with the

functional dependencies defined in preceding section. We start with result = AG. The

first time that we execute the while loop to test functional dependency, we find that

 A→ B cause us to include B in result. To see fact, we observe that A→ B is in F,

A ≤ result (which is AG), so result := result U B.

 A→ C causes result to become ABCG.

 CG→ H causes result to become ABCGH.

 CG→ I causes result to become ABCGHI.

 The second time that we execute the while loop, no new attributes are added to

result, and the algorithm terminates.

 Let us see why the algorithm of Figure above is correct. The step is correct, since α→ α

always holds (by the reflexivity rule). We claim that for any subset β of result, α→β. Since we

start the while loop with α→ result being true, we can add γ to result only if β ≤ result and β→

γ. But then result → β by the reflexivity rule, so α→ β by transitivity. Another application of

transitivity shows that α→ γ (using α→ β and β→ γ). The union rule implies that α→ result U γ,

so functionally determines any new result generated in the while loop. Thus any attribute

returned by the algorithm is in α+.

 It is easy to see that the algorithm finds all α+. If there is an attribute in α+ that is not

yet in result, then there must be a functional dependency β→ γ for which β ≤ result, and at

least one attribute in γ is not in result.

 It turns out that, in the worst case, this algorithm may take an amount of time

quadratic in the size of F.

 There are several uses of the attribute closure algorithm:

 To test if α is a super-key, we compute α+, and check if α+ contains all

attributes of R.

 We can check if a functional dependency α→ β holds (or, in other words,

is in F+) by checking if β α+. That is we compute α+ by using attribute

result := α
 while (changes to result) do
 for each functional dependency β→ γ in F do
 begin
 if β ≤ result then result := result U γ
 end

B.A. Part-II (Semester-IV) Paper – BAP-203 23

closure and then check if it contains β. This test is particularly useful, as

we will see later in this chapter.

 It gives us an alternative way to compute F+: for each γ R, we find the

closure γ+, and for each S γ+, we output a functional dependency

γ → S.

2.2.3 Decomposition

The bad design of database suggests that we should decompose a relation schema that has

many attributes into several schemas with fewer attributes. Careless decomposition, however may

lead to another form of bad design.

 Consider an alternative design in which we decompose Lending-schema into the

following two-schemas:

 Branch-customer-schema = (branch-name, branch-city, assets, customer-name)

 Customer-loan-schema = (customer-name, loan-number, amount)

 Using the lending relation described in “Problems arising out of bad database

design” topic (Figure W) that we will discuss next, we construct our new relations

branch-customer (Branch-customer) and customer-loan (customer-loan-schema):

branch–customer = Π branch-name, branch-city, assets, customer-name (lending)

customer-loan = Π customer-name, loan-number, amount (lending)

 Figure X and Y respectively show the resulting branch-customer and customer-

name relations.

Branch-name Branch-city Assets Customer-name

Downtown Brooklyn 9000000 Jones

Redwood Palo Alto 2100000 Smith

Perryridge Horseneck 1700000 Hayes

Downtown Brooklyn 9000000 Jackson

Mianus Horseneck 400000 Jones

Round Hill Horseneck 8000000 Turner

Pownal Bennington 300000 Williams

North Town Rye 3700000 Hayes

Downtown Brooklyn 9000000 Johnson

Perryridge Horseneck 1700000 Glenn

Brighton Brooklyn 7100000 Brooks

Figure X: The relation branch-customer

Customer-name Loan-number Amount

Jones L-17 1000

Smith L-23 2000

Hayes L-15 1500

Jackson L-14 1500

B.A. Part-II (Semester-IV) Paper – BAP-203 24

Jones L-93 500

Turner L-11 900

Williams L-29 1200

Hayes L-16 1300

Johnson L-18 2000

Glenn L-25 2500

Brooks L-10 2200

Figure Y: The relation customer-loan

Of course, there are cases in which we need to reconstruct the loan relation. For

example, suppose that we wish to find all branches that have loans with amounts less

than $1000. No relation in our alternative database contains these data. We need to

reconstruct the lending relation. It appears that we can do so by writing

branch-customer customer-loan

Figure Z below shows the result of computing branch-customer customer-loan.

Branch-

name

Branch-city Assets Customer-

name

Loan-

number

Amount

Downtown Brooklyn 9000000 Jones L-17 1000

Downtown Brooklyn 9000000 Jones L-93 500

Redwood Palo Alto 2100000 Smith L-23 2000

Perryridge Horseneck 1700000 Hayes L-15 1500

Perryridge Horseneck 1700000 Hayes L-16 1300

Downtown Brooklyn 9000000 Jackson L-14 1500

Mianus Horseneck 400000 Jones L-17 1000

Mianus Horseneck 400000 Jones L-93 500

Round Hill Horseneck 8000000 Turner L-11 900

Pownal Bennington 300000 Williams L-29 1200

North Town Rye 3700000 Hayes L-15 1500

North Town Rye 3700000 Hayes L-16 1300

Downtown Brooklyn 9000000 Johnson L-18 2000

Perryridge Horseneck 1700000 Glenn L-25 2500

Brighton Brooklyn 7100000 Brooks L-10 2200

 When we compare this relation and the lending relation with which we started

(Figure W), we notice a difference: Although every tuple that appears in the lending

relation appears in branch-customer customer-loan, there are tuples in branch-

customer customer-loan that are not in lending. In our example, branch-customer

customer-loan has the following additional tuples:

 (Downtown, Brooklyn, 9000000, Jones, L-93, 5000

 (Perryridge, Horseneck, 1700000, Hayes L-16, 1300)

B.A. Part-II (Semester-IV) Paper – BAP-203 25

 (Mianus, Horseneck, 400000 Jones, L-17, 1000)

 (North Town, Rye 3700000, Hayes L-15, 1500)

 Consider the query “Find all bank branches that have made a loan in an

amount less than $1000. If we look back at Figure W, we see that the only branches

with loan amounts less than $1000 are Mianus and Round Hill. However, when we

apply the expression

 Π branch-name (σ amount <1000 (branch-customer customer-loan)

we obtain three branch names Mianus, Round Hill and Downtown.

A closer examination of this example shows why. If a customer happens to have

several loans from different branches, we cannot tell which loan belongs to which

branch. Thus when we join branch-customer and customer-loan, we obtain not only the

tuples we had originally in lending, but also several additional tuples. Although we

have more tuples in branch-customer customer-loan, we actually have less

information. We are no longer able, in general, to represent in the database information

about which customers are borrowers from which branch. Because of this loss of

information, we call the decomposition of lending-schema into Branch-customer-schema

and customer-loam-schema a lossy decomposition, or a lossy-join decomposition. A

decomposition that is not a lossy join decomposition is a lossless join decomposition.

It should be clear from our example that a lossy-join decomposition is, in general a bad

database design.

 Why is the decomposition lossy? There is one attribute in common between

branch customer-schema and customer-loan-schema:

 Branch-customer-schema ∩ customer-loan-schema = {customer-name}

 The only way that we can represent a relationship between, for example, loan number

and branch-name is through customer-name. This representation is not adequate because a

customer may have several loans, yet these loans are not necessarily obtained from the same

branch.

 Let us consider another alternative design, in which we decompose Lending-

schema into the following two schemas:

 Branch-schema = (branch-name, branch-city, assets)

 Loan-info-schema = (branch-name, customer-name, loan-number, amount)

There is one attribute in common between these two schemas:

 Branch-loan-schema ∩ customer-loan-schema = {branch-name}

 Thus the only way that we can represent a relationship between for example

customer-name and asset is through branch-name. The difference between this example

and the preceding one is that the assets of a branch are the same, regardless of the

customer to which we are referring, whereas the lending branch associated with a

certain loan amount does depend on the customer to which we are referring. For a

given branch-name, there is exactly one assets value and exactly one branch-city;

B.A. Part-II (Semester-IV) Paper – BAP-203 26

whereas a similar statement cannot be made for customer-name. That is the functional

dependency

 Branch-name→ {assets, branch-city}

holds, but customer-name does not functionally determine loan-number

 The notion of lossless joins is central to much of relational database design.

Therefore, we restate the preceding examples more concisely and more formally. Let r

be a relational schema. A set of relational schema {R1, R2, … , Rn} is a decomposition of

R if

 R = R1 U R2 U … U Rn

 That is {R1, R2, … , Rn} is a decomposition of R if, for i = 1,2,……n, each Ri is a subset

of R, and every attribute in R appears in at least one Ri.

 Let r be a relation on schema r, and let ri = ΠRi (r) for i = 1,2….n . That is {r1, r2,

… , rn} is the database that results from decomposition of r into {R1, R2,……Rn} it is

always the case that

r ≤ r1 ∞ r2 ∞ … ∞ rn

 To see that this assertion is true consider a tuple t in relation r,. When we compute

the relations r1, r2,…rn the tuple t gives rise to one tuple ti in each ri, i = 1,2...n .These n

tuples combine to regenerate t when we compute r1 ∞ r2 ∞ … ∞ rn. The details are left for you

to complete as an exercise. Therefore every tuple in r appears in r1 ∞ r2 ∞ … ∞ rn.

 In general r ≠ r1 ∞ r2 ∞ … ∞ rn. As an illustration, consider our earlier example

in which

 n = 2

 R = Lending –schema

 R1 = Branch-customer-schema

 R2 = customer-loan-schema

 r = the relation shown in Figure W.

 r1 = the relation shown in Figure X.

 r2 = the relation shown in Figure Y.

 r1 ∞ r2 = the relation shown in Figure Z.

 Note that the relations in Figure W and Z are not the same.

 To have a lossless-join decomposition, we need to impose constraints on the set

of possible relations. We found that the decomposition of Lending-schema into Branch-

schema and Loan-info-schema is lossless because the functional dependency.

 branch-name → branch-city assets

holds on branch-schema We say that a relation is legal if it satisfies all rules, or

constraints that we impose on our database.

 Let C represent a set of constraints on the database and let R be a relation

schema. A decomposition {R1, R2…….Rn} of R is a lossless join decomposition if for all

relations r on schema R that are legal under C,

B.A. Part-II (Semester-IV) Paper – BAP-203 27

r = ΠR1 (r) ∞ ΠR2 (r) ∞ … ∞ ΠRn (r)

2.2.3.1 Desirable Properties of Decomposition

We can use a given set of functional dependencies in designing a relational

database in which most of the undesirable properties discussed above do not occur.

When we design such systems, it may become necessary to decompose a relation into

several relations.

 Lending-schema = (branch-name, branch-city, assets, customer-name, loan-

number, amount)

 The set F of functional dependencies that we require to hold Lending schema

are

 branch-name → {branch-city, assets}

 loan-number → {amount, branch-name}

 Lending-schema is an example of a bad database design. Assume that we

decompose it to the following three relations:

 Branch-schema = (branch-name, branch-city, assets)

 Loan-schema = (loan-number, branch-name, amount)

 Borrower-schema = (customer-name, loan-number)

 We claim that this decomposition has several desirable properties, which we

discuss next.

 Lossless-join decomposition

 When we decompose a relation into a number of smaller relations, it is crucial

that the decomposition be lossless. We must first present a criterion for determining

whether decomposition is lossy.

 Let R be a relation schema, and let F be a set of functional dependencies on R.

Let R1 and R2 form a decomposition of R. This decomposition is a lossless-join

decomposition of R if at least one of the following functional dependencies is in F+.

 R1 ∩ R2 → R1

 R1 ∩ R2 → R2

 In other words if R1 ∩ R2 forms a super-key of either R1 or R2 the decomposition

of r is a lossless-join decomposition. We can use attribute closure to efficiently test for

super-keys as we have seen earlier.

 We now demonstrate that our decomposition of Lending-schema is a lossless-

join decomposing Lending-schema into two schemas:

 Branch-schemas = (branch-name, branch-city, assets)

 Loan-info-schema = (branch-name, customer-name, loan-number, amount)

 Since branch-name → {branch-name, assets} the augmentation rule for

 functional dependencies implies that

 Branch-name→ {branch-name, branch-city, assets}

B.A. Part-II (Semester-IV) Paper – BAP-203 28

 Since Branch-schema ∩ Loan-info-schema = {branch-name}, it follows that our

initial decomposition is a lossless-join decomposition

 Next we decompose loan-info-schema into

 Loan-schema = (loan-number, branch-name, amount)

 Borrower-schema = (customer-name, loan-number)

 This step results in a lossless-join decomposition since loan-number is a

common attribute and loan-number→ amount branch-name.

 For the general case of decomposition of a relation into multiple parts at once

the test for lossless join decomposition is more complicated.

While the test for binary decomposition is clearly a sufficient condition for

lossless join, it is a necessary condition only if all constraints are functional

dependencies.

2.2.3.2 Dependency Preservation

There is another goal in relational database design: dependency preservation.

When an update is made to the database, the system should be able to check that the

update will not create an illegal relation-that is, one that does not satisfy all the given

functional dependencies. If we are to check updates efficiently, we should design

relational-database schemas that allow update validation without the computation of

joins.

 To decide whether joins must be computed to check an update, we need to

determine what functional dependencies can be tested by checking each relation

individually. Let F be a set of functional dependencies on a schema R and let R1, R2…..Rn be

a decomposition of R. The restriction of F to Ri is the set Fi of all functional dependencies in

F+ that include only attributes of Ri. Since all functional dependencies in a restriction involve

satisfaction of only one relation schema, it is possible to test such a dependency for

satisfaction by checking only one relation.

 Note that the definition of restriction uses all dependencies in F+, not just those in

F. For instance, suppose F= {A→B, B→C} and we have a decomposition into AC and AB.

The restriction of F to AC is then A→C, since A→C is in F+ even though it is not in F.

 The set of restrictions F1, F2….Fn is the set of dependencies that can be checked

efficiently. We now must ask whether testing only the restrictions is sufficient. Let F’ =

F1 U F2 U …..U Fn. F’ is a set of functional dependencies on schema R but in general F

≠ F. However even if F’ ≠ F may be that F’+ = F+. If the latter is true, then every

dependency in F is logically implied by F’ and if we verify that F’ is satisfied we have

verified that F is satisfied. We say that a decomposition having the property F’+ = F+ is a

dependency preserving decomposition.

 Figure V shows an algorithm for testing dependency preservation. The input is a set

D = {R1, R2….Rn} of decomposed relation schemas and a set F of functional dependencies.

This algorithm is expensive since it requires computation of F; we will describe another

algorithm that is more efficient after giving an example testing for dependency preservation.

B.A. Part-II (Semester-IV) Paper – BAP-203 29

compute F+;

 for each schema Ri in D do

 begin

 Fi = the restriction of F+ to Ri

 end

 F’:=Φ

 for each restriction Fi do

 begin

 F’ = F’ U Fi

 end

 compute F’+;

 if (F’+ = F+) then return (true)

 else return (false);

Figure V: Testing for dependency preservation

 We can now show that our decomposition of Lending-schema is dependency

preserving. Instead of applying the algorithm of Figure V, we consider an easier

alternative; We consider each member of the set F of functional dependencies that we

require to hold on Lending-schema and show that each one can be tested in at least

one relation in the decomposition.

 We can test the functional dependency: branch-name → {branch-city

assets} using Branch-schema = (branch-name, branch-city, assets).

 We can test the functional dependency : loan-number → {amount branch-

name} using Loan-schema = (branch-name, loan-number, amount)

 If each member of F can be tested on one of the relations of the decomposition,

then the decomposition is dependency preserving. However there are cases where even

though the decomposition is dependency preserving, there is a dependency in F that

cannot be tested in any one relation in the decomposition. The alternative test can

therefore be used as a sufficient condition that is checked. If it fails we cannot

conclude that the decomposition is not dependency preserving instead we will have to

apply the general test.

 We now give a more efficient test for dependency preservation, which avoids

computing F+. The idea is to each functional dependency α → β in F by using a

modified form of attribute closure to see if it is preserved by the decomposition. We

apply the following procedure to each → in F.

 result = α

 while (changes to result) do

 for each Ri in the decomposition

B.A. Part-II (Semester-IV) Paper – BAP-203 30

 t = (result ∩ Ri)+ ∩ Ri

 result = result U t

 The attribute closure is with respect to the functional dependencies in F. If

result contains all attribute in β then the functional dependency α → β is preserved.

The decompositions is dependency preserving if and only if all the dependencies in F

are preserved.

 Note that instead of precomputing the restriction of F on Ri and using it for

computing the attribute closure of result, we use attribute closure on (result ∩ Ri) with

respect to F, and then intersect it with Ri, to get an equivalent result. This procedure

takes polynomial time, instead of the exponential time required to compute F+.

2.2.3.3 Repetition of Information

The decomposition of Lending-schema does not suffer from the problem of

repetition of information that we will discuss in section about Bad Database Design. In

Lending-schema, it was necessary to repeat the city and assets of a branch for each

loan. The decomposition separates branch and loan data into distinct relations,

thereby eliminating this redundancy. Similarly observe that, if a single loan is made to

several customers, we must repeat the amount of the loan once for each customer (as

well as the city and assets of the branch) in Lending-schema. In the decomposition, the

relation on schema Borrower-schema contains the loan-number, customer-name

relationship and not other schema does. Therefore we have one tuple for each

customer for a loan in only the relation on Borrower-schema. In the other relational

involving loan-number (those on schemas Loan-schema and Borrower-schema) only one

tuple per loan needs to appear.

2.2.4 Problems arising out of bad database design (Pitfalls in Relational-Database

design)

Let us look at what can go wrong in a bad database design. Among the

undesirable properties that a bad design may have are:

 Repetition of information

 Inability to represent certain information.

 We shall discuss these problems with the help of a modified database design for

our banking example: Suppose the information concerning loans is kept in one single

relation, lending which is defined over the relation schema

Lending-schema = (branch-name, branch-city, assets, customer-

 name, loan-number, amount)

 Figure below shows an instance of the relation lending (Lending-schema). A tuple t in

the lending relation has the following intuitive meaning:

 t[assets] is the asset figure for the branch named t[branch-name]

 t[branch-city] is the city which the branch named t[branch-name] is

located

B.A. Part-II (Semester-IV) Paper – BAP-203 31

 t[loan-number] is the number assigned to a loan made by the branch

named t[branch-name] to the customer named t[customer-name]

 t[amount] is the amount of the loan whose number is t[loan-number]

 Suppose that we wish to add a new loan to our database. Say that the loan is

made by the Perryridge branch to Adams in the amount of $1500. Let the loan-number

be L-31. In our design, we need a tuple with values on all the attributes of Lending

schema. Thus we must repeat the asset and city data for the Perryridge branch, and

must add the tuple

(Perryridge, Horseneck, 1700000, Adams, L-31, 1500)

to the lending relation. In general, the asset and city data for a branch must appear

once for each loan made by that branch.

Branch-

name

Branch-

city

Assets Customer-

name

Loan-

number

Amount

Downtown Brooklyn 9000000 Jones L-17 1000

Redwood Palo Alto 2100000 Smith L-23 2000

Perryridge Horseneck 1700000 Hayes L-15 1500

Downtown Brooklyn 9000000 Jackson L-14 1500

Mianus Horseneck 400000 Jones L-93 500

Round Hill Horseneck 8000000 Turner L-11 900

Pownal Bennington 300000 Williams L-29 1200

North Town Rye 3700000 Hayes L-16 1300

Downtown Brooklyn 9000000 Johnson L-18 2000

Perryridge Horseneck 1700000 Glenn L-25 2500

Brighton Brooklyn 7100000 Brooks L-10 2200

Figure W: Sample lending relation

 The repetition of information in our alternative design is undesirable. Repeating

information wastes space. Furthermore it complicates updating the database. Suppose

for example, that the assets of the Perryridge branch change from 1700000 to

1900000. Under our original design, one tuple of the branch relation need to be

changed. Under our alternative design many tuples of the lending relation need to be

changed. Thus updates are more costly under the alternative design than under the

original design. When we perform the update in the alternative design database, we

must ensure that every tuple pertaining to the Perryridge branch is updated, or else

our database will show two different asset values for the Perryridge branch.

 That observation is central to understanding why the alternative design is bad.

We know that a bank branch has a unique value of assets, so given a branch name we

can uniquely identify the assets value. On the other hand, we know that a branch may

make many loans, so given a branch name, we cannot uniquely determine a loan

number. In other words, we say that the functional dependency.

B.A. Part-II (Semester-IV) Paper – BAP-203 32

 branch-name → assets

 Holds on Lending-schema, but we do not expect the functional dependency

branch-name → loan- number to hold. The fact that a branch has particular value of

assets and the fact that a branch makes a loan are independent, and, as we have seen,

these facts are best represented in separate relations. We shall see that we can use

functional dependencies to specify formally when a database design is good.

 Another problem with the Lending-schema design is that we cannot represent

directly the information concerning a branch 9branch-name, branch-city, assets)

unless there exists at least one loan at the branch. This is because tuples in the

lending relation require value for loan-number, amount and customer-name.

 One solution to this problem is to introduce null values, as we did to handle updates

through views. However, Null values are difficult to handle. If we are not willing to deal with Null

values, then we can create the branch information only when the first loan application at that

branch is made. Worse, we would have to delete this information when all the loans have been

paid. Clearly, this situation is undesirable, since, under our original database design, the branch

information would be available regardless of whether or not loans are currently maintained in

the branch, and without restoring to null values.

1.5 Summary

Functional dependencies play a key role in differentiating good database designs

from bad database design. An attribute Y of a relation R is said to be functionally

dependent upon attribute X of relation R if and only if for each value of X in R has

associated with it only one of Y in R at any given time. It is represented by as X-> Y,

where X attributes is known as determinant and Y is known as determined. Using the

concept of Functional Dependencies we decompose the relations. The bad design of

database suggests that we should decompose a relation schema that has many

attributes into several schemas with fewer attributes. Careless decomposition, however

may lead to another form of bad design. When we decompose a relation into a number

of smaller relations, it is crucial that the decomposition be lossless.

2.2.6 Self Understanding:

1. What do you mean by Functional Dependency? What is its importance in

Database design? Explain with example.

2. Why we need decomposition? What is its need? What are the steps

involved in decomposing the relations.

3. What are the various problems that arise due to bad database design?

2.2.7 Further Readings:

1. Bipin C. Desai, An introduction to Database System, Galgotia Publication, New Delhi.

2. C. J. Date, An introduction to database Systems, Sixth Edition, Addison

Wesley.

3. Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database

Systems, Addison Wesley.

B.A. Part-II

SEMESTER-IV

Paper : BAP-203

 DATA BASE MANAGEMENT SYSTEM

LESSON NO. 2.3 AUTHOR : VISHAL GOYAL

NORMALIZATION

Structure:

2.3.0 Introduction

2.3.1 Objectives

2.3.2 Normalization

2.3.3 First Normal Form

2.3.4 Second Normal Form

2.3.5 Third Normal Form

2.3.6 Boyce-Codd Normal Form

2.3.7 Multi-valued Dependency

2.3.8 Fourth Normal Form

2.3.9 Join Dependencies and Fifth Normal Form

2.3.10 Database Design Process

2.3.11 Summary

2.3.12 Self Understanding

2.3.13 Further Readings

2.3.0 Introduction:

 In this lesson, we will discuss the normalization process and define the first
three normal forms for relation schemas. The definitions of second and third normal
form presented here are based on the functional dependencies and primary keys of a
relation schema. More general definitions of these normal forms, which take into
account all candidate keys of a relation rather than just the primary key, are also
presented. We also define Boyce-Codd Normal Form (BCNF), and further normal forms
that are based on other types of data dependencies. We first informally discuss what
normal forms are and what the motivation behind their development was. We then
present first normal form (1NF). Then we present definitions of second normal form
(2NF) and third normal form (3NF) respectively that are based on primary keys. Then
we will proceed for multivalued dependency and further the fourth and fifth Normal
Forms that are based on MVDs. In the last we will discuss about the database design
process.
2.3.1 Objectives

 After completing this lesson, you will be able to:
 Define Normalization, its need and importance
 Various types of Normal Forms
 Define Multivalued Functional Dependency

B.A. Part-II (Semester-IV) Paper : BAP-203 34

 Understand database design process
2.3.2 Normalization

 The normalization process as first proposed by Codd (1972) takes a relation
schema through a series of tests to “certify” whether or not, it belongs to a certain
normal form. Initially Codd proposed three normal forms, which he called first, second
and third normal form. A stronger definition of 3NF was proposed later by Boyce and
Codd and is known as Boyce-Codd normal form. All these normal forms are based on
the functional dependencies among the attributes of a relation. Later fourth normal
form (4NF) and a fifth normal forms (5NF) were proposed, based on the concepts of
multi-valued dependencies and join dependencies, respectively. Normalization of data
can be looked on as a process during which unsatisfactory relation schemas are
decomposed by breaking up their attributes into smaller relation schemas that possess
desirable properties. One objective of the original normalization process forms provides
database designers with:

 A formal framework for analyzing relation schemas based on their keys and on the
functional dependencies among their attributes.

 A series of tests that can be carried out on individual relation schemas so
that the relational database can be normalized to any degree. When a
test fails, the relation violating that test must be decomposed into
relations that individually meet the normalization tests.

 To free relations from undesirable insertion, deletion and update
anomalies.

 Normal forms, when considered in isolation from other factors, do not guarantee a
good database design. It is generally not sufficient to check separately that each relation
schema in the database is, say, in BCNF or 3NF. Rather, the process of normalization
through decomposition must also confirm the existence of additional properties that the
relation schemas, taken together, should possess. Two of these properties are:

 The loss less join or no additive join property, which guarantees that the
spurious tuple problem does not occur

 The dependency preservation property, which ensures that all functional
dependencies are represented in some of the individual resulting
relations.

 In this section we concentrate on an intuitive discussion of the normalization
process. Notice that the normal forms mentioned in this section are not only the possible
ones. Additional normal forms may be defined to meet other desirable criteria, based on
additional types of constraints. The normal forms up to BCNF are defined by considering
only the functional dependency and key constraints, whereas 4NF considers an additional
constraint called a multi-valued dependency and 5NF considers an additional constraint
called a join dependency. The practical utility of normal forms becomes questionable when

B.A. Part-II (Semester-IV) Paper : BAP-203 35

the constraints on which they are based are hard to understand or to detect by the database
designers and users who must discover these constraints.

Another point worth noting is that the database designers need not normalize to
the highest possible normal form. Relations may be left in lower normal forms for
performance reasons.
 Before proceedings further, we recall the definitions of keys of a relation
schema. A super key of a relation schema R = {A1, A2,…………, An} is a set of
attributes S (sub set of) R with the property that no two tuples t1 and t2 in any legal
relation state r of R will have t1[S] = t2[S]. A key K is a super-key with the additional
property that removal of any attribute from K will cause K not to be a super-key any
more. The difference between a key and super key is that a key has to be “minimal”
that is, if we have a key K = {A1, A2……., Ak} then K – A is not a key for 1<=i<=k. In
figure given below {SSN} is a key for EMPLOYEE, whereas {SSN}, {SSN, ENAME}, {SSN,
ENAME, BDATE} etc. are all super keys.

 If relation schema has more than one “minimal” key, each is called a candidate
key. One of the candidates keys is arbitrarily designated to be the primary key, In
figure above {SSN} is the only candidates key for EMPLOYEE, so it is also the primary
key.
 An attribute of relation schema R is called a prime attribute of R if it is a
member of any key of R. An attribute is called nonprime if it is not a prime attribute-
that is, if it is not a member of any candidate key.
 We now present the first three normal forms: 1NF, 2NF and 3NF. These were
proposed by Codd (1972) as a sequence to ultimately achieve the desirable state of 3NF
relations by progressing through the intermediate states of 1NF and 2NF if needed.
2.3.3 First Normal Form (1 NF)

First normal form is now considered to be part of the formal definition of a
relation; historically, it was defined to disallow multi-valued attributes, composite
attributes, and their combinations. It states that the domains of attributes must

include only atomic (simple, indivisible) values and that the value of any

attribute in a tuple must be a single value from the domain of that attribute.
Hence, 1NF disallows having a set of values, a tuple of values or a combination of both
as an attribute value for a single tuple. In other words, 1NF disallows “relations within
relations” or “relations as attributes of tuples”. The only attribute values permitted by
1NF are single atomic (or indivisible) values.

ENAME

EMPLOYEE

SSN BDATE DNUMBER ADDRESS

p.k.

f.k.

B.A. Part-II (Semester-IV) Paper : BAP-203 36

 Consider the DEPARTMENT relation schema shown in following figure, whose
primary key is DNUMBER, and suppose that we extend it by including the
DLOCATIONS attribute shown within dotted lines. We assume that each department
can have a number of locations. The DEPARTMENT schema and example extension are
shown in Figures that follow. As we can see, this is not in 1NF because DLOCATIONS
is not an atomic attribute, as illustrated by the first tuple in Figure (b). There are two
ways we can look at the DLOCATIONS attribute:

 The domain of DLOCATIONS contains atomic values, but some tuple can
have a set of these values. In this case, DNUMBER*→ DLOCATIONS.

 The domain of DLOCATIONS contains sets of values and hence in monatomic.
In this case, DNUMBER→DLOCATIONS, because each set is considered a
single member of the attribute domain (In this case we can consider the
domain of DLOCATIONS to e the power set of single locations; that is, the
domain is made up of all possible subsets of the set of single locations).

 b)
 DEPARATMENT

DNAME DNUMBER DMGRSSN DLOCATIONS

Research 5 333445555 {Bellaire, Sugarland,

Houston}
Administration 4 987654321 {Stafford}
Headquarters 1 888665555 {Houston}

 c) DEPARTMENT

DNAME DNUMBER DMGRSSN DLOCATIONS

Research 5 333445555 Bellaire
Research 5 333445555 Sugarland
Research 5 333445555 Houston
Administration 4 987654321 {Stafford}
Headquarters 1 888665555 {Houston}

DNAME

DEPARTMENT

DNUMBER DMGRSSN DLOCATIONS

a)

B.A. Part-II (Semester-IV) Paper : BAP-203 37

Figure showing Normalization into 1NF. (a) A relation schema that is not in 1NF. (b)

Example relation instance. (c) 1NF relation with redundancy.

 In either case, the DEPARTMENT relation of figures above is not in 1NF; in fact,
it does not even qualify as a relation, we break up its attributes into the two relations
DEPARTMENT and DEPT_LOCATIONS shown in Figure here:

 The idea is to remove the attribute DLOCATIONS that violates 1NF and place it
in a separate relation DEPT_LOCATIONS along with the primary key DNUMBER of
DEPARTMENT. The primary key of this relation is the combination {DNUMBER,
DLOCATION}, as shown in Figure above. A distinct tuple in DEPT_LOCATIONS exists
for each location of a department. The DLOCATIONS attribute is removed from the
DEPARTMENT relation of Figure showing the normalization into 1NF, decomposing the
non-1NF relation into two 1NF relations DEPARTMENT and DEPT_DLOCATIONS of
Figure above.

Notice that a second way to normalize into 1NF is to have a tuple in the original
DEPARTMENT relation for each location of a DEPARTMENT, as shown in Figure (c). In this
case, the primary key becomes the combination {DNUMBER, DLOCATION}, and
redundancy exists in the tuples. The first solution is superior because it does not suffer
from this redundancy problem. In fact, if we choose the second solution, it will be
decomposed further during subsequent normalization steps into the first solution.
 The first normal form also disallows composite attribute that are themselves
multi-valued. These are called nested relations because each tuple can have a relation
within it. Figure A below shows how an EMP_PROJ relation can be shown if nesting is
allowed. Each tuple represents an employee entity, and a relation PROJS (PNUMBER,
HOURS} within each tuple represents the employee’s projects and the hours per week
that the employee works on each project. The schema of the EMP_PROJ relation can be
represented as follows:

 EMP_PROJ (SSN, ENAME, {PROJS (PNUMBER, HOURS)})
 The set braces {} identify the attribute PROJS as multi-valued, and we list the

component attribute that form PROJS between parentheses (). Interestingly, recent research
into the relational model is attempting to allow and formalize nested relations, which were
disallowed early on by 1NF.

 Notice that SSN is the primary key of the EMP_PROJ relation in Figure A(a) and
(b), while PNUMBER is the partial primary key of each nested relation; that is, within
each tuple, the nested relation attributes into a new relation and propagate the

DNAME

DEPARTMENT

DNUMBER DMGRSSN DLOCATIONS DNUMBER

DEPT_LOCATIONS

B.A. Part-II (Semester-IV) Paper : BAP-203 38

primary key into; the primary key of the new relation will combine the partial key with
the primary key of the original relation. Decomposition and primary key propagation
yield the schemas shown in Figure A(c).

Here is the figure A:

 This procedure can be applied recursively to a relation with multi-valued level

nesting to unnest the relation into a set of 1NF relations. This is useful in converting
hierarchical schemas into 1NF relations. As we shall see in the coming topics,
restricting relations to 1NF leads to the problems associated with multi-valued
dependencies and 4NF.
2.3.4 Second Normal Form (2NF)

Second Normal form is based on the concept of full functional dependency. A
functional dependency X→Y is a full functional dependency if removal of any attribute

c) EMP_PROJ1

SSN ENAME

EMP_PROJ2

SSN PNUMBER HOURS

b) EMP_PROJ

SSN ENAME PNUMBER HOURS

123456789 Smith, John B. 1 32.5

 2 7.5

666884444 Narayan, Ramesh K. 3 40.0

453453453 English, Joyce A. 1 20.0

 2 20.5

333445555 Wong, Franklin T. 2 10.5

 3 10.5

 10 10.5

 20 10.5

a)
EMP_PROJ

SSN ENAME
PROJS

PNUMBER HOURS

B.A. Part-II (Semester-IV) Paper : BAP-203 39

a from X means that the dependency does not hold any more; that is, for any attribute
A ε X,
(X-{A}) *→ Y. A functional dependency X→Y is a partial dependency if some attribute
A ε X can be removed from X and the dependency still holds; that is for some A ε X, (X
– {A})→Y. In figure below, {SSN, PNUMBER} → HOURS is a full dependency (neither
SSN →HOURS nor PNUMBER→HOURS holds). However, the dependency {SSN
PNUMBER}→ENAME is partial because SSN→ENAME holds.

 A relation schema R is in 2NF if every nonprime attribute A in R is fully

functionally dependent on the primary key of R. The EMP_PROJ relation in figure
above is in 1NF but is not in 2NF. The nonprime attribute ENAME violates 2NF
because of fd2, as do the nonprime attribute PNAME and PLOCATION because of fd3.
The functional dependencies fd2 and fd3 make ENAME, PNAME and PLOCATION
partially dependent on the primary key {SSN, PNUMBER} of EMP_PROJ thus violating
2NF.
 If a relation schema is not in 2NF it can be further normalized into a number of
2NF relations in which nonprime attributes are associated only with the part of the
primary key on which they are fully functionally dependent. The functional
dependencies fd1, fd2 and fd3 in Figure above hence lead to the decomposition of
EMP_PROJ into the three relation schemas EP1, EP2 and EP3 shown in Figure B each
of which is in 2NF. We can see that the relations Ep1, Ep2 and EP3 are devoid of the
update anomalies from which EMP_PROJ of Figure above suffers.

EMP_PROJ

SSN PNUMBER HOURS PLOCATION ENAME PNAME

fd1

fd2

fd3

B.A. Part-II (Semester-IV) Paper : BAP-203 40

Figure B:

2.3.5 Third Normal Form (3NF)

 Third Normal form is based on the concept of transitive dependency. A
functional dependency X →Y in a relation schema R is a transitive dependency if there
is a set of attributes Z that is not a subset of any key of R, and both X→Z and Z→Y
hold. The dependency SSN→DMGRSSN is transitive through DNUMBER in EMP_DEPT
of Figure here:

 DNUMBER is not a subset of the key of EMP_DEPT. Intuitively; we can see that
dependency of DMGRSSN on DNUMBER is undesirable in EMP_DEPT since DNUMBER
is not a key of EMP_DEPT.
 According to Codd’s original definition, a relation schema R is in 3NF if it

is in 2NF and no nonprime attribute of R is transitively dependent on the

ENAME SSN BDATE DMGRSSN ADDRESS DNAME

EMP_DEPT

DNUMBER

SSN PNUMBER HOURS SSN ENAME

EP1 EP2

fd1 fd2

fd3

PLOCATION PNUMBER PNAME EP3

2NF Normalization

a)
EMP_PROJ

SSN PNUMBER HOURS PLOCATION ENAME PNAME

fd1

fd2

fd3

B.A. Part-II (Semester-IV) Paper : BAP-203 41

primary key. The relation schema EMP_DEPT in Figure above is in 2NF since no
partial dependencies on a key exist. However EMP_DEPT is not in 3NF because of the
transitive dependency of DMGRSSN (and also DNAME) on SSN via DNUMBER. We can
normalize EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and
Ed2 shown in Figure below:

 Intuitively, we see that Ed1 and Ed2 represent independent entity facts about
employees and departments. A NATURAL JOIN operation on ED1 and ED2 will recover
the original relation EMP_DEPT without generating spurious tuples.
2.3.6 Boyce-Codd Normal Form (BCNF)

Boyce-Codd normal form is stricter than 3NF, meaning that every relation in
BCNF is also in 3NF; however, a relation in 3NF is not necessarily in BCNF, intuitively,
we can see the need for a stronger normal form than 3NF by going back to the LOTS
relation schema of Figure below with its four functional dependencies fd1 through fd4.

ENAME SSN BDATE ADDRESS DNUMBER

ED1

DMGRSSN DNAME DNUMBER

ED2

3NF Normalization

ENAME SSN BDATE DMGRSSN ADDRESS DNAME

EMP_DEPT

DNUMBER

B.A. Part-II (Semester-IV) Paper : BAP-203 42

 Suppose that we have thousands of lots in the relation but the lots are from
only two counties; Marion County and Liberty County. Suppose also that lot size in
Marion County are only 0.5, 0.6, 0.7, 0.8, l 0.9, and 2.0 acres. In such a situation we
should have the additional functional dependency fd5; AREA → COUNTY_NAME. If we
add this to the other dependencies, the relation schema LOTS1A still is in 3NF because
COUNTY_NAME is a prime attribute.
 The area versus county relationship represented by fd5 can be represented by
16 tuples in a separate R (AREA, COUNTY_NAME) since there are only 16 possible
AREA values. This representation reduces the redundancy of repeating the same
information in the thousands of LOTS1A tuples. BCNF is a stranger normal form that
would disallow LOTS1A and suggest the need for decomposing it.
 This definition of Boyce-Codd differs slightly from the definition of 3NF. A

relation schema R is in BCNF if whenever a functional dependency X → A holds

in R, then X is a super-key of R. The only difference between BCNF and 3NF is that
condition (b) of 3NF, which allows A to be prime if X is not a super-key, is absent from
BCNF.

In our example, fd5 violates BCNF in LOTS1A because AREA is not a super-key
of LOTS1A. Note that fd5 satisfies 3NF LOTS1A because COUNTY_NAME is a prime
attribute (Condition (b)), but this condition does not exist in the definition of BCNF. We
can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown in
Figure C(a).
 In practice most relation schema that are in 3NF are also in BCNF. Only if a
dependency X A exists in a relation schema R with X not a super-key and A a prime
attribute will R be in 3NF but not in BCNF. The relation schema R shown in Figure C(b)
illustrates the general case of such a relation.

It is best to have relation schemas in BCNF, if that is not possible, 3NF will do.
However, 2NF and 1 NF are not considered good relation schema designs. These
normal forms were developed historically as stepping stones to 3NF and BCNF.

PROPERTY_ID# COUNTY_NAME LOT# AREA

LOTS

fd1

fd3

fd2

PRICE TAX_RATE

fd4

B.A. Part-II (Semester-IV) Paper : BAP-203 43

Here is Figure C:

2.3.7 Multi-valued Dependencies
 Multi-valued dependencies are a consequence of first normal form, which
disallowed an attribute in a tuple to have a set of values. If we have two or more multi-
valued independent attributes in the same relation schema, we get into a problem of
having to repeat every value of one the attribute with every value of the other attribute
to keep the relation instance consistent. This constraint is specified by a multi-valued
dependency.
 For example, consider the relation EMP shown in Figure D (a). A tuple in this
EMP relation represents the fact that an employee whose name is ENAME works on the
project whose name is PNAME and has a dependent whose name is DNAME. An
employee may work on several projects and may have several dependents, and the
employees project and dependents are not directly related to one another. To keep the
tuples in the relation consistent, we must keep a tuple to represent every combination
of an employee’s dependent and an employee’s project. This constraint is specified as a

A

R

B C

fd1

fd2

PROPERTY_ID# LOT# AREA

LOTS1AX LOTS1AY

COUNTY_NAME AREA

BCNF Normalization

PROPERTY_ID# COUNTY_NAME LOT# AREA

LOTS1A

fd1

fd3

fd2

(a)

B.A. Part-II (Semester-IV) Paper : BAP-203 44

multi-valued dependency on the EMP relation. Informally, whenever two independent
1: N relationships A: B and A: C are mixed on the same relation, an MVD may arise.
Figure D:

SNAME PARTNAME PROJNAME

Smith Bolt ProjX
Smith Nut ProjY
Adamsky Bolt ProjY
Walton Nut ProjZ
Adamsky Nail ProjX
Adamsky Bolt ProjX
Smith Bolt ProjY

SUPPLY (c)

ENAME PNAME

Smith X
Smith Y

EMP_PROJECTS

ENAME DNAME

Smith John
Smith Anna

EMP_DEPENDENTS (b)

ENAME PNAME DNAME

Smith X John
Smith Y Anna
Smith X Anna
Smith Y John

EMP (a)

B.A. Part-II (Semester-IV) Paper : BAP-203 45

Formal Definition of Multi-valued Dependency

 Formally a multi-valued dependency (MVD) X→→Y specified on relation schema
R where X and Y are both subsets of R, specifies the following constraint on any
relation r of R. If two tuples t1 and t2 exist in r such that t1[X] = t2[X] then two tuples t3
and t4 should also exist in r with the following properties:

 t3 [X] = t4[X]=t1[X]=t2[X]
 t3[4]=t1 [Y] and t4[Y]=t2[Y]
 t3[R-(XY)] = t2[R-(XY)] and t4[R-(XY)] = t1[R-(XY)].

 Whenever X→→Y holds, we say that X multi-determines Y. Because of the
symmetry in the definition, whenever X→→Y holds in R, so does X→→ (R-(XY)). Recall
that (R-XY) is the same as R-(X U Y) = Z. Hence X→→Y implies X→→Z and therefore it
is sometimes written as X→→Y/Z.
 The formal definition specifies that given a particular value of X, the set of

values of Y determined by this value of X is completely determined by X alone

and does not depend on the values of the remaining attributes Z of the relation

schema R. Hence whenever two tuples exist that have distinct values of Y but the
same value of X these values of Y must be related with every distinct value of Z that
occurs with that same value of X. This informally corresponds to Y being a multi-
valued attribute of the entities represented by tuple in R.
 In Figure D (a) the MVDs ENAME→→PNAME and ENAME→→DNAME or
ENAME→→PNAME/DNAME hold in the EMP relation. The employee with ENAME
Smith works on project with PNAME ‘X’ and ‘Y’ and has two dependents with DNAME
John and ‘Anna’. If we stored only the first two tuples in EMP (< Smith’, ‘X’, ‘John’>
and <Smith’, ‘Y’ ‘Anna’> and <Smith’, ‘Y’, ‘John’>) to show that {‘X’, ‘Y’} and {John’,
‘Anna} are associated only ‘Smith’ that is there is no association between PNAME and
DNAME.
 An MVD X→→Y in R is called a trivial MVD if (a) Y is a subset of X or (b) X U
Y=R, for example the relation EMP_PROJECTS in Figure D (b) has the trivial MVD
ENAME→→PNAME. An MVD that satisfies neither (a) nor (b) is called a nontrivial

SNAME PARTNAME

Smith Bolt
Smith Nut
Adamsky Bolt
Walton Nut
Adamsky Nail

R1

SNAME PROJNAME

Smith ProjX
Smith ProjY
Adamsky ProjY
Walton ProjZ
Adamsky ProjX

R2

PARTNAME PROJNAME

Bolt ProjX
Nut ProjY
Bolt ProjY
Nut ProjZ
Nail ProjX

R3 (d)

B.A. Part-II (Semester-IV) Paper : BAP-203 46

MVD. A trivial MVD will hold in any relation instance r of R, it is called trivial because
it does not specify any constraint on R.
 If we have a nontrivial MVD in relation, we may have to repeat values
redundantly in the tuples. In the EMP relation of Figure the values ‘X’ and ‘Y’ of
PNAME are repeated with each value of DNAME (or by symmetry, the values ‘John’ and
‘Anna’ of DNAME are repeated with each value of PNAME). This redundancy is clearly
undesirable However; the EMP schema is in BCNF because no functional dependencies
hold in EMP. Therefore, we need to define a fourth normal form that is stronger than
BCNF and disallows relation sch4emas such as EMP. We first discuss some of the
properties of MVDs and consider how they are related to functional dependencies.
Inference Rules for Functional and Multi-valued Dependencies

 As with functional dependencies (FDs), we can develop inference rules for
MVDs. It is better through, to develop a unified framework that includes both FDs and
MVDs so that both types of constraints can be considered together. The following
inference rules IR1 through IR8 form a sound and complete set for inferring functional
and multi-valued dependencies from a given set of dependencies. Assume that all
attributes are included in a “universal” relation schema R= {A1, A2 ….An} and that X, Y,
Z and W are subsets of R.

(IR1) (Reflexive rule for FDs0: if X ≥ Y, then X → Y.
(IR2) (Augmentation rule for FDs): {X →Y) ╞ XZ→YZ
(IR3) (Transitive rule for FDs): {X→Y, Y→Z} ╞ X→Z.
(IR4) (Complementation rule for MVDs): {X→→Y) ╞ {X→→ (R – (X U Y))}.
(IR5) (Augmentation rule for MVDs): If X →→Y and W≥Z then WX→→YZ
(IR6) (Transitive rule for MVDs): {X→→Y, Y→→Z} ╞ X →→ (Z-Y)
(IR7) (Replication rule FD to MVD)): {X→Y} ╞ X→→Y
(IR8) (Coalescence rule for FDs and MVDs): If X→→Y and there exists W with

the properties that (a) W ∩ Y is empty, (b) W→Z and (c) Y ≥ Z then X→Z.
 IR1 through IR3 are Armstrong’s inference rules for FDs alone. IR4 through Ir6 are
inference rules pertaining to MVDs only. IR7 and IR8 relate FDs and MVDs. In particular
IR7 says that a functional dependency is a special case of a multi-valued dependency;
that is, every FD is also an MVD. An FD X→Y is an MVD X→→Y with the additional
restriction that at most one value of Y is associated with each value of X. Given a set F
of functional and multi-valued dependencies specified on R = {A1, A2,…….An), we can
use IR1 through IR8 to infer the (complete) set of all dependencies (functional or multi-
valued) F+ that will hold in every relation instance r of R that satisfies F. We again call
F+ closure of F.
2.3.8 Fourth Normal Form

We now present the definition of 4NF which is violated when a relation has
undesirable multi-valued dependencies, and hence can be used to identify and
decompose such relations. A relation schema R is in 4NF respect to a set of

B.A. Part-II (Semester-IV) Paper : BAP-203 47

dependencies F if for every nontrivial multi-valued dependency X→→Y in F+, X is

a super-key for R.

 The EMP relation of Figure D (a) is not 4NF because in the nontrivial MVDs
ENAME→→PNAME and ENAME →→ DNAME, ENAME is not a super-key of EMP. We
decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS shown in Figure D(b).
Both EMP PROJECTS and EMP_DEPENDENTS are in 4NF, because
ENAME→→PNAME is a trivial MVD in EMP PROJECTS and ENAME→→DNAME is a
trivial MVD in EMP_DEPENDENTS. In fact no nontrivial MVDS hold in either
EMP_PROJECTS or EMP_DEPENDENTS. No FDs hold in these relation schemas either.
 To illustrate why it is important to keep relations in 4NF, Figure E(a) shows the
EMP relation with an additional employee Brown who has three dependents (‘Jim’
‘Joan’, and ‘Bob) and works on four different projects (‘W’, ‘X’, ‘Y’) and ‘Z’). There are 16
tuples in EMP in figure E(a). I few decompose EMP into EMP_PROJECTS and
EMP_DEPENDENTS as shown in Figure E(b) we need only store a total of 11 tuples in
both relations. More ever these tuples are much smaller than the tuples in EMP. In
addition the update anomalies associated with multi-valued dependencies are avoided.
For example, if Brown starts working on another project, we must insert three tuples in
EMP – one for each dependent. If we forgot to insert any one of those, the relation
becomes inconsistent in that is incorrectly implies a relationship between project and
dependent. However only a single tuple need be inserted in the 4NF relation
EMP_PROJECTS. Similar problems occur with deletion and modification anomalies if a
relation is not in 4NF.

B.A. Part-II (Semester-IV) Paper : BAP-203 48

Figure E:

 The EMP relation in Figure D (a) is not in 4NF because it represents two independent
1: N relationships—one between employees and the projects they work on and the other
between employees and their dependents. We sometimes have a relationship between three
entities that depends on all three participating entities, such as the SUPPLY relation shown
in Figure D (c) (Consider only the tuple in Figure D(c) above the dotted line for now). In this
case a tuple represents a supplier supplying a specific part to a particular project, so there
are no nontrivial MVDs. The SUPPLY relation is already in 4NF and should not be
decomposed. Notice that relations containing nontrivial MVDs tend to be all key relations;
that is, their key is all their attributes taken together.
Lossless Join Decomposition into 4NF Relations

 Whenever we decomposed a relation schema R into R1 = (X U Y) and R2 = (R – Y) based
on an MVD X →→ Y that holds in R, the decomposition has the lossless join property. It can be
shown that this is a necessary and sufficient condition for decomposing a schema into two
schemas that have the lossless join property as given by property.

PROPERTY Lj1’

ENAME PNAME DNAME

Smith X John

Smith Y Anna

Smith X Anna

Smith Y John

Brown W Jim
Brown X Jim

Brown Y Jim

Brown Z Jim

Brown W Joan
Brown X Joan

Brown Y Joan

Brown Z Joan

Brown W Bob
Brown X Bob

Brown Y Bob

Brown Z Bob

EMP (a)

ENAME PNAME

Smith X

Smith Y

Brown W

Brown X

Brown Y

Brown Z

EMP_PROJECTS

ENAME DNAME

Smith John

Smith Anna

Brown Jim

Brown Joan

Brown Bob

EMP_DEPENDENTS

(b)

B.A. Part-II (Semester-IV) Paper : BAP-203 49

The relation schemas R1 and R2 form a lossless join decomposition of R if and
only if (R1 ∩ R2) →→ (R1 - R2) (or by symmetry, if and only if (R1 ∩ R2) →→ (R2 –
R1).

This is similar to property Lj1 of Section 2.3.1.3 except that Lj1 dealt with FDs only,
whereas Lj1’ deals with both FDs and MVDs. We can use algorithm below which
creates lossless join decomposition into relation schemas that are in 4NF(rather than
in BCNF). Algorithm below does not necessarily produce a decomposition that
preserves FDs.
ALGORITHM Lossless join decomposition into 4NF relations
 Set D :={ R};
 While there is a relation schemas Q in D that is not in 4NF do

 begin
 Choose a relation schema Q in D that is not in 4Nf;
 Find a nontrivial MVD X→→Y in Q that violates 4NF;
 Replace Q in D by two schemas (Q-Y) and (X U Y)

 End;
2.3.9 Join Dependencies and Fifth Normal Form

We saw that Lj1 and Lj1’ give the condition for a relation schemas R to be
decomposed into two schemas R1 and R2 where the decompositions has the lossless
join property. However in some cases there may be no lossless join decomposition into
two relation schemas but there may be a lossless join decomposition into more than
two relation schemas. These cases are handled by join dependency and fifth normal
form. It is important to note that these cases occur very rarely and are difficult to
detect in practice.
 A join dependency (JD) denoted by JD (R1, R2……….Rn) specified on relation
schema R, specifies a constraint on instances r of R. The constraint states that every
legal instance r of R should have a lossless join decomposition into R1, R2 ….. Rn that
is,
 * (Π<R1>(r), Π<R2>(r), …, Π<Rn>(r)) = r

Notice that a MVD is a special case of a JD where n=2. A join dependency JD(R1
R2,………Rn) specified on relation schema R, is a trivial if one of the relation schemas Ri
in JD(R1, R2…….Rn) is equal to R. Such dependency is called trivial because it has the
lossless join property for any relation instance r of R and hence does not specify any
constraint on R. We can now specify fifth normal form, which is also called project join
normal form. A relation schema R is in fifth normal form (5NF) (or project join normal
form (PJNF)) with respect to a set functional multi-valued and join dependencies if for
every nontrivial join dependency JD (R1, R2……..Rn) in F+ (that is implied by F) every R,
is a super-key of R.
 For an example of a consider once again the SUPPLY relation of Figure D (c). If it does
not have a lossless decomposition into any number of smaller tables. Suppose that the

B.A. Part-II (Semester-IV) Paper : BAP-203 50

following additional constraint always holds: Whenever a supplier supplies part p and a
project j uses part p and the supplies at least one part to project j, then supplier will also be
supplying part p to project j. This constraint can be restated in other ways and specifies a
join dependency JD (R1, R2, R3) among the three projections R (SNAME, PARTNAME), R2
(SNAME, PROJNAME) and R3 (PARTNAME, PROJNAME) of supply. If this constraint holds
the tuples below the dotted line in Figure D (c) must exist in any legal instance of the
SUPPLY relation with the join dependency is decomposed into three relations R1, R2 and R3
that are each in 5NF. Notice that applying NATURAL JOIN to any two of these relations
produces spurious tuples, but applying NATURAL JOIN to all three together does not. The
reader should verify this on the example relation of Figure D(c) and its projections in Figure
D(d). This is because only the JD exists but no MVDS are specified. Notice too that the JD
(R1, R2, R3) is specified on all legal relation instance not just on the one shown in Figure
D(c).
 Discovering JDs in practical data based with hundreds of attributes is difficult;
hence current practice of data base design pays scant attention to them.
2.3.10 Overall Database design process

 In Normalization we have assumed that we have a schema R, and proceeded to
normalize it. There are several ways in which we could have come up with the schema
R:

1. R could have been generated when converting an E-R Diagram to a set of
tables.

2. R could have been a single relation containing all the attributes that are
of interest. The normalization process breaks up R into smaller relations.

3. R could have been the result of some ad hoc design of relations, which we then
test to verify that it satisfies a desired normal form.

 No we examine the implications of these approaches and also the practical issues in
database design, including de-normalization for performance and example of bad database
design not detected by normalization.
E-R model and Normalization

We carefully define an E-R Diagram, identifying all entities correctly; the tables
generated from the E-R diagram should not need further normalization. However, there can
be functional dependencies between the attributes of an entity. For instance, suppose an
employee entity had attributes department-number and department-address, and there is a
functional dependency department-number → department-address. We would then need to
normalize the relation generated from employee.
 Most examples of such dependencies arise out of poor E-R diagram design. In
the above example, if we did the E-R diagram correctly, we would have created a
department entity with attribute department-address and a relationship between
employee and department. Similarly, a relationship involving two or more than two
entities many not be in a desirable normal form, since most relationships are binary,

B.A. Part-II (Semester-IV) Paper : BAP-203 51

such cases are relatively rare. (In fact, some E-R diagram variants actually make it
difficult or impossible to specify non-binary relations.).
 Functional dependencies can help us detect poor E-R design. If the generated
relations are not in desired normal form, the problem can be fixed in the E-R diagram.
That is normalization can be done formally as part of data modeling. Alternatively,
normalization can be left to the designer’s intuition during E-R modeling and can be
done formally on the relations generated from the E-R model.
The Universal Relation Approach

 The second approach to database design is to start with a single relation
schema containing all attributes of interest and decompose it. One of our goals in
choosing a decomposition was that it be a lossless-join decomposition. To consider
losslessness, we assumed that it is valid to talk about the join of all relations of the
decomposed database.
 Consider the database of Figure F, showing a decomposition of the loan-info
relation. The figure depicts a situation in which we have not yet determined the
amount of loan L-58, but wish to record the remainder of the data on the loan. If we
compute the natural join of these relations, we discover that all tuples referring to loan
L-58 disappear. In other words there is no loan-info relation corresponding to the
relations of Figure F. Tuples that disappear when we compute the join are dangling
tuples formally let r1(R1), r2(R2) ……, rn(Rn) be a set of relations. A tuple t of relation r is
a dangling tuple if t is not in the relation.
 Π Ri (r1 r2 … rn)
 Dangling tuples may occur in practical database applications. They represent
incomplete information, as they do in our example, where we wish to store data about a loan
that is still in the process of being negotiated. The relation r1 r2 … rn is called a
universal relation, since it involves all the attributes in the universe defined by R1 U R2 U … U
Rn.

Banch-name Loan-number

Round Hill L-58

Loan-number Amount

Loan-number Customer-name

L-58 Johnson
Figure F : Decomposition of loan-info.

 The only way that we can write a universal relation for the example of Figure F
is to include null values in the universal relation. We know that null values present
several difficulties. Because of them, it may be better to view the relations of the

B.A. Part-II (Semester-IV) Paper : BAP-203 52

decomposed design as representing the database, rather than as the universal relation
whose we decomposed during the normalization process.

 Note that we cannot enter all incomplete information into the database of Figure F
without resorting to null values. For example, we cannot enter a loan number unless we know
at least one of the followings:

 The customer name
 The branch name
 The amount of the loan

 Thus, a particular decomposition defines a restricted form of incomplete
information that is acceptable in our database.
 The normal forms that we defined generate good database design from the point
of view of representation of incomplete information. Returning again to the example of
Figure F we should not want to allow storage of the following fact. “There is a loan
(whose number is unknown) to Jones in the amount of $100.” This is because
 Loan-number → customer-name amount

 And therefore the only way that we can relate customer-name and amount is
through loan-number. If we do not know the loan number, we cannot distinguish this
loan from other loans with unknown numbers.
 In other words, we do not want to store data for which the key attributes are
unknown. Observe that the normal forms that we have defined do not allow us to store
that type of information unless we use null values. Thus our normal forms allow
representation of acceptable incomplete information via dangling tuples, while
prohibiting the storage of undesirable incomplete information.
 Another consequence of the universal relation approach to database design is
that attribute names must be unique in the universal relation. We cannot use name to
refer to both customer-name and to branch-name. It is generally preferable to use
unique names, as we have done. Nevertheless, if we defined our relation schemas
directly rather than in terms of a universal relation, we could relations on schemas
such as the following for our banking example:
 branch-loan (name, number)

 loan-customer (number, name)

 amt (number, amount)
 Observe that, with the preceding relations expressions such as branch-loan ∞
loan- customer are meaningless. Indeed the expression branch-loan ∞ loan-customer
finds loans made by branches to customers who have the same name as the name of
the branch.
 In a language such as SQL, however a query involving branch-loan and loan-
customer must remove ambiguity in references to name by prefixing the relation name.

B.A. Part-II (Semester-IV) Paper : BAP-203 53

In such environments, the multiple roles for name (as branch name and as customer
name) are less troublesome and may be simpler to use.
 We believe that using the unique-role assumption-that each attribute name has a
unique meaning in the database- is generally preferable to reusing of the same name in
multiple roles. When the unique role assumption is not made, the database designer must be
especially careful when constructing a normalized relational-database design.
De-normalization for Performance

Occasionally database designers choose a schema that has redundant
information; that is, it is not normalized. They use the redundancy to improve
performance for specific applications. The penalty paid for not using a normalized
schema is the extra work in terms of coding time and execution time) to keep
redundant data consistent.
 For instance, suppose that the name of an account holder has to be displayed
along with the account number and balance every time the account is accessed. In our
normalized schema, this requires a join of account with depositor.
 One alternative to computing the join on the fly is to store a relation containing all
the attribute of account and depositor. This makes displaying the account information faster.
However the balance information for an account is repeated for every person who owns the
account and all copies must be updated by the application, when ever the account balance
is updated. The process of taking a normalized schema and making it non0normalized is
called de-normalization, and designers use it to tune performance of systems to support
time-critical operations.
 A better alternative, supported by many database systems today, is to use the
normalized schema, and additionally store the join or account and depositor as a
materialized view. (Recall that a materialized view is a view whose result is stored in
the database, and brought up to date when the relations used in the view are updated.)
Like de-normalization, using materialized view does have space and time overheads;
however, it has the advantage that keeping the view up to date is the job of the
database system, not the application programmer.
Other Design Issues

 There are some aspects of database design that are not addressed by
normalization and can thus lead to bad database design. We give examples here
obviously, such designs should be avoided.
 Consider a company database, where we want to store earnings of companies in
different years. A relation earnings (company-id, year, amount) could be used to store
the earnings information. The only functional dependency on this relation is company-

id, year→ amount, and the relation is in BCNF.
 An alternative design is to use multiple relations, each storing the earnings for a
different year. Let us say the years of interest are 2000, 2001 and 2002; we would then have
relations of the form earnings-2000, earnings-2001, and earnings-2002, all of which are on

B.A. Part-II (Semester-IV) Paper : BAP-203 54

the schema (company-id, earnings). The only functional dependency here on each relation
would be company-id→ earnings so these relations are also in BCNF.
 However this alternative design is clearly a bad idea—we would have to create a new
relation every year, and would also have to write new queries every year, to take each new
relation into account. Queries would also be more complicated since they may have to refer
to many relations.
 Yet another way of representing the same data is to have a single relation
company-year (company-id, earnings-2000, earnings-2001, earnings-2002). Here the
only functional dependencies are from company-id to the other attributes, and again
the relation is in BCNF. This design is also a bad idea since it has problems similar to
the previous every year. Queries would also be more complicated, since they may have
to refer many attributes.
 Representations such as those in the company-year relation with one column for each
value on an attribute, are called crosstab; they are widely used in spreadsheets and reports and
in data analysis tolls. While such representations are useful for display to users, for the reasons
just given, they are not desirable in a database design SQL extensions have been proposed to
convert data from a normal relational representation to a crosstab, for display.
2.3.11 Summary

 Normalization is a design technique that is widely used as a guide in designing
relational databases. It is a process of decomposing a relation into relation(s) with fewer
attributes by minimizing the redundancy of data and minimizing insertion, deletion and
updation anomalies. It may be defined as step by step reversible process of transforming an
unnormalized relation into relations with progressively simpler structures. The relation is in
first normal form if all the attribute values are atomic and non decomposable. A relation is in
2NF if it is in 1 NF and non key attributes should be fully functionally dependent on the
primary key. A relation is in 3 NF if it is 2 NF and non key attributes should not be
transitively functionally dependent on Primary key. A relation is in BCNF if and only if every
determinant is a candidate key. A relation is 4 NF if it is in BCNF and it contains no
multivalued dependencies. And finaly a relation is in 5NF or Project Join Normal form if it
cannot have a lossless decomposition into any number of smaller tables.
2.3.12 Self Understanding:

1. What do you mean by Normalization? Why there is a need for
normalization?

2. Explain First, Second and third Normal Forms with the help of examples.
3. Explain Boyce-Codd Normal Form with example. How it is different from

3rd Normal Norm?
4. Does every relation having two attributes satisfy Boye Codd Normal form? If

Yes, justify your answer giving suitable example.
5. Define Multi-valued dependency giving example.
6. Explain Fourth Normal form with example.

B.A. Part-II (Semester-IV) Paper : BAP-203 55

7. Define Join Dependency with example.
8. Explain fifth Normal form using Join Dependency using suitable

example.
9. Explain the various insert, update and delete anomalies in various

normal forms.
2.3.13 Further Readings:

1. Bipin C. Desai, An introduction to Database System, Galgotia Publication,
New Delhi.

2. C. J. Date, An introduction to database Systems, Sixth Edition, Addison
Wesley.

3. Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database

Systems, Addison Wesley.

B.A. Part-II

SEMESTER-IV

Paper : BAP-203

DATA BASE MANAGEMENT SYSTEM

LESSON NO. 2.4 AUTHOR : VISHAL GOYAL

DATABASE INEGRITY AND RECOVERY

Structure:

2.4.0 Introduction

2.4.1 Objectives

2.4.2 Database Integrity

2.4.3 Database Recovery

2.4.4 Summary

2.4.5 Self Understanding

2.4.6 Further Readings

2.4.0 Introduction:

 After completing the database we need to take measures for protecting the

database. For protecting the database we have to take care of database integrity and in

the coming section we will study the various methods for maintaining the integrity of

the database. Database Protection also includes data recovery that means if database

get corrupted due to some reasons like Hard Disk failure or other reasons – how to

recover the database.

2.4.1 Objectives

 After completing this lesson, you will be able to:

 Understand database Integrity

 Understand database recovery

2.4.2 Database Integrity

 The term integrity refers to the correctness or accuracy of data in database. Integrity

constraints ensure that changes made to the database by authorized users do not result in a

loss of data consistency. Thus integrity constraints guard against accidental damage to the

database.

 We have already seen two forms of integrity constraints:

 Key declarations – the stipulation that certain attributes form a

candidate key for a given entity set.

 Form of a relationship- many to many, one to many, one to one.

 In general, an integrity constraint can be an arbitrary predicate pertaining to the

database. However arbitrary predicates may be costly to test. Thus we concentrate on

integrity constraints that can be tested with minimal overhead. In addition to protecting

against accidental introduction of inconsistency, the data stored in the database needs to be

protected from unauthorized access and malicious destruction or alteration.

B.A. Part-II (Semester-IV) Paper : BAP-203 57

2.4.2.1 Domain Constraints

 Domain Constraints state that a range of possible values must be associated

with every attribute. There are a number of standard domain types, such as integer

types, character types and date/time types defined in SQL. Declaring an attribute to be

of a particular domain acts as a constraint on the values that it can take. Domain

constraints are the most elementary form of integrity constraint. They are tested easily

by the system whenever a new data item is entered into the database.

 It is possible for several attributes to have the same domain. For example the

attribute customer-name and employee-name might have the same domain: the set of

all person names. However, the domains of balance and branch-name certainly ought

to be distinct. It is perhaps less clear whether customer-name and branch-name should

have the same domain. At the implementation level both customer names and branch

names are character strings. However we would normally not consider the query “Find

all customers who have the same name as a branch” to be a meaningful query. Thus if

we view the database at the conceptual, rather than the physical level, customer-name

and branch-name should have distinct domains.

 From the above discussion, we can see that a proper definition of domain

constraint not only allows us to test values inserted in the database, but also permits

us to test queries to ensure that the comparisons made make sense. The principle

behind attribute domains is similar to that typing of variables in programming

languages. Strongly typed programming languages allow the compiler to check the

program in greater detail.

 The create domain clause can be used to define new domains. For example the

statements:

 create domain Dollars numeric (12,2)

 create domain Pounds numeric (12,2)

define the domains Dollars and Pounds to be decimal numbers with a total of 12 digits,

two of which are placed after the decimal point. An attempt to assign a value of type

Dollars to a variable of type Ponds would result in a syntax error, although both are of

the same numeric type. Such an assignment is likely to be due to programmer error,

where the programmer forgot about the differences in currency. Declaring different

domains for different currencies helps catch such errors.

 Values of one domain can be cast (that is, converted) to another domain. If the

attribute A in relation r is of type Dollars, we can convert it to Pounds by writing

 cast r.A as Pounds

 In a real application we would of course multiply r.A by a currency conversion

facts before casting it to pounds. SQL also provides drop domain and after domain

clauses to drop or modify or modify domains that have been created earlier.

 The check clause in SQL permits domains to be restricted in powerful ways that

most programming language type systems do not permit. Specifically the check clause

B.A. Part-II (Semester-IV) Paper : BAP-203 58

permits the schema designer to specify a predicate that must be satisfied by any value

assigned to a variable whose type is the domain. For instance a check clause can

ensure that an hourly wage domain allows only values greater than a specified value

(such as the minimum wage):

 create domain HourlyWage numeric(5,2)

 constraint wage-value-test check (value >=4.00)

 The domain HourlyWage has constraint that ensures that the hourly wage is greater

than 4.00. The clause constraint wage-value-test is optional, and is used to give the name

wage-value-test to the constraint. The name is used to indicate which constraint an update

violated.

 The check can also be used to restrict a domain to not contain any null values:

 create domain AccountNumber char(10)

 constraint account-number-test check (value not null)

 Another example, the domain can be restricted to contain only a specified set of

values by using the in clause:

 create domain Account type char(10)

 constraint account-type-test

check (value in (‘Checking’, ‘Saving’))

 The preceding check conditions can be tested quite easily when a tuple is

inserted or modified. However in general the check conditions can be more complex

(and harder to check), since sub queries that refer to other relations are permitted in

the check condition. For example this constraint could be specified on the relation

deposit.

 check (branch-name in (select branch-name from branch))

 The check condition verifies that the branch-name in each tuple in the deposit

relation is actually the name of a branch in the branch relation. Thus the condition has to

be checked not only when a tuple is inserted or modified in deposit but also when the

relation branch changes (in this case, when a tuple is deleted or modified in relation

branch).

 The preceding constraint is actually an example of a class of constraints called

referential-integrity constraints.

 Complex check conditions can be useful when we want to ensure integrity of

data but we should use them with care, since they may be costly to test.

2.4.2.2 Referential Integrity

Often, we wish to ensure that a value that appears in one relation for a given set

of attributes also appears for a certain set of attributes in another relation. This

condition is called referential integrity

Basic Concepts

 Consider a pair of relations r(R) and s(S) and the natural join r s. There may

be a tuple tr in r that does not join with any tuple in s. That is, there is no ts in s such

B.A. Part-II (Semester-IV) Paper : BAP-203 59

that tr [R ∩ S] = ts [R ∩ S]. Such tuples are called dangling tuples. Depending on the

entity set or relationship set being modeled dangling tuples may or may not be

acceptable.

 Suppose there is a tuple t1 in the account relation with t1[branch-name] =

"Lunartown" but there is no tuple in the branch relation for the “Lunartown” branch.

This situation would be undersirable. We expect the branch relation to list all bank

branches. Therefore tuple t1 would refer to an account at a branch that does not exist.

Clearly we would like to have an integrity constraint that prohibits dangling tuples of

this sort.

 Not all instances of dangling tuples are undersirable however. Assume that there is a

tuple t2 in the branch relation with t2 [branch-name] = “Mokan” but there is no tuple in the

account relation for the Mokan branch. In this case a branch exists that has no accounts.

Although this situation is not common it may arise when a branch is opened or its about to

close. Thus we do not want to prohibit this situation.

 The distinction between these two examples arises from two facts.

 The attribute branch-name in Account schema is a foreign key

referencing the primary key of Branch schema.

 The attribute branch name in Branch schema is not a foreign key. (Recall

that a foreign key is a set attribute in a relation schema that forms a primary

key for another schema.)

 In the Lunartown example, tuple t1 in account has a value on the foreign key branch-

name that does not appear in branch. In the Mokan-branch example tuple t2 in branch has a

value on branch-name that does not appear in account, but branch-name is not a foreign key.

Thus the distinction between our two examples of dangling tuples is the presence of a foreign

key.

 Let r1 (R1) and r2 (R2) be relations with primary keys K1 and K2 respectively. We

say that a subset α of R2 is a foreign key referencing K1 in relation r1 if it is required

that for every t2 in r2 there must be a tuple t1 in r1 such that t1 [K1] = t2 [α].

Requirements of this form are called referential integrity constraints or subset

dependencies. The latter term arises because the preceding referential-integrity

constraint can be written as Πα (r2) ≤ ΠK1(r1). Note that for a referential-integrity

constraint to make sense either must be equal to K1 or α and K1 must be compatible

sets of attributes.

2.4.2.3 Referential Integrity and the E-R Model

 Referential-integrity constraints arise frequently. If we derive our relational-

database schema by constructing tables from E-R diagrams, then every relation arising

from a relationship set has referential-integrity constraints. Figure below shows an n-

ary relationship set R, relating entity sets E1, E2, … ,En. Let Ki denote the primary key

of Ei. The attributes of the relation schema for relationship set R include K1 U K2 U ...

B.A. Part-II (Semester-IV) Paper : BAP-203 60

U Kn. The following referential integrity constraints are then present: For each i, Ki in

the schema for R is a foreign key referential Ki in the relation schema generated from

entity set Ei.

An n-ary relationship set

Another source of referential-integrity constraints is weak entity sets. Recall

that the relation schema for a weak entity set must include the primary key of the

entity set on which the weak entity set depends. Thus the relation schema for each

weak entity set includes a foreign key that leads to a referential integrity constraint.

2.4.2.4 Database Modification

 Database modifications can cause violations of referential integrity. We list here

the test that we must make each type of database modification to preserve the

following referential integrity constraint:

 Πα (r2) ≤ Πk (r1)

 Insert. If a tuple t2 is inserted into r2, the system must ensure that there

is a tuple t1 in r1 such that t1 [K] = t2[α]

 t2[α] ε Πk (r1)

 Delete. If a tuple t1 is deleted from r1 the system must compute the set

of tuples in r2 that reference t1:

 σα = t1[k] (r2)

 If this set is not empty, either the delete command is rejected as an error, or the

tuples that reference t1 must themselves be deleted. The latter solution may lead to

cascading deletions, since tuples may reference tuples that reference t1 and so on.

Update : We must consider two cases for update: updates to the referencing relation

and updates to the referenced relation (r1).

E1

E2

En-1

En

R
.
.
.

B.A. Part-II (Semester-IV) Paper : BAP-203 61

 If a tuple t2 is updated in relation r2 and the update modifies values for

the foreign key then a test similar to the insert case is made. Let t2'

denote the new value of tuple t2. The system must ensure that

t2'[a] ε Πk (r1)

 If a tuple t1 is updated in r1 and the update modifies values for the

primary key (K), then a test similar to the delete case is made. The

system must compute.

σα =t1[K] (r2)

using the old value of t1 (the value before the update is applied). If this set is not

empty, the update is rejected as an error or the update is cascaded in a manner similar

to delete.

2.4.2.5 Referential Integrity in SQL

Foreign keys can be specified as part of the SQL create table statement by

using the foreign key clause. We illustrate foreign-key declarations by using the SQL

DDL definition of part of our bank database shown in Figure K.

 By default a foreign key references the primary key attributes of the referenced

table. SQL also supports a version of the references clause where a list of attributes of

the referenced relation can be specified explicitly. The specified list of attributes must

be declared as a candidate key of the referenced relation

 We can use the following short form as part of an attribute definition to declare

that the attribute forms a foreign key:

 branch-name char(15) references branch

 When a referential-integrity constraint is violated, the normal procedure is to reject the

action that caused the violation. However a foreign key clause can specify that if a delete or

update action on the referenced relation violates the constraint, then instead of rejecting the

action, the system must take steps to change the tuple in the constraint on the relation

account:

 create table account

 (…

 Foreign key (branch-name) references branch

 on delete cascade

 on update cascade,

 …)

B.A. Part-II (Semester-IV) Paper : BAP-203 62

Figure K: SQL data definition for part of the bank database

 Because of the clause on delete cascade associated with the foreign key

declaration if a delete of a tuple in branch results in this referential integrity constraint

being violated the system does not reject the delete. Instead the delete "cascades" to the

accout relation, deleting the tuple that refer to the branch tuple that was deleted.

Similarly, the system does not reject an update to a field referenced by the constraint

even if it violates the constraint; instead the system updates the field branch-name of

the referencing tuples in account to the new value as well. SQL also allows the foreign

key clause to specify actions other than cascade, if the constraint is violated. The

referencing field (here, branch-name) can be set to null (by using set null in place of

cascade), or to the default value for the domain (by using set default).

 If there is a chain of foreign key dependencies across multiple relations, a

deletion or update at one end of the chain can propagate across the entire chain. An

interesting case where the foreign key constraint on a relation references the same

relation appears in Exercise. If a cascading update or delete cause a constraint

create table customer

 (customer-name char(20)

 customer-street char(30)

 customer-city char(30)

 primary key (customer-name))

create table branch

 (branch-name char(15)

 branch-street char(30)

 assets integer

 primary key (branch-name)

 check (assets >=0))

create table account

 (account-number char(10)

 branch-name char(15)

 balance integer

 primary key (account-number)

 foreign key (branch-name) references branch,

check (balance >=0))

create table depositor

 (customer-name char(20)

 account-number char(10)

 primary key (customer-name, account-number)

 foreign key (customer-name) references customer,

 foreign key (account-number) references account)

B.A. Part-II (Semester-IV) Paper : BAP-203 63

violation that cannot be handled by a further cascading operation, the system aborts

the transaction. As a result, all the changes caused by the transaction and its

cascading actions are undone.

 Null values complicate the semantics of referential integrity constraint in SQL.

Attributes of foreign keys are allowed to be null, provided that they have not other wise

been declared to be non-null. If all the columns of a foreign key are non-null in a given

tuple, the usual definition of foreign key constraint is used for that tuple. If any of the

foreign key columns is null, the tuple is defined automatically to satisfy the constraint.

 This definition may not always be the right choice, so SQL also provides

constructs that allow you to change the behavior with null values, we do not discuss

the constructs here. To avoid such complexity, it is best to ensure that all columns of a

foreign key specification are declared to be non-null.

 Transactions may consist of several steps, and integrity may be violated

temporarily after one step but a later step may remove the violation. For instance,

suppose we have a relation-married person with primary key-name, and an attribute

spouse, and suppose that spouse is a foreign key on married person. That is the

constraint says that the spouse attribute must contain a name that is present in the

person table. Suppose we wish to note the fact that John and Mary are married to

each other by inserting two tuples one for John and one for Mary in the above relation.

The insertion of the first tuple violate the foreign key constraint, regardless of which of

the two tuples is inserted first. After the second is inserted the foreign key constraint

would hold again.

 To handle such situations integrity constraints are checked at the end of a

transaction and not at intermediate steps.

2.4.2.6 Assertions

 An Assertion is a predicate expressing a conditions that we wish the database

always to satisfy. Domain constraint and referential integrity constraints are special

forms of assertions. We have paid substantial attention to these forms of assertions

because they are easily tested and apply to a wide range of database applications.

However there are many constraints that we cannot express by using only these special

forms. Two examples of such constraints are:

 The sum of all loan amounts for each branch must be less than the sum

of all account balances at the branch.

 Every has at least one customer who maintains an account with a

minimum balance of $1000.00.

 An assertion in SQL takes the form

 create assertion <assertion-name> check <predicate>

 Here is how the two examples of constraints can be written. Since SQL does not

provide a "for all X P (X)" construct (where P is a predicate) we are forced to implement

B.A. Part-II (Semester-IV) Paper : BAP-203 64

the construct by an equivalent "not exists X" such that not P(X) construct which can be

written in SQL. We write

 create assertion sum-constraint check

 (not exists (select * from branch

 where (select sum (amount) from loan

 where loan. branch-name = branch.branch-name)

 >=(select sum (balance) from account

 where account.branch-name = branch,branch-name)))

 create assertion balance-constraint check

 (not exists (select * from loan

 where not exists(select *

 from borrower, depositor, account

 where loan.loan-number = borrower.loan-number

 and borrower.costomer-name = depositor.customer-name

 and depositor.account-number = account.account-number

 and account.balance >= 1000)))

 When an assertion is created, the system tests it for validity. If the assertion is

valid, then any future modification to the database is allowed only if it does not cause

that assertion to be violated. This testing may introduce a significant amount of

overhead if complex assertions have been made. Hence, assertions should be used with

great care. The high overhead of testing and maintaining assertions has led some

system developers to omit support for general assertions, or to provide specialized

forms of assertions that are easier to test.

2.4.3 Database Recovery

 Recovery in database system means, primarily, recovering the database itself:

that is, restoring the database to a state that is known to be correct (or rather,

consistent) after some failure has rendered the current state inconsistent.

2.4.3.1 Transactions

 We begin our discussions by examining the fundamental notion of a

transaction. A transaction is a logical unit of work. Consider the following example.

Suppose the parts relation P includes an additional attribute TOTQTY, representing the

total shipment quantity for the part in question; in other words, the value of TOTQTY

for any given part is supposed to be equal to the sum of all QTY values, taken over all

shipments for that part. Now consider the pseudocode procedure shown in Figure

below, the intent of which is to add a new shipment for supplier S5 and part P1, with

quantity 1000, to the database (the INSERT inserts the new shipment, the UPDATE

updates the TOTQTY value for part P1 accordingly).

B.A. Part-II (Semester-IV) Paper : BAP-203 65

 The point of the example is that what is presumably intended to be a single

atomic operation- “add a new shipment”- in fact involves two updates to the database,

one INSERT operation and one UPDATE operation. What is more, the database is not

even consistent between those two updates; it temporarily violates the constraint that

the value of TOTQTY for part P1 is supposed to be equal to the sum of all QTY values

for part P1. Thus a logical unit of work (i.e., a transaction) is not necessarily just a

single database operation; rather, it is a sequence of several such operations, in

general that transforms a consistent state of the database into another consistent

state, without necessarily preserving consistency at all intermediate points.

 Now, it is clear that what must not be allowed to happen in the example is for

one of the updates to be executed and the other not, because that would leave the

database in an inconsistent state. Ideally of course we would like a cast iron guarantee

that both updates will be executed. Unfortunately, it is impossible to provide such a

guarantee-there is always a chance that things will go wrong, and go wrong moreover

at the worst possible moment. For example, a system crash occur between the INSERT

and the UPDATE, or an arithmetic overflow might occur on the UPDATE, etc. But a

system that support transaction management does provide the next best thing to such

a guarantee. Specifically, it guarantees that if the transaction reaches some updates

and then a failure occurs (for whatever reason) before the transaction reaches its

planned termination, then those updates will be undone. Thus the transaction either

executes in its entirety or is totally canceled i.e. made as if it never executed at all. In

BEGIN TRANSACTION;

INSERT INTO SP
 RELATION { TUPLE {S# S# (‘S5’),
 P# P# (‘P1’),
 QTY QYT (1000) } } ;
IF any error occurred THEN GO TO UNDO; END IF;

UPDATE P WHERE P# = P# (‘P1’)
 TOTQTY := TOTQTY + QTY (1000);
IF any error occurred THEN GO TO UNDO; END IF;

COMMIT;
GO TO FINISH;

UNDO:
 ROLLBACK;

FINISH:
 RETURN;

B.A. Part-II (Semester-IV) Paper : BAP-203 66

this way, a sequence of operations that is fundamentally not atomic can be made to

look as if it were atomic from an external point of view.

 The system component that provides this atomicity- or resemblance of

atomicity- is known as the transaction manager (also known as the transaction

processing monitor or TP monitor) and the COMMIT and ROLLBACK operations are

the keep to the way it works;

 The COMMIT operation signals successful end of transaction; it tells the

transaction manager that a logical unit of work has been successfully

completed and the database is (or should be) in a consistent state again

and all of the updates made by that unit of work can now be committed

or made permanent.

 By contrast the ROLLBACK operation signals unsuccessful end of

transaction; it tells the transaction manager that something has gone

wrong. The database might be in an inconsistent state and all of the

updates made by the logical unit of work so far must be rolled back or

undone.

 In the example therefore we issue a COMMIT if we get through the two updates

successfully which will commit the changes in the data base and make them

permanent. If any thing goes wrong however- i.e., if either of the updates raises an

error condition- then we issue a ROLLBACK instead to undo any changes made so far.

Note: Even if we issue a commit instead the system should in principal check the

database integrity constraint. It detects the fact that the database is inconsistent and

force a ROLLBACK any way. However we don’t assume that the system is aware of all

pertinent constraint and so the users issued ROLLBACK is necessary. Commercial

DBMSs do not do very much COMMIT time integrity checking at the time of writing.

 Incidentally we should point out that a realistic application will not only update

the database (or attempt to) but will also send some kind of message back to the end

user indicating what has happened. In the example we might send the message

shipment added if the COMMIT is reached or the message error shipment not added

otherwise. Message handling in turn has additional implications for recovery.

Note: At this juncture you might be wondering how it is possible to undo and

update. The answer of course is that the system maintains a log or journal on tape or

(more commonly) disk on which details of all updates- in particular before and images

of the updated objects- are recorded. Thus, if it becomes necessary to undo some

particular update the system can use the corresponding log entry to restore the

updated object to its previous value.

 (Actually the fore going paragraph is somewhat over simplified . In practice the

log will consist of two portions an active or online portion and an archive or offline

portion. The online portion is used during normal system operation to record details of

B.A. Part-II (Semester-IV) Paper : BAP-203 67

updates as they are performed and is normally held on disk. When the online portion

becomes full its contents are transferred to the offline portion which- because it is

always processed sequentially- can be held on the tape.

 One further point; the system must guarantee that individual statements are

themselves atomic (all or nothing). This consideration becomes particularly significant

in relational system, where statements are set-level and typically operate on many

tuples at a time; it must not be possible for such a statement to fail in the middle and

leave the database in an inconsistent state (e.g. with some tuples update and some

not). In other words if an error does occur in the middle of such a statement, then the

database must remain totally unchanged.

2.4.3.2 Transaction Recovery

 A transaction begins with successful execution of a BEGIN TRANSACTION statement

and it ends with successful execution of either COMMIT or a ROLLBACK statement.

COMMIT establishes what is called, among many other things, a commit point (also

especially in commercial products-known as a synch point). A commit point thus

corresponds to the end of a logical unit of work, and hence to a point at which the database

is or should be in a consistent state. ROLLBACK, by constraint rolls the database back to

the state it was in at BEGIN TRANSACTION which effectively means back to the previous

commit point. (The phrase “the previous commit point” is still accurate, even in the case of

the first transaction in the program, if we agree to think of he first BEGIN TRANSACTION in

the program as tacitly establishing an initial “ commit point”.

Note: Throughput this section the term “database” really means just that portion of the

database being accessed by the transaction under consideration. Other transactions

might be executing in parallel with that transaction and making changes to their own

portions, and so “the total database” might not be in a fully consistent state at a

commit point. However we are ignoring the possibility does not materially affect the

issue at hand, of course.

When a commit point is established:

1 All updates made by the executing program since the previous commit

points are committed; that is, they are made permanent. Prior to the

commit point, all such updates should be regarded as tentative only—

tentative in the sense that they might subsequently be undone (i.e. rolled

back). Once committed an update is guaranteed never to be undone (this

is the definition of “ committed”).

2 All database positioning is lost and all tuple locks are released.

“Database poisoning” here refers to the idea that at any given time an

executing program will typically have address ability to certain tuples

(e.g., via certain cursors in the case of SQL, this address ability is lost at

a commit point. “Tuple locks” are explained in the next chapter. Note

some systems do provide an option by which the program in fact might

B.A. Part-II (Semester-IV) Paper : BAP-203 68

be able to retain address ability to certain tuples (and therefore retain

certain tuple locks) from one transaction to the next.

Paragraph 2 here – excluding the remark about possibly retaining some address

ability and hence possibly retaining certain tuple locks—also applies if a transaction

terminates with ROLLBACK instead of COMMIT. Paragraph 1 of course does not.

Note carefully that COMMIT and ROLLBACK terminate the transaction, not the

program. In general a single program execution will consist of a sequence of several

transactions running one after another, as illustrated in Figure below:

Program execution is a sequence of transactions

Now let us return to the example of the previous section. In that example we

include explicit tests for errors, and issued an explicit ROLLBACK if any error was

detected. But of course the system cannot assume that application programs will

always include explicit tests for all possible errors. Therefore the system will issue an

implicit ROLLBACK for any transaction that fails for any reason to reach its planned

termination (where “planned termination” means either an explicit COMMIT or an

explicit ROLLBACK).

We can now see therefore, that transactions are not only the unit of works but

also the unit of recovery. For if a transaction successfully commits, then the system

will guarantee that its updates will be permanently installed in the database, even if

the system crashed the very next moment. It is quite possible, for instance, that the

system might crash after the COMMIT has been honored but before the updates have

been physically written to the database- they might still be waiting in a main memory

buffer and so be lost at the time of crash. Even if that happens the system’s restart

procedure will still install those updates in the database; it is able to discover the

Program

Initiation

Program

Termination

BEGIN

TRANSACTION
COMMIT

BEGIN

TRANSACTION

BEGIN

TRANSACTION

1st TRANSACTION

2nd TRANSACTION (cancelled)

3rd TRANSACTION

COMMIT

ROLLBACK

B.A. Part-II (Semester-IV) Paper : BAP-203 69

values to be written by examine the relevant entries in the log. (it follows that the log

must be physically written before COMMIT processing can complete- the write ahead

log rule.) Thus the restart procedure will recover any transactions that completed

successfully but did not manage to get their updates physically written prior to the

crash; hence as stated earlier transaction are in deed the unit of recovery.

Note: In the next chapter we will see there is a unit on concurrency also.

Further since they are supposed to transform a consistent state of the database in to

another consistent state they can also be regarded as a unit of integrity.

2.4.3.3 The ACID Properties

 Transactions have four important properties- atomicity, consistency, isolation and

durability (referred to colloquially as “the ACID properties”)

 Atomicity: Transaction are atomic (all or nothing)

 Consistency: Transaction preserves database consistency. That is a

transaction transforms a consistent state of the database in to another

consistent state without necessarily preserving consistency at all

intermediate points.

 Isolation: Transactions are isolated from one another. That is even

though in general there will be many transactions running concurrently

at any given transaction updates are concealed from all the rest until

that transaction commits. Another way of seeing the same thing of that

for any two distinct transactions T1 and T2, T1 might see T2’s updates

(after T2 has committed) or T2 might see T1’s updates (after T1 has

committed) but certainly not both.

 Durability: Once a transaction commits it updates survive in a database

even if there is subsequent system crash.

2.4.3.4 System Recovery

 The system must be prepared to recover not only from purely local failures such

as occurrence of an over flow condition with in an individual transaction but also from

“Global” failures such as power outage. A local failure by definition effects only the

transaction in which the failure has actually occurred. A global failure, by contrast,

affects all of the transactions in progress at the time of failure and hence has

significant system wide implications. In this section and the next we briefly consider

what is involved in recovering from a global failure. Such failures fall in to two

categories :

 System failures: (e.g., power outage), which effect all transactions, currently in

progress but do not physically damage the database. A system failure is some

times called a soft crash.

 Media failures: (e.g. head crash on disk), which do cause damage to the

database or to some portion of it and effect at least those transactions

B.A. Part-II (Semester-IV) Paper : BAP-203 70

currently using that portion. A media failure is sometimes called a hard

crash.

 The key point regarding system failure is that the contents of main memory are

lost (in particular the database buffers are lost). The precise state of any transaction

can therefore never been successfully completed and so must be undone- i.e. rolled

back- when the system restarts.

 Further more it might also be necessary to re do certain transactions at restart

time that did successfully complete prior to the crash but did not manage to get their

updates transferred from the database buffers to the physical database.

 The obvious question therefore arises; how does the system know at restart time

which transactions to undo and which to redo? The answer is as follows. At certain

prescribed intervals typically whenever some prescribed numbers of entries have been

written to the log- the system automatically take a check point. Taking a check point

involves (a.) Physically writing “(force writing”) the content of the database buffers out

to the physical database and (b) physically writing a special check point record out to

the physical log. The check point record gives a list of all transactions that were in

progress at the time the check point was taken. To see how this information is used

consider the following Figure which is read as follows(note that time in the fig. Flows

from left to right)

 A system failure has occurred at time tf.

 The most recent check point prior to time tf was taken at a time tc.

 Transaction of type t1 completed prior to time tc.

 Transaction of type T2 started prior to time tc and completed after time

tc and before time tf.

 Transaction of type T3 also started prior to time tc but did not complete

by time tf.

 Transaction of type T4 started after time tc and completed before time tf.

 Finally transaction of type T5 also started after time tc but did not

complete by time tf.

B.A. Part-II (Semester-IV) Paper : BAP-203 71

Five transaction categories

 It should be clear that when the system is restarted transaction of type T3 and

T5 must be undone, and transaction of types T2 and T4 must be redone. Note however

that transactions of type T1 do not enter in to the restart process at all because its

updates were forced to the database at time tc as part of the check point process. Note

two that transaction that completed unsuccessfully (i.e. with the rollback) before time

tf also do not enter into the restart process at all(why not?).

 At restart time therefore the system first goes through the following procedure in

ordered to identify all transaction of types T2 to T5;

1 Start with two lists of transactions the undo list and the redo list. Set the

undo list equal to the list of all transactions given in the most recent check

point record; set the redo list is empty.

2 Search forward through the log starting from the check point record.

3 If a BEGIN TRANSACTION log entry is found for transaction T add T to

the undo list.

4 If COMMIT log entries found for transaction T move T from the UNDO list

to the REDO list.

5 When the end of log is reached the UNDO and REDO list, identify

respectively transactions of types T3 and T5 and transaction of types T2

and T4.

 The system now works backward through the log undoing the transactions in

the UNDO list; then it works forward again redoing in the transaction in the REDO list.

Note: Restoring the database to consistent state by undoing work is some times called

Time tc tf

T1

T2

T3

T4

T5

T

r

a

n

s

a

c

t

i

o

n

s

Checkpoint

(time tc)

System Failure

 (time tf)

B.A. Part-II (Semester-IV) Paper : BAP-203 72

backward recovery. Similarly restoring it to a consistent state by redoing work is some

times called forward recovery.

 Finally when all such recovery activities are complete, then (and only then) the

system is ready to accept new work.

2.4.3.5 Media Recovery

 A media failure is a failure such as a disk head crash or a disk controller failure

in which some portion of a database has been physically destroyed. A recovery from

such a failure basically involves reloading (or restoring) the database from a backup

copy (or dump) and then using the log; both active and achieve portions in general – to

redo all transactions that completed since that backup copy was taken. There is no

need to undo transactions that were still in progress at the time of the failure since by

definition all updates of such transactions have been undone (actually lost) any way.

 The need to be able to perform media recovery implies the need for a

dump/restore (or unload/reload) utility. The dump portion of that utility is used to

make backup copies of the database on demand. (such copy can be kept on tape or

other archival storage; it is not necessary that they be on direct access media). After a

media failure the restore portion of the utility is used to recreate the database from a

specified backup copy.

2.4.4 Summary

 The term integrity refers to the correctness or accuracy of data in database. Integrity

constraints ensure that changes made to the database by authorized users do not result in a

loss of data consistency. In general an integrity constraint can be an arbitrary predicate

pertaining to the database. Domain constraints are the most elementary form of integrity

constraint. Often, we wish to ensure that a value that appears in one relation for a given set

of attributes also appears for a certain set of attributes in another relation. This condition is

called referential integrity. Recovery in database system means, primarily, recovering the

database itself: that is, restoring the database to a state that is known to be correct (or

rather, consistent) after some failure has rendered the current state inconsistent.

Transactions have four important properties- atomicity, consistency, isolation and durability.

The system must be prepared to recover not only from purely local failures such as

occurrence of and over flow condition with in an individual transaction but also from

“Global” failures such as power outage. A media failure is a failure such as a disk head

crash or a disk controller failure in which some portion of a database has been physically

destroyed.

2.4.5 Self Understanding:

1. What do you understand by data integrity? Explain various types of

integrity constraints along with suitable example.

2. What do you understand by database recovery? Explain various types of

recovery techniques.

B.A. Part-II (Semester-IV) Paper : BAP-203 73

3. What do you understand by a transaction? Explain the ACID properties

of transactions.

2.4.6 Further Readings:

1. Bipin C. Desai, An introduction to Database System, Galgotia Publication,

New Delhi.

2. C. J. Date, An introduction to database Systems, Sixth Edition, Addison

Wesley.

3. Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database

Systems, Addison Wesley.

B.A. Part-II

SEMESTER-IV

Paper : BAP-203

DATA BASE MANAGEMENT SYSTEM

LESSON NO. 2.5 AUTHOR : VISHAL GOYAL

DATA BASE SECURITY

Structure:

2.5.0 Introduction

2.5.1 Objectives

2.5.2 Database Security

2.5.3 Authorization

2.5.4 Encryption and Authentication

2.5.5 Methods of implementing Security

2.5.6 Self Understanding

2.5.7 Further Readings

2.5.0 Introduction

 Database Security is a crucial issue in the database management system as it

contain important information which is very valuable and sensitive for an organization’s

database. Security in a database involves both policies and mechanisms to protect the data

from unauthorized users to access and update. Authorization is a process of permitting

users to perform certain operations on certain data objects in a shared database.

Authorization is a process of granting a right or a privilege that enables user to have some

rights to access a system or a system object. The various provisions that a database system

may make for authorization may still not provide sufficient protection for highly sensitive

data. In such cases data may be stored in encrypted form. It is not possible for encrypted

data to be read unless the reader knows how to decipher (decrypt) them. Encryption also

forms the basis of good schemes for authenticating users to a database. Authentication

refers to the task of verifying the identity of a person/software connecting to a database. In

the following sections we will study in details how database can be made secure.

2.5.1 Objective

 After reading the lesson, we will be able to

 Learn about the database security

 Understand authorization

 Understand Authentication

 Understand various Encryption techniques

 Understand various methods of implementing database security

2.5.2 Database Security

 The data stored in the database need protection from unauthorized access and

malicious destruction or alteration, in addition to the protection against accidental

introduction of inconsistency that integrity constraints provide. In this section, we

B.A. Part-II (Semester-IV) Paper : BAP-203 75

examine the ways in which data may be misused or intentionally made inconsistent.

We then present mechanisms to guard against such occurrences.

 Security Violations among the forms of malicious access are :

 Unauthorized reading of data (theft of information)

 Unauthorized modification of data

 Unauthorized destruction of data

Database security refers to protection from malicious access. Absolute protection of

the database from malicious abuse is not possible, but the cost to the perpetrator can

be made high enough to deter most if not all attempts to access the database without

proper authority.

 To protect the database, we must take security measures at several levels.

 Database system. Some database users may be authorized to access only a

limited portion of the database. Other users may be allowed to issue queries,

but may be forbidden to modify the data. It is the responsibility of the database

system to ensure that these authorization restrictions are not violated.

 Operation system. No matter how secure the database system is, weakness in

operating-system security may serve as a means of unauthorized access to the

database.

 Network. Since almost all database systems allow remote access through

terminals or networks, software-level security within the network software is

as important as physical security, both on the Internet and in private

networks.

 Physical. Sites with computer systems must be physically secured

against armed or surreptitious entry by intruders.

 Human. Users must be authorized carefully to reduce the chance of any

user giving access to an intruder in exchange for a bride or other favors.

Security at all these levels must be maintained if database security is to be ensured.

A weakness at a low level of security (physical or human) allows circumvention of strict high-

level (database) security measures.

In the remainder of this section, we shall address security at the database-

system level. Security at the physical and human levels, although important, is beyond

the scope of this text.

Security within the operating system is implemented at several levels, ranging

from passwords for access to the system to the isolation of concurrent processes

running within the system. The file system also provides some degree of protection. The

bibliographical notes reference coverage of these topics in operating-system texts.

Finally, network-level security has gained widespread recognition as the Internet has

evolved from an academic research platform to the basis of international electronic

commerce. The bibliographic notes list textbook coverage of the basic principles of

B.A. Part-II (Semester-IV) Paper : BAP-203 76

network security. We shall present our discussion of security in terms of the relational-

data model, although the concepts of this chapter are equally applicable to all data

models.

2.5.3 Authorization

 We may assign a user several forms of authorization on parts of the database.

For example,

 Read authorization allows reading, but not modification of data.

 Insert authorization allows inserting of new data, but not modification

of existing data.

 Update authorization allows modification, but not deleting of data.

 Delete authorization allows deleting of data.

 We may assign the user all, none or a combination of these types of

authorization.

In addition to these forms of authorization for access of data, we may grant a

user authorization to modify the database schema.

 Index authorization allows the creation and deleting of indices.

 Resource authorization allows the creation of new relations.

 Alteration authorization allows the addition or deleting of attributes in

a relation.

 Drop authorization allows the deletion of relations.

The drop and delete authorization differ in that delete authorization allows

deletion of tuples only. If a user deletes all tuples of a relation, the relation still exists,

but it is empty. If a relation is dropped in to longer exists.

We regulate the ability to create new relations through resource authorization. A

user with resource authorization who creates a new relation is given all privileges on

that relation automatically.

Index authorization may appear unnecessary, since the creation or deleting of

an index does not alter data in relations. Rather indices are a structure for

performance enhancements. However, indices also consume space, and all database

modifications are required to update indices. If index authorization were granted to all

users, those who performed updates would be tempted to delete indices, whereas those

who issued queries would be tempted to create numerous indices. To allow the

database administrator to regulate the use of system resources, it is necessary to treat

index creation as a privilege.

The ultimate form of authority is that given to the database administrator. The

database administrator may authorize new users, restructure the database, and so on.

This form of authorization is analogous to that of a superuser or operator for an

operating system.

B.A. Part-II (Semester-IV) Paper : BAP-203 77

Authorization and Views

 Views are a means of providing a user with a personalized model of the

database. A view can hide data that a user does not need to see. The ability of views to

hide data serves both to simplify usage of the system and to enhance security. Views

simplify system usage because they restrict the user's attention to the data of interest.

Although a user may be denied direct access to a relation, that user may be allowed to

access part of that relation through a view. Thus a combination of relational-level

security and view-level security limits a user's access to precisely the data that the

user needs.

 In our banking example consider a clerk who needs to know the names of all

customers who have a loan at each branch. This is not authorized to see information

regarding specific loans that the customer may have. Thus the clerk must be denied

direct access to the loan relation. But, if she is to have access to the information

needed, the clerk must be granted access to the view cust-loan, which consists of only

the names of customers and the branches at which they have a loan. This view can be

defines in SQL as follows:

 create view cust-loan as

 (select branch-name, customer-name

 from borrower, loan

 where borrower.loan-number = loan.loan-number)

 Suppose that the clerk issues the following SQL query:

 select *

 from cust-loan

Clearly, the clerk is authorized to see the result of this query. However, when

the query processor translates it into a query on the actual relations in the database, it

produces a query on borrower and loan. Thus the system must check authorization on

the clerk's query before it begins query processing.

 Creation of a view does not require resource authorization. A user who creates a

view does not necessarily receive all privileges on that view. She receives only those

privileges that provide no additional authorization beyond those that she already had.

For example, a user cannot be given update authorization on a view without having

update authorization on the relations used to define the view. If user creates a view on

which no authorization can be granted, the system will deny the view creation request.

In our cust-loan view example, the creator of the view must have read authorization on

both borrower and loan relations.

Granting of Privileges

 A user who has granted some form of authorization may be allowed to pass on

this authorization to other users. However, we must be careful how authorization may

be passed among users, to ensure that such authorization can be revoked at some

future time.

B.A. Part-II (Semester-IV) Paper : BAP-203 78

 Consider as an example, the granting of update authorization on the loan relation of

the bank database. Assume that initially the database administrator grants update

authorization on loan to users U1, U2 and U3 who may in turn pass on this authorization to

other users. The passing of authorization from one user to another can be represented by an

authorization graph. The nodes of this graph are the users. The graph includes an edge Ui →

Uj if user Ui grants update authorization on loan to Uj. The root of the graph is the database

administrator. In the sample graph in Figure L, observe that user U5 is granted authorization

by both U1 and U2; U4 is granted authorization by only U1.

Figure L: Authorization-grant chart

A user has an authorization if and only if there is a path from the root of the

authorization to that user. Suppose the DBA revokes the authorization of U1. Since U4

has authorization from U1 that authorization should be revoked as well. However, U5

was granted authorization by both U1 and U2. Since the database administrator did not

revoke update authorization on loan from U2, U5 retains update authorization on loan.

If U2 eventually revokes authorization from U5, then U5 loses the authorization.

 A pair of devious users might attempt to defeat the rules for revocation of

authorization by granting authorization to each other, as shown in Figure M (a). If the

database administrator revokes authorization from U2, U2 retains authorization

through U3 as in Figure M (b). If authorization is revoked subsequently from U3, U3

appears to retain authorization through U2, as in Figure M (c). However when the

database administrator revokes authorization from U3, the edges from U3 to U2 and

from U2 to U3 are no longer part of a path starting with the database administrator.

U1 U4

U2

U3

U5 DBA

B.A. Part-II (Semester-IV) Paper : BAP-203 79

Figure M: Attempt to defeat authorization revocation

 We require that all edges in an authorization graph be part of some path

originating with the database administrator. The edges between U2 and U3 are deleted,

and the resulting authorization graph is an in Figure below:

Authorization graph

Notion of Roles

 Consider a bank where there are many tellers. Each teller must have the same

types of authorization to the same set of relations. Whenever a new teller is appointed,

she will have to be given all these authorizations individually.

 A better scheme would be to specify the authorization that every teller is to be

given, and to separately identify which database users are tellers. The system can use

these two pieces of information to determine the authorizations of each who is a teller.

When a new person is hired as a teller, a user identifier must be allocated to him, and

he must be identified as a teller. Individual permissions given to tellers need not be

specified again.

 The notion of roles captures this scheme. A set of roles is created in the

database. Authorization can be granted to roles, in exactly the same fashion as they

DBA

U1 U2 U3

DBA

U1 U2 U3

DBA

U1 U2 U3

DBA

U1 U2 U3

(a)

(b) (c)

B.A. Part-II (Semester-IV) Paper : BAP-203 80

are granted to individual users. Each database user is granted a set of roles (which

may be empty) that he or she is authorized to perform.

 In our bank database examples of roles could include teller, branch-manager,

auditor and system-administrator.

 A less preferable alternative would be to create a teller userid and permit each

teller to connect to the database using the teller userid. The problem with this scheme

is that it would not be possible to identity exactly which teller carried out a

transaction, leading to security risks. The use of roles has the benefit of requiring

users to connect to the database with their own userid.

 Any authorization that can be granted to a user can be granted to a role. Roles

are granted to users just as authorizations are. And like other authorization a user

may also be granted authorization to grant a particular role to others. Thus branch

managers may be granted authorization to grant the teller role.

Audit Trails

 Many secure database applications require an audit trail be maintained. An

audit trail is a log of all changes (inserts/ deletes/ updates) to the database, along with

information such as which user performed the changes and when the change was

performed.

The audit trails aids security in several ways. For instance if the balance on an

account is found to be incorrect the bank may wish to trace all the updates performed

on the account, to find out incorrect (or fraudulent) updates as well as the persons who

carried out the updates. The bank could then also use the audit trail to trace all the

tuples performed by these persons, in order to find other incorrect or fraudulent

updates.

It is possible to create an audit trail by defining appropriate triggers on relation

updates (using system-defined variables that identify the user name and time).

However, many database systems provide built in mechanisms to create audit trails,

which are much more convenient to use. Details of how to create audit trails vary

across database systems, and you should refer the database system manuals for

details.

Authorization in SQL

 The SQL language offers a fairly powerful mechanism for defining

authorizations. We describe these mechanisms, as well as their limitations, in this

section

Privileges in SQL

 The SQL standard includes the privileges delete, insert, select and update.

The select privilege corresponds to the read privilege. SQL also includes a references

privilege that permits a user/role to declare foreign keys when creating relations. If the

relation to be created includes a foreign key that references attributes of another

relation, the user/role must have been granted references privilege on those

B.A. Part-II (Semester-IV) Paper : BAP-203 81

attributes. The reason that the references privilege is a useful feature is somewhat

subtle; we explain the reason later in this section.

 The SQL data-definition language includes commands to grant and revoke

privileges. The grant statement is used to confer authorization. The basic form of this

statement is:

 grant <privilege list> on < relation name or view name> to <user/role list>

 The privilege list allows the granting of several privileges in one command.

 The following grant statement grants users U1, U2 and U3 select authorization

on the account relation.

 grant select on account to U1, U2, U3

The update authorization may be given either on all attributes of the relation or

on only some. If update authorization is included in a grant statement, the list of

attributes on which update authorization is to be granted optionally appears in

parentheses immediately after the update keyword. If the list of attributes is omitted,

the update privileges will be granted on all attributes of the relation.

 This grant statement gives users U1, U2 and U3 update authorization on the

amount attribute of the loan relation:

 grant update (amount) on loan to U1, U2, U3

 The insert privilege may also specify a list of attributes. Any inserts to the

relation must specify only these attributes and the system either gives each of the

remaining attributes default values (if a default is defined for the attribute) or sets

them to null.

 The SQL references privilege is granted on specific attributes in a manner like

that for the update privilege. The following grant statement allows user U1 to create

relations that reference the key branch-name of the branch relation as a foreign key:

 grant references (branch-name) on branch to U1

 Initially it may appear that there is no reason ever to prevent users from

creating foreign keys referencing another relation. However, foreign key constraints

restrict deleting and update operations on the referenced relation. In the preceding

example, if U1 creates a foreign key in a relation r referencing the branch-name

attribute of the branch relation, and then inserts a tuple into r pertaining to the

Perryridge branch, it is no longer possible to delete the Perryridge branch from the

branch relation without also modifying relation r. Thus the definition of a foreign key

by U1 restricts future activity by other users; therefore there is a need for the

references privilege.

 The privilege all privileges can be used a short form for granting all the allowable

privileges. Similarly the user name public refers to all current and future users of the system.

SQL also includes a usage privilege that authorizes a user to use a specified domain (recall

that a domain corresponds to the programming-language notion of a type, and may be user

defined).

B.A. Part-II (Semester-IV) Paper : BAP-203 82

Roles

 Roles can be created in SQL:1999 as follows

 create role teller

 Roles can then be granted privileges just as the users can, as illustrated in this

statement:

 grant select on account

 to teller

 Roles can be assigned to the users, as well as some other roles, as there

statements show

 grant teller to john

 create role manager

 grant teller to manager

 grant manager to mary

 Thus the privileges of a role consist of

 All privileges directly granted to the user/role

 All privileges granted to roles that have been granted to the user/role

 Note that there can be a chain of roles; for example the role employee may be granted

to all tellers. In turn the role teller is granted to all managers. Thus the manager role inherits

all privileges granted to the roles employee and to teller in addition to privileges granted

directly to manager.

The Privilege to Grant Privileges

By default, a user/role that is granted a privilege is not authorized to grant that

privilege to another user/role. If we wish to grant a privilege and to allow the recipient

to pass the privilege on to other users, we append the with grant option clause to the

appropriate grant command. For example, if we wish to allow U1 the select privilege on

branch and allow U1 to grant this privilege to others, we write

 grant select on branch to U1 with grant option

To revoke an authorization we use the revoke statement. It takes a form almost

identical to that of grant:

 revoke <privilege list> on < relation name or view name>

 from <user/role list> [restrict | cascade]

 Thus, to revoke the privileges that we granted previously, we write

 revoke select on branch from U1, U2, U3

 revoke update (amount) on loan from U1, U2, U3

 revoke references (branch-name) on branch from U1

 The revocation of a privilege from user/role may cause other users/role also to lose

that privilege. This behavior is called cascading of the revoke. In most database system,

cascading is the default behavior; the keyword cascade can thus be omitted, as we have

done in the preceding examples. The revoke statement may alternatively specify restrict:

B.A. Part-II (Semester-IV) Paper : BAP-203 83

 revoke select on branch from U1, U2, U3 restrict

 In this case the system returns an error if there are any cascading revokes, and does

not carry out the revoke action. The following revoke statement revokes only the grant option

rather than the actual select privilege:

 revoke grant option for select on branch from U1

Other Features

 The creator of an object (relation/view/role) gets all privileges on the object,

including the privilege to grant privileges to others.

 The SQL standard specifies a primitive authorization mechanism for the

database schema: Only the owner of the schema can carry out any modification to the

schema. Thus, schema modifications such as creating or deleting relations adding or

dropping attributes or relations and adding or dropping indices—may be executed by

only the owner of the schema. Several database implementations have more powerful

authorization mechanisms for database schemas similar to those discussed earlier but

these mechanisms are nonstandard.

Limitations of SQL Authorization

 The current SQL standards for authorization have some shortcomings. For

instance, suppose you want all students to be able to see their own grades, but not the

grades of anyone else. Authorization must then be at the level of individual tuples,

which is not possible in the SQL standard for authorization.

 Furthermore with the growth in the Web, database accesses come primarily

from Web application server. The end users may not have individual user identifiers on

the database as indeed there may only be a single user identifier in the database

corresponding to all users of an application server.

 The task of authorization then falls on the application server; the entire

authorization scheme of SQL is bypassed. The benefit is that fine-grained

authorizations such as those to individual tuples can be implemented by the

application. The problems are these:

 The code for checking authorization becomes intermixed with the rest of

the application code.

 Implementing authorization through application code, rather than specifying

it declaratively in SQL, makes it hard to ensure the absence of loopholes.

Because of an oversight, one of the application programs may not heck for

authorization, allowing unauthorized users access to confidential data.

Verifying that all application programs make all required authorization

checks involves reading through all the application server code a formidable

task in a larger system.

B.A. Part-II (Semester-IV) Paper : BAP-203 84

2.5.4 Encryption and Authentication

 The various provisions that a database system may make for authorization may

still not provide sufficient protection for highly sensitive data. In such cases data may

be stored in encrypted form. It is not possible for encryption data to be read unless the

reader knows how to decipher (decrypt) them. Encryption also forms the basis of good

schemes for authenticating users to a database.

Encryption Techniques

 There are a vast number of techniques for the encryption of data. Simple

encryption techniques may not provide adequate security, since it may be easy for an

unauthorized user to break the code. As an example of a weak encryption technique,

consider the substitution of each character with the next character in the alphabet.

Thus,

 Perryridge

 becomes

 Qfsszsjehf

If an unauthorized user sees on “Qfsszsjehf” she probably has insufficient

information to break the code. However, if the intruder sees a large number of

encrypted branch names, she could use statistical data regarding the relative

frequency of characters to guess what substitution is being made (for example, E is the

most common letter in English text, followed by T, A, O, N, I and so on).

 A good encryption technique has the following properties

 It is relatively simple for authorized users to encrypt and decrypt data

 It depends not on the secrecy of the algorithm, but rather on a parameter

of the algorithm called the encryption key.

 Its encryption key is extremely difficult for an intruder to determine.

 One approach the Data Encryption Standard (DES), issued in 1977 does both a

substitution of characters and a rearrangement of their order on the basis of an encryption

key. For this scheme to work the authorized users must be provided with the encryption

key via a secure mechanism. This requirement is a major weakness since the scheme is no

more than the security of the mechanism by which the encryption key is transmitted. The

DES standard was reaffirmed in 1983, 1987 and again in 1993. However weakness in

DES was recognized in 1993 as reaching a point where a new standard to be called the

Advanced Encryption Standard (AES), needed to be selected. In 2000, the Rijndael

algorithm (named for the inventors V. Tijmen and J. Daemen) was selected to be the AES.

The Rijndael algorithm was chosen for its significantly stronger level of security and its

relative ease of implementation on current computer systems as well as such devices as

smart cards. Like the DES standard, the Rijndael algorithm is a shared key (or symmetric

key) algorithm in which the authorized users share a key.

B.A. Part-II (Semester-IV) Paper : BAP-203 85

 Public-key encryption is an alterative scheme that avoids some of the

problems that we face with the DES. It is based on two keys; a public key and a private

key. Each user Ui has a public key Ei and a private Key Di. All public keys are

published. They can be seen by anyone. Each private key is known to only the one user

to whom the key belongs. If user U1 wants to store encrypted data, U1 encrypts them

using public key E1. Decryption requires the private key D1.

 Because the encryption key for each user is public, it is possible to exchange

information securely by this scheme. If user U1 wants to share data with U2, U1 encrypts the

data using E2 the public key of U2. Since only user U2 know how to decrypt the data,

information is transferred securely.

 For public key encryption to work there must be a scheme for encryption that

can be made public without making it easy for people to figure out the scheme for

decryption. In other words it must be hard to deduce the private key given the public

key. Such a scheme does not exist and is based on these conditions:

 There is an efficient algorithm for testing whether or not a number is

prime.

 No efficient algorithm is known for finding the prime factors of a number.

 For purposes of this scheme data are treated as a collection of integers. We create a

public key by computing the product of two large prime numbers: P1 and P2. The private key

consists of the pair (P1, P2). The decryption algorithm cannot be used successfully if only the

product P1P2 is known it needs the individual values P1 and P2. Since all that is published is

the product P1P2, an unauthorized user would need to be able to factor P1P2 to steal data. By

choosing P1 and P2 to be sufficiently large (over 100 digits) we can make the cost of factoring

P1P2 prohibitively high (on the order of years of computation time on even the fastest

computers).

 The details of Public-key encryption by this scheme is secure, it is also

computationally expensive. A hybrid scheme used for secure communication is as

follows: DES keys are exchanged via a public-key-encryption scheme and DES

encryption is used on the data transmitted subsequently.

Authentication

 Authentication refers to the task of verifying the identity of a person/software

connecting to a database. The simplest form of authentication consists of a secret

password which must be presented when a connection is opened to a database.

 Password based authentication is used widely by operating systems an well as

databases. However the use of passwords has some drawbacks especially over a network. If

an eavesdropper is able to "sniff" the data being sent over the networks, she may be able to

find the password as it is being sent across the networks. Once the eavesdropper has a user

and password, she can connect to the database pretending to be the legitimate user.

B.A. Part-II (Semester-IV) Paper : BAP-203 86

 A more secure scheme involves a challenge-response system. The database

system sends a challenge string to the user. The user encrypts the challenge string

using a secret password as encryption key and then returns the result. The database

system can verify the authenticity of the user by decrypting the string with the same

secret password and checking the result with the original challenge string. This

scheme ensures that no passwords travel cross the network.

 Public key systems can be used for encryption in challenge-response systems.

The database encrypts a challenge string using the user's public key and sends it to

the user. The user decrypts the string using her private key, and returns the result to

the database system. The database system then checks the response. This scheme has

the added benefit of not storing the secret password in the database where it could

potentially be seen by system administrators.

 Another interesting application of public-key encryption is in digital signature.

To verify authenticity of data, digital signatures play the electronic role of physical

signatures on documents. The private key is used to sign data and the signed data can

be made public. Anyone can verify them by the public key but no one could have

generated the signed data without having the private key. Thus we can authenticate

the data; that is we can verify that the data were indeed created by the person who

claims to have created them.

 Furthermore digital signatures also serve to ensure non-repudiation. That is in

case the person who created the data later claims she did not create it (the electronic

equivalent of claiming not to have signed the check) we can prove that, that person

must have created the data (unless her private key was leaked to others).

2.5.5 Summary

 Database security refers to protection from malicious access. For making

database secure, we may assign a user several forms of authorization on parts of the

database. For example, Read authorization allows reading, but not modification, of

data. Insert authorization allows inserting of new data, but not modification of

existing data. Update authorization allows modification, but not deleting, of data.

Delete authorization allows deleting of data. In addition to these forms of

authorization for access of data, we may grant a user authorization to modify the

database schema - Index authorization, Resource authorization, Alteration

authorization, Drop authorization. Many secure database applications require an audit

trail be maintained. An audit trail is a log of all changes (inserts/ deletes/ updates) to

the database, along with information such as which user performed the changes and

when the change was performed. The various provisions that a database system may

make for authorization may still not provide sufficient protection for highly sensitive

data. In such cases data may be stored in encrypted form. It is not possible for

encryption data to be read unless the reader knows how to decipher (decrypt) them.

Encryption also forms the basis of good schemes for authenticating users to a

B.A. Part-II (Semester-IV) Paper : BAP-203 87

database. Authentication refers to the task of verifying the identity of a

person/software connecting to a database. The simplest form of authentication

consists of a secret password which must be presented when a connection is opened to

a database.

2.5.6 Self Understanding:

1. What to you understand by Database security?

2. What are the various ways in which database can be made secure?

3. What you mean by Encryption? Explain various data encryption

techniques.

4. What do you mean by Authentication?

5. What do you mean by authorization?

2.5.7 Further Readings:

1. Bipin C. Desai, An introduction to Database System, Galgotia Publication,

New Delhi.

2. C. J. Date, An introduction to database Systems, Sixth Edition, Addison

Wesley.

3. Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database

Systems, Addison Wesley.

B.A. Part-II

SEMESTER-IV

Paper : BAP-203

DATA BASE MANAGEMENT SYSTEM

LESSON NO. 2.6 AUTHOR : VISHAL GOYAL

DATA BASE CONCURRENCY

Structure:

2.6.0 Introduction

2.6.1 Objectives

2.6.2 Database Concurrency

2.6.3 Problems arising out of concurrency

2.6.4 Methods of handling concurrency

2.6.5 Summary

2.6.6 Self Understanding

2.6.7 Further Readings

2.6.0 Introduction

 Large computer systems are typically used by many users. These systems

usually allow multiple transactions to run concurrently i.e. at the sane time. There are

three different problems that arise due to concurreny viz. Lost Update,Dirty Read and

Incorrect Analysis Problem. In order to prevent these problems, we need to make

transactions schedule serializable. One way of ensuring serializibility is to use the

locking mechanism. In the following section we will study how we can we prevent

deadlocks during achieving the concurrency.

2.6.1 Objectives

 After reading this lesson, you will be able to understand

 About database concurrency

 Problems arising out of concurrency

 Methods of handling concurrency

 Locking Technique

 Two Phase Protocol

 Time Stamping

 Serializability

2.6.2 Database Concurrency

 The term concurrency refers to the fact that DBMSs typically allow many

transactions to access the same database at the same time – and in such a system, as

is well known, some kind of concurrency mechanism is needed to ensure that

concurrent transactions do not interfere with each other.

2.6.3 Problems arising out of concurrency

 Three Concurrency Problems

B.A. Part-II (Semester-IV) Paper : BAP-203

89

 We begin by considering some of the problems that any concurrency control

mechanism must address. There are essentially three ways in which things can go

wrong, that is, in which a transaction, though correct in itself, can nevertheless

produce the wrong answer if some other transaction interferes with it in some way. The

three problems are:

 The lost update problem

 The uncommitted dependency problem and

 The inconsistent analysis problem.

 We consider each in turn.

The Lost Update Problem

 Consider the situation illustrated in Figure below:

 That figure is meant to be read as follows; Transaction A retrieves some tuple t

at time t1; transaction B retrieves that same tuple t at time t2; transaction A updates

the tuple on the basis of the values seen at time (t1) at time t3; and transaction B

updates the same tuple t on the basis of the values seen at time t2, which are the same

as those seen at time t1) at time t4. Transaction A’s updates is lost at time t4, because

transaction B overwrites it without even looking at it.

The Uncommitted Dependency Problem

The uncommitted dependency problem arises if one transaction is allowed to

retrieve-or worse update-a tuple that has been updated by some other transaction but

not yet committed by that other transaction. For if it has not yet been committed, there

is always a possibility that it never will be committed but will be rolled back instead-in

which case the first transaction will have seen some data that now no longer exists

(and in a sense never did exist). Consider the following diagrams:

Transaction A Transaction B time

RETRIEVE t t1

t2

t3

t4

RETRIEVE t

UPDATE t

UPDATE t

–
–

–
–

–
–

–
–

–
–

–
–

– –

B.A. Part-II (Semester-IV) Paper : BAP-203

90

Transaction A becomes dependent on an uncommitted change at time t2

Transaction A updates an uncommitted change at time t2, and loses that update at time t3

In the first example transaction A sees an uncommitted update (also called an

uncommitted change) at time t2. That update is then undone at time t3. Transaction A

is therefore operating on a false assumption-namely the assumption that tuple t has

the value seen at time t2 whereas in fact it has whatever value it had prior to time t1.

As a result transaction A might well produce incorrect output. Note by the way that the

rollback of transaction B might be due to no fault of B’s-it might, for example be the

result of a system crash. (And transaction A might already have terminated by at that

time, in which case the crash would not cause a rollback to be issued for A also.)

 The second example is even worse. Not only does transaction A become

dependent on an uncommitted change at time t2 but actually loses an update at time

t3-because the rollback at time t3 cause tuple t to be restored to its value prior to time

t1. This is another version of the lost update problem.

The Inconsistent Analysis Problem

 Consider Figure below which shows two transactions A and B operating on

account (ACC) tuples:

Transaction A Transaction B time

UPDATE t

t1

t2

t3

UPDATE t

–
–

–
–

–
–

–
–

–
–
–

–
ROLLBACK

Transaction A Transaction B time

RETRIEVE t

t1

t2

t3

UPDATE t

–
–

–
–

–
–

–
–

–
–
–

–
ROLLBACK

B.A. Part-II (Semester-IV) Paper : BAP-203

91

 Transaction A is summing account balances, transaction B is transferring an

amount 10 from account 3 to account 1. The result produced by A, 110, is obviously

incorrect; if A were to go on to write that back into the database. It would actually leave

the database in an inconsistent state. We say that A has seen an inconsistent state of

the database and has therefore performed an inconsistent analysis. Note the different

between this example and the previous one. There is no question here A being

dependent on an uncommitted change, since B commits all its updates before A sees

ACC 3.

2.6.4 Methods of handling concurrency

 Locking Techniques for concurrency Control

 One of the main techniques used to control concurrent execution of

transactions is based on the concept of locking data items. A lock is a variable

associated with a data item in the data base and describes the status of that item with

respect to possible operations that can be applied to the item. Generally there is one

lock for each data item in the data base. We use locks as a means of synchronizing the

access by concurrent transactions to the data base items.

Transaction A Transaction B time

RETRIEVE ACC 1:

 sum = 40

t1

t2

t3

t4 UPDATE ACC 3:
30 → 20

RETREIVE ACC 2:

sum = 90

RETREIVE ACC 3

–
–

–
–

–
–

–
–
–

–
–

–
–

ACC 1 ACC 2 ACC 3

40 50 30

t5

t6

t7

t8

–
–

RETREIVE ACC 1
–

UPDATE ACC 1:
40 → 50

–
COMMIT

–
–

–

–
–

–

–
–

–

–
–

RETREIVE ACC 3:

sum = 110, not 120

B.A. Part-II (Semester-IV) Paper : BAP-203

92

Types of Locks

Several types of locks can be used in concurrency control. We first present

binary locks, which are simple but somewhat restrictive in their use. Then we discuss

shared and exclusive which provide more general locking capabilities.

Binary Locks : A binary lock can have two states or values-locked and unlocked (or 1

and 0, for simplicity). A distinct lock is associated with each database item X. if the

value of lock on X is 1, item X cannot be accessed by a database operation that

requests the item. If the value of the lock on X is 0 the item can be accessed when

requested. We refer to the value of the lock associated with item X as LOCK(X).

 Two operations lock item and unlock item must be included in the transactions

when binary locking is used. A transaction requests access to an item X by issuing a

lock_item (X) operation. If LOCK(X) = 1 the transaction is forced to wait; otherwise the

transaction sets LOCK(X): =1 (locks the item) and is allowed access. When it sets

LOCK(X):=0 (unlocks the item) so that X may be accessed by other transactions. Hence

a binary lock enforces mutual exclusion on the data item. A description of the

lock_item(X) and unlock item(X) operations is shown in Figure below.

 Notice that the lock item and unlock item operations must be implemented as

indivisible units (known as critical sections in operations systems) that is no

interleaving should be allowed once a lock or unlock operation is started until the

operation terminated or the transaction waits. In figure above the wait command

within the lock item(X) operation is usually implemented by putting the transaction on

a waiting queue for the item X until X is unlocked and the transaction is granted

access to it. Other transactions that also want to access X are placed on the same

queue. Hence the wait command is considered to be outside the lock_item operation.

The DBMS has a lock manager subsystem to keep track of and control access to locks.

lock_item (X):

 B: if LOCK (X) =0 (*item is unlocked*)

 then LOCK (X) ← 1 (*lock the item *)

 else begin

 wait (until LOCK (X) =0 and

 the lock manager wakes up the transaction);

 go to B

 end;

unlock_item (X):

 LOCK (X) ← 0 (*unlock the item *)

 If any transactions are waiting

 Then wakeup one of the waiting transactions;

B.A. Part-II (Semester-IV) Paper : BAP-203

93

When the binary locking scheme is used, every transaction must obey the

following rules:

1. A transaction T must issue the operation lock_item(X)_ before any

read_item(X) or write(X) operations are performed in T.

2. A transaction T must issue the operation unlock_item(X) after all read_item(X)

and write_item(X) operations are completed in T.

3. A transaction T will not issue a lock_item(X) operation if it already holds

the lock on item X.

4. A transaction T will not issue a lock(X) operation unless it already holds

the lock on item X.

These rules can be enforced by a module of the DBMS. Between the lock_item(X)

and unlock_item(X) operations in transaction T, T is said to hold the lock on item X. At

most one transaction can hold the lock on a particular item. No two transactions can

access the same item concurrently. Notice that it is quite simple to implement a binary

lock all that is needed is a binary valued variable LOCK associated with each data item

X in the data base. In its simplest form each lock can be a record with two fields<data

item name LOCK> plus a queue for waiting transactions. The system only needs to

maintain these records for locked items in a lock table.

Shared and Exclusive Locks : The preceding binary locking scheme is too restrictive in

general because at most one transaction can hold a lock on a given item. We should allow

several transactions to access the same item X if they all access X for reading purpose only.

However, if a transaction is to write an item X, it must have exclusive access to X. For this

purpose we can use a different type of lock called a multiple-mode lock. In this scheme there

are three locking operations read lock(X), write lock(X) and unlock(X). A lock associated with

an item X, LOCK(X) now has three possible states 'read locked' ‘write-locked’ or ‘unlocked’. A

read locked item is also called share locked because other transactions are allowed to read

the item whereas a write locked item is called exclusive locked because a single transaction

exclusively holds the lock on the item.

One simple though not completely general method for implementing the

preceding three operations on a multiple-mode lock is to keep track of the number of

transactions that hold a shared lock on an item. Each lock can be a record with three

fields:

<data item name, LOCK, no_of_reads>. The value of LOCK is one-read locked,

write locked or unlocked suitable coded. Again to save space, the system need only

maintain lock records for locked items in the lock table. The three operations

read_lock(X), write_lock(X) and unlock(X) are described in Figure below. As before each

of the three operations should be considered indivisible, no interleaving should be

allowed once one of the operations is started until either the operation terminates or

the transaction ids placed on awaiting queue for the item.

B.A. Part-II (Semester-IV) Paper : BAP-203

94

 When we use the multiple mode licking scheme, the system must enforce the

following:

1 A Transaction T must issue the operation read_lock(X) or write_lock(X) before

any read_item(X) operation is performed in T.

2 A transaction T must issue the operation write_lock(X) before any

write_item(X) operation is performed in T.

read_lock(X)

B: if LOCK(X)=unlocked

Then begin LOCK(X) ← read locked

 No-of_reads(X) ← 1

 End

Else if LOCK(X)=read locked

 Then no_of_reads(X) ← no_of_reads(X) +1

 else begin wit(until LOCK(X)=unlocked and

 the lock manager wakes up the transaction);

 go to B

end;

write-lock(X)

B:if LOCK(X)=unlocked

 then LOCK(X)← write locked

else begin

 wait(until LOCK(X)=unlocked and

 the lock manager wakes up the transaction);

 go to B

end;

unlock_item(X)

if LOCK(X)=write-locked

 then begin LOCK(X) ← unlocked

 wakeup one of the waiting transactions if any

 end

else if LOCK(X)=read-locked

 then begin

 no_of_reads(X) ← no_of_reads(X) – 1

 if no_of_reads(X)=0

 then begin LOCK (X)=unlocked

 wakeup one of the transactions if any

 end

 end;

B.A. Part-II (Semester-IV) Paper : BAP-203

95

3 A Transaction T must issue the operation unlock(X) after all read_item(X) and

write_item(X) operations are completed in T.

4 A transaction T will not issue a read_lock(X) operation if it already holds

a read (shared) lock or a write (exclusive) lock on item X. This rule may

be relaxed as we discuss shortly.

5 A transaction T will not issue a write_lock(X) operation if it already holds

a read (shared) lock or a write (exclusive) lock on item X. This rule may

be relaxed as we discuss shortly.

6 A transaction T will not issue an unlock (X) operation unless it already

holds a read (shared) lock or a write (exclusive) lock on item X.

 Sometimes it is desirable to relax conditions 4 and 5 in the preceding list. For

example, it is possible for a transaction T to issue a read_lock(X) and then later on toi

upgrade the lock by issuing a write_lock(X) operation. If T is the only transaction with a

read lock X at the time it issues the write_lock operation, we can upgrade the lock. It is

also possible for a transaction T to issue a write_lock(X) and then later on to

downgrade the lock by issuing a read_lock(X) operation. If we allow upgrading and

downgrading of locks, we must include transaction identifiers in the record structure

for each lock to store the information on which transactions hold locks on the items

and we must change the descriptions of the read_lock(X) and write_lock(X) operations

in Figure above appropriately. We have this as an exercise for the reader.

 Using binary locks or multiple-mode locks in transactions as described earlier

does not guarantee serializability of schedule in which the transactions participate.

Figure G shows an example where the preceding locking rules are followed but a non-

serializable schedule may still result. This is because in Figure G (a) the items Y in T1

and X in T2 were unlocked too early. This allows a schedule such as the one shown in

Figure G (c) to occur; this is not a serializable schedule and hence gives incorrect

results. To guarantee serializability, we must follow n additional protocol concerning

the positioning of locking and unlocking operations in every transaction. The best

known protocol, two phase locking is described next.

B.A. Part-II (Semester-IV) Paper : BAP-203

96

Here is figure G:

Guaranteeing Serializability by Two-Phase Locking

 A transaction is said to follow the two-phase locking protocol if all locking

operations (read_lock, write_lock) precede the first unlock operation in the transaction.

Such a transaction can be divided into two phases; an expanding (or growing) phase,

during which new locks on items can be acquired but none can be released and a

shrinking phase during which existing locks can be released but no new locks can be

acquired. If upgrading of locks is allowed this definition is unchanged. However if

downgrading of locks is also allowed this definition must be changed slightly because all

T1 T2

read_lock(Y); read_lock(X);

read_item(Y); read_item(X);

unlock(Y); unlock(X);

Write_lock(X); Write_lock(Y);

read_item(X); read_item(Y);

X:=X+Y; Y:=X+Y;

Write_item(X); write_item(Y);

unlock(X); unlock(Y);

(a) (b)

Initial values: X=20, Y=30

Result of serial schedule T1

followed by T2:

X=50, Y=80

Result of serial schedule T2

followed by T1:

X=70, Y=50

T1 T2

read_lock(Y);

read_item(Y);

unlock(Y);

 read_lock(X);

 read_item(X);

 unlock(X);

 write_lock(Y);

 read_item(Y);

 Y:=X+Y;

 write_item(Y);

 unlock(Y);

write_lock(X);

read_item(X);

X:=X+Y;

write_item(X);

unlock(X);

(c)

B.A. Part-II (Semester-IV) Paper : BAP-203

97

downgrading must be done in the shrinking phase. Hence a read_lock(X) operation that

downgrades an already held write lock on X can appear only in the shrinking phase of the

transaction.

 Transactions T1 and T2 of Figure G(a) do not follow the two- phase locking protocol.

This is because the write-Lock(X) operation follows the unlock(Y) operation in T1 and

similarly the write_lock(Y) operation follow the unlock(X) operation in T2. If we enforce two

phase locking the transaction can be rewritten as T1 and T2 as shown in Figure H. Now, the

schedule shown in Figure G(c) is not permitted for T1 and T2 under the rules of locking. This

is because T1 will issue its write_lock (X) before is unlocks item Y; consequently when T2

issues its read_lock(X) it is forced to wait until T1 issues its unlock (X) in the schedule.

Figure H:

 It can be proved that, if every transaction in a schedule follows the two phase

locking protocol the schedule is guaranteed to be serializable obviating the need to test

for serializability of schedules any more. The locking mechanism by enforcing two

phase locking rules also enforces serializability.

 Two-phase locking may limit the amount of concurrency that can occur in a

schedule. This is because a transaction T may not be able to release an item X after it is

through using it if Y before it needs it so that it can release X. Hence, X must remain

locked by T until all items that the transaction needs have been locked; only then can X be

released by T. Meanwhile another transaction seeking to access X may be forced to wait,

even though T is using X; conversely, if Y is locked earlier than it is needed, another

transaction seeking to access Y is forced to wait even though T is not using Y yet. This is

the price for guaranteeing serializability of all schedules without having to check the

schedules themselves.

Basic, Conservative, and Strict Two-Phase Locking : These are a number of

variations of two-phase locking (2PL). The technique just described is known as basic

2PL. A variation known as conservative 2PL (or static 2PL) requires a transaction to

lock all the items it accesses before the transaction begins execution by predeclaring

its read set and write set. Recall that the read set of transaction is the set of all items

T1’ T2’

read_lock(Y); read_lock(X);

read_item(Y); read_item(X);

write_lock(X); write_lock(Y);

unlock(Y); unlock(X);

read_item(X); read_item(Y/);

X:=X+Y; Y:=X+Y;

write_item(X); write_item(Y);

unlock(X); unlock(Y);

B.A. Part-II (Semester-IV) Paper : BAP-203

98

that the transaction reads and the write set is the set of all items that the transaction

writes. If any of the predeclared items needed cannot be locked the transaction does

not lock any item instead it waits until all the items are available for locking.

Conservative 2PL is a deadlock free protocol, as we shall see when we discuss deadlock

problem.

 In practice the most popular variation of 2PL is strict 2PL, which guarantee

strict schedules. In this variation a transaction T does not release any of its locks until

after it commits or aborts. Hence no other transaction can read or write an item that is

written by T unless T has committed leading to a strict schedule for recoverability.

Notice the difference between conservative and strict 2PL; the former must lock all its

items before it starts whereas the latter does not unlock any of its items until after it

terminates(by committing or aborting). Strict 2PL is not deadlock free unless it is

combined with conservative 2PL.

 Although two-phase locking guarantees serializability, the use of locks can

cause two additional problems deadlock and live lock. We discuss these problems and

their solutions in the next section.

Dealing with Deadlock and Live lock

 Deadlock occurs when each of two transactions is waiting for the other to

release the lock on an item. A simple example is shown in Figure I(a) where the two

transactions T1 and T2 are deadlocked in a partial schedule; T1 is waiting for T2 to

release item W while T2 is waiting for T1 to release item Y. Meanwhile neither can

proceed to unlock the item that the other is waiting for, and other transactions can

access neither item X nor item Y. Deadlock is also possible when more than two

transactions are involved as we shall see.

Figure I:

 One way to prevent deadlock is to use a deadlock prevention protocol. One dead

lock prevention protocol which is used in conservative two phase locking requires tht

every transaction locks all the items it needs in advance. If any of the items cannot be

obtained, none of the items are locked. Rather the transaction waits and then tries

again to lock all the items it needs. This solution obviously further limits concurrency.

A second protocol which also limits concurrency involves ordering all the item in the

T1’ T2’

read_lock(Y);

read_item(Y);

 read_lock(X);

 read_item(X);

Write_lock(X);

 Write_lock(Y);

T1’ T2’
time

B.A. Part-II (Semester-IV) Paper : BAP-203

99

data base and making sure that a transaction that needs several items will lock them

according to that order. This requires that the programmer be aware of the chosen

order of the items which is not very practical in the database context.

 A number of other deadlock prevention schemes have been proposed that make

a decision on whether a transaction involved in a possible deadlock situation should be

blocked and made to wait, should be aborted or should preempt and abort another

transaction. These techniques use the concept of transaction timestamp TS(T) which is

a unique identifier assigned to each transaction. The timestamps are ordered based on

the order in which transaction are started; hence if transaction T1 starts before

transaction T2 then TS(T1)<TS(T2). Notice that the older transaction has the smaller

timestamp value. Two schemes that prevent deadlock are called wait die and wound

wait. Suppose that transaction Ti tries to lock an item X but is not able to because X is

locked by some other transaction Tj with a conflicting lock. The rules followed by these

schemes are as follow:

 wait die: if TS(Ti) < TS(Tj) (Ti is older than Tj)

 then Ti is allowed to wait

 otherwise abort Ti(Ti dies and restart it later with the same timestamp).

 wound-wait: if TS(Ti)<TS(Tj) (Ti is older then Tj)

 then abort Tj (Ti wounds Tj) and restart it later with the same timestamp

 otherwise Ti is allowed to wait.

In wait-die an older transaction is allowed to wait on a younger transaction whereas

a younger transaction requesting an item held by an older transaction is aborted and

restarted. The wound wait approach does the opposite a younger transaction is allowed to

wait on an older one whereas older transaction requesting an item held by a younger

transaction preempts the younger transaction by aborting it. Both schemes end up aborting

the younger of the two transactions that may be involved in a deadlock, and it can be shown

that these two techniques are deadlock free. However both techniques cause some

transactions to be aborted and restarted even though those transactions may never actually

cause a deadlock. Another problem can occur with the wait die where the transaction Ti may

be aborted and restarts several times in a row because an older transaction Tj continues to

hold the data that Ti need.

 Another group of protocols that prevent deadlock do not requires timestamps. These

include the no waiting (NW) and cautious waiting (CW) algorithms. In the no waiting

algorithm, if a transaction is unable to obtain a lock, it is immediately aborted and then

restarted after a certain time delay without checking whether a deadlock will occur. The

cautious waiting approach was proposed to try to reduce the number of needless

aborts/restarts. Suppose that transaction Ti tries to lock an item X but is not able to do so

because X is locked by some other transaction Tj with a confliction lock. The cautions

waiting rules are as follows:

 cautious waiting: if Tj is not blocked (not waiting for some other locked item)

B.A. Part-II (Semester-IV) Paper : BAP-203

100

 then Ti is blocked and allowed to wait

 otherwise abort Ti.

 It can be shown that cautious waiting is deadlock free by considering the times

at which a transaction T gets blocked b(T). If the two transactions Ti and Tj above both

become blocked and Ti is waiting on Tj then b(Ti)<b(Tj) since a transaction can only wait

on a transaction when it is not blocked. Hence the blocking times from s total ordering

on all blocked transactions so no cycle that causes deadlock can occur.

 Another deadlock prevention scheme involves using time outs. If a transaction

waits longer than a system defined timeout the system assumes that the transaction is

dead locked and aborts it regardless of whether a deadlock situation actually exists.

 A second approach of dealing with deadlock is deadlock detection where we

periodically check to see if the system is in a state of deadlock. This solution is

attractive if we know there will be little interference among the transactions that is if

different transactions will rarely access the same item. This can happen if the

transactions are short and each transaction locks only a few items or if the transaction

load is light. On the other hand, if transactions are long and each transaction uses

many items or if the transaction load is quite heavy, it is advantageous to use a

deadlock prevention scheme.

 A simple way to detect a state of deadlock is to construct a wait-for graph. One

node is created in the wait for graph for each transaction that is currently executing in

the schedule. Whenever a transaction Ti is waiting to lock an item X that is currently

locked by a transaction Tj create a directed edge (Ti→Tj). When Tj release the lock(s) on

the items that Ti was waiting for directing edge is dropped from the wait for graph. We

have a state of deadlock if and only if the wait for graph has a cycle. One problem with

this approach is the matter of determining when the system should check for deadlock.

Criteria such as the number of currently executing transactions or the period of time

several transactions have been waiting to lock items may be aborted. Choosing which

transaction to abort is known as victim selection. The algorithm for victim selection

should generally avoid selecting transactions that have been running for a long time

and that have performed many updates and should try instead to select transaction

that have not made many changes or that are involved in more than one deadlock cycle

in the wait for graph. A problem known as cyclic restart may occur, where a

transaction is aborted and restarted only to be involved in another deadlock. The

victim selection algorithm can use higher priorities for transaction that have been

aborted multiple times so that they are not selected as victims repeatedly.

 Another problem that may occur when we use locking is livelock. A transaction

is in a state of livelock if it cannot proceed for an indefinite period of time while other

transaction in the system continue in the system continue normally. This may occur if

the waiting scheme for locked items is unfair, giving priority to some transactions over

others. The standard solution for livelock is to have a fair waiting scheme. One such

B.A. Part-II (Semester-IV) Paper : BAP-203

101

scheme uses a first come first serve queue. Transaction are enabled to lock an item in

the order in which they originally requested to lock the item. Another scheme allows

some transactions to have priority over others but increase the priority and proceeds. A

similar problem to livelock called starvation can occur in the algorithms for dealing

with deadlock. It occurs if the algorithms select the same transaction as victims

repeatedly thus causing it to abort and never finish execution. The wait die and wound

wait schemes discussed above avoid starvation.

Concurrency Control Based on Timestamp Ordering

 The use of locks combined with two-phase locking protocol, allows us to guarantee

serializability of schedules. The order of transactions in the equivalent serial schedule is

based on the order in which executing transaction lock the items they require. If a

transaction needs an item that is already locked, it may be forced to wait until the item is

released. A different approach that guarantees serializability involves using transaction

timestamps to order transaction execution for an equivalent serial schedule.

Timestamps

 A timestamp is a unique identifier created by the DBMS to identify a

transaction. Typically, timestamp values are assigned in the order in which the

transaction are submitted to the system, so a timestamp can be thought of as the

transaction start time. We will refer to the timestamps do not use locks; hence,

deadlocks cannot occur.

 Timestamps can be generated in several ways. One possibility is to use a counter

that is incremented each time its value is assigned to a transaction. The transaction

timestamps are numbered 1, 2, 3,… in this scheme. A computer counter has a finite

maximum value, so the system must periodically reset the counter to zero when no

transactions are executing for some short period of time. Another way to implement

timestamps is to use the current value of the system clock and ensure that no two

timestamp values are generated during the same tick of the lock.

The Timestamp Ordering Algorithm

 The idea for this scheme is to order the transactions based on their timestamps.

A schedule in which the transactions participate is then serializable, and the

equivalent serial schedule has the transactions in order of their timestamp values. This

is called timestamp ordering (TO). Notice how this differs from two-phase locking. In

two phase locking a schedule is serializable by being equivalent to some serial schedule

allowed by the locking protocol; in timestamp ordering, however the schedule is

equivalent to the particular serial order that corresponds to the order of the

transaction timestamps. The algorithm must ensure that for each item accessed by

more than one transaction in the schedule, the order in which the item is accessed

does not violate the serializability of the schedule. To do this the basic TO algorithm

associates with each database item X two timestamp (TS) values:

B.A. Part-II (Semester-IV) Paper : BAP-203

102

1 read_TS(X): The read timestamp of item X; this is the largest timestamp

among all the timestamps of transaction that have successfully read item

X.

2 write_TS(X): The write timestamp of item X; this is the largest of all the

timestamps of transaction that have successfully written item X.

 Whenever some transaction T tries to issue a read_item(X) or a write_item (X)

operation the basic TO algorithm compares the timestamp of T with the read

timestamp and the write timestamp of X to ensure that the timestamp order or

execution of the transactions is not violated. If the timestamp order is violated by the

operation, then transaction T will violate the equivalent serial schedule so T is aborted.

Then T is resubmitted to the system as a new transaction with a new timestamp. If T is

aborted and rolled back, any transaction T1 that may have used a value written by T

must also be rolled back. Similarly any transaction T2 that may have used a value

written by T1 must also be rolled back, and so on. This effect is known as cascading

rollback and is one of problems associated with basic TO, since the schedule produced

are not recoverable. The concurrency control algorithm must check whether the

timestamp ordering of transaction is violated in the following two cases:

1 Transaction T issue a write_item(X) operation;

a. If read TS(X)> TS(T) or if write_TS(X)>TS(T) then abort and roll

back T and reject the operation. This should be done because

some transaction with a timestamp greater than TS(T)—and hence

after T in the timestamp ordering has already read or written the

value of item X before T had a chance to write X thus violating the

timestamp ordering.

b. If the condition in part a does not occur then execute the write_item(X)

operation of T and set writeTS(X) to TS(T)

2. Transaction T issue a read_item(X) operation:

a. If write_TS(X)> TS(T) then abort and roll back T and reject the

operation. This should be done because some transaction with

timestamp greater than TS(T)- and hence after T in the timestamp

ordering has already written the value of item X before T had a

chance to read X.

b. If read TS(X),TS(T) then execute the read item(X) operation of T

and set read TS(X) to the larger of TS(T) and the current read

TS(X).

 Hence the basic TO algorithm checks whenever two conflicting operation occur

in the incorrect order and rejects the later of the two operations by aborting the

transaction that issued it. The schedules produced by basic TO are hence guaranteed

to be conflict serializable. A modification of the algorithm known as Thomas’s write rule

B.A. Part-II (Semester-IV) Paper : BAP-203

103

does not enforce conflict serializability but it rejects fewer write operations, by

modifying the checks for the write_item(X) operation as follows:

a. if read_TS(X) >TS(T) then abort and roll back T and reject the operation.

b. If read_TS(X) >TS(T) then do not execute the write operation but

continue processing. This is because some transaction with timestamp

greater than TS(T) and hence after T in the timestamp ordering has

already written the value of X. hence we must ignore the write_item(X)

operation of T because it is already outdated and obsolete. Notice that

any conflict arising from this situation would be detected by case a.

c. If neither the condition in part a nor the condition in part b occurs then

execute the write_item(X) operation of T and set write_TS(X) to TS(T).

 The timestamp ordering protocol, like the two phase locking protocol,

guarantees serializability of schedules. However some schedules are possible under

each protocol that are not allowed under the other. Hence neither protocol allows all

possible serializable schedules. As mentioned earlier, dead back does not occur with

timestamp ordering However cyclic restart (and hence starvation) may occur if a

transaction is continually aborted and restarted.

 As was mentioned earlier the basic TO algorithm enforces conflict serializability but it

does not ensure recoverable schedules; and hence it does not ensure cascade less or strict

schedule either a variation of basic TO called strict TO ensure that the schedules are both

strict and (conflict) serializable. In this variation, transaction T that issues a read_item(X) or

write_item(X) such that TS(T) >write_TS(X) has its read or write operation delayed until the

transaction T that wrote the value of X (hence TS(T) = write TS(X)) has committed or

aborted. To implement this algorithm it is necessary to simulate the locking of an item X

that has been written by transaction T until T is either committed or aborted. This algorithm

does not cause deadlock since T waits for T only if TS(T) >TS(T).

Multi-version concurrency Control Techniques

 Other protocols for concurrency control keep the old values of a data item when

the item is updated. These are known as multi version concurrency control techniques,

because several versions (values) of an item are maintained. When a transaction

requires access to an item, an appropriate version is chosen to maintain the

serilizability of the currently executing schedule, if possible. The idea is that some read

operations that would be rejected in other techniques can still be accepted by reading

an older version of the item to maintain serializability. When a transaction writes an

item, it writes a new version and the old version of the item is retained. In general,

multi version concurrency control algorithms use the concept of view serializability

rather than conflict serializability.

 An obvious drawback of multi version techniques is that more storage is needed

to maintain multiple versions of the data base items. However older versions may have

to be maintained anyway for example for recovery purposes. In addition some data

B.A. Part-II (Semester-IV) Paper : BAP-203

104

base applications require older versions to be kept to maintain a history of the

evolution of data item values. The extreme case is a temporal data base, which keeps

track of all changes and the times at which they occurred. In such cases, there is no

additional penalty for Multi-version techniques since older versions are already

maintained.

 Several Multi-version techniques concurrency control schemes have been

proposed. We discuss two schemes here, one based on timestamp ordering and the

other based on two phase locking.

Multi-version Technique based on Timestamp Ordering

 In this Multi-version technique, several versions X1, X2, ……….. Xk of each data

item X are kept by the system. For each version the value of version X1 and the

following two timestamps are kept:

1 read_TS(X): The read timestamp of Xi this is the largest of all the

timestamps of transactions that have successfully read version Xi.

2 Write_TS(X): The write timestamp of Xi this is the timestamp of the

transaction that wrote the value of version Xi.

 Whenever a transaction T is allowed to execute a write_item(X) operation a new

version Xk+1 is created with both the write_TS(Xk+1) and the read_TS(Xk+1) set to TS(X)

the value of read_TS(X) is set to the larger of read_TS(X) and TS(T).

 To ensure serializability we use the following two rules to control the reading

and writing of data items.

1 If transaction T issue a write_item (X) operation, and version I of X has

the highest write_TS(X) of all versions of X that is also less than or equal

to TS(T) and TS(T)<read_TS(X) then abort and roll back transaction T;

otherwise create a new version Xj of X with read TS(X) = write_TS(X)

=TS(T).

2 If transaction T issues a read_item(X) operation find the version I of X

that has the highest write_TS(X) of all versions of X that is also les than

or equal to TS(T) then return the value of Xi to transaction T and set the

value of read_TS(X) to the larger of TS(T) and the current read_TS(C)

In case , transaction t may be aborted and rolled back. This happens if T is

attempting to write a version of X that should have been read by another transaction

T whose timestamp us read_TS(X) however T has already read_version X which was

written by the transaction with timestamp equal to write_TS(X). If this conflict occurs

T is rolled back otherwise a new version of X, written by transaction T is created

Notice that if T is rolled back cascading rollback may occur. Hence to ensure

recoverability a transaction T is not allowed to commit until after all the transaction

that have written versions that T has real have committed.

B.A. Part-II (Semester-IV) Paper : BAP-203

105

Multi-version Two-Phase Locking

 In this scheme there are three locking modes for an item read write and certify.

Hence the state of an item X can be one of “read locked” “write locked” and “unlocked”

In the standard locking scheme with only read and write locks a write lock is an

exclusive lock. We can describe the relationship between read and write locks in the

standard scheme by means of the lock compatibility table shown in Figure J below.

 An entry of yes means that if a transaction T holds the type of lock specified in

the column header on item X and if transaction T requests the type of lock specified in

the row header on the same item X then T can obtain the lock because the locking

modes are compatible. On the other hand an every of no in the table indicates that the

locks are not compatible so T must until t release the lock.

 In the standard locking scheme once a transaction obtains a write lock on an

item no other transactions can access that item. That idea behind Multi-version two

phase locking is to allow other transactions T to read an item X while a single

transaction T holds a write lock on X. This is accomplished by allowing two versions for

each item X one version must always have been written by some committed

transaction. The second version X is created when a transaction T acquires a write lock

on a item. Other transaction can continue to read the committed version X whole T

holds write lock. Now transaction T can change the value of X as needed without

affecting the value of committed version X. However once T is ready to commit it must

obtain a certify lock on all items that it currently holds write lock on before it can

commit. The certify lock is not compatible with the read locks so the transactions may

have to delay its commit until all its write locks items are released by reading

transactions. At this point the committed version X of the date item is set to the value

of version X, version X is discarded and the certify locks are then released. The lock

compatibility table for this scheme is shown in Figure J (b)

 In this Multi-version to phase locking scheme read can proceed concurrently

with a write operation-an arrangement not permitted under the standard to phase

locking scheme. The cost is that a transaction may have to delay it commit until it

obtains exclusive certify locks on all the items it has updated. It can be shown that this

 Read Write

Read yes no

Write no no

(a)

(b) Read Write Certify

Read yes no no

Write yes no no

Certify no no no

B.A. Part-II (Semester-IV) Paper : BAP-203

106

scheme avoids cascading aborts since transaction are only allow to read the version X

that was written by a committed transaction.

2.6.5 Summary

 The term concurrency refers to the fact that DBMSs typically allow many

transactions to access the same database at the same time – and in such a system,

due to concurrency, three problems are - The lost update problem, the uncommitted

dependency problem and, the inconsistent analysis problem. One of the main

techniques used to control concurrent execution of transactions is based on the

concept of locking data items. A lock is a variable associated with a data item in the

data base and describes the status of that item with respect to possible operations that

can be applied to the item. Generally there is one lock for each data item in the data

base. We use locks as a means of synchronizing the access by concurrent transactions

to the data base items. To control concurrency two type of locks are used – Binary and

Shared/ Exclusive Locks. A transaction is said to follow the two phase locking protocol

if all locking operations proceed the first unlock operation in the transaction. A time

stamp is a unique identifier assigned by the database system to identify the order in

which the transaction is submitted to the system. So, time stamping can be thought of

a transaction’s start time. A deadlock occurs when each transaction in a set of two or

more transaction, is waiting for data item which is locked by other transactions in a set

i.e. two transactions are waiting for a condition that will never occur. The deadlock

prevention protocols are the set of rules that are used to ensure that the schedule will

never enter the deadlock state.

2.6.6 Self Understanding

1. What is concurrency?Why we need to control concurrency?

2. Discuss the problems arising due to concurrency.

3. What is a schedule? Explain with example.

4. What is a serial schedule and serializable schedule?

5. What is a lock? Explain different types of locks.

6. Explain the two Phase Locking Protocol with example.

7. What do you understand by deadlock? Explain the various deadlock

handling techniques.

8. What is timestamp? Discuss the timestamp ordering protocol.

9. What are the various necessary conditions for deadlock to occur?

2.6.7 Further Readings

1. Bipin C. Desai, An introduction to Database System, Galgotia Publication,

New Delhi.

2. C. J. Date, An introduction to database Systems, Sixth Edition, Addison

Wesley.

3. Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database

Systems, Addison Wesley.

B.A. Part-II

Semester-IV

Paper : BAP-203

DBMS

Lesson No. 2.7 Author : Vishal Goyal

MS-ACCESS

Structure:

17.0 Introduction

2.7.1 Objectives

2.7.2 MS-Access Basics

2.7.3 Brief overview of Relational Databases and Database Applications

2.7.4 A Business Example

2.7.5 Starting MS-Access

2.7.6 Creating and Viewing Tables

2.7.7 Viewing and Adding Data to a Table

2.7.8 Summary

2.7.9 Self Understanding

2.7.0 Introduction

 MS-Access is a relational database management system. It is the part of MS-

Office developed by the Microsoft Corporation. Using the Ms-Access we can create

database of our data and can manage the data well. In this lesson we learn the

basics of MS-Access, Opening the MS-Access on our system, create databases and

tables and last viewing, editing, deleting data from tables of the database.

2.7.1 Objectives

 After reading this lesson you will be able to learn

 Basics of the MS-Access

 Starting MS-Access

 Creating and Modifying tables

 Entering data into tables

 Viewing, modifying and deleting data from tables.

2.7.2 MS-Access Basics

 Microsoft Access is a Relational Database Management System (RDBMS). At the

most basic level, a DBMS is a program that facilitates the storage and retrieval of

structured information on a computer’s hard drive. Examples of well-know industrial-

strength relational DBMSs include

 Oracle

 Microsoft SQL Server

 IBM DB2

 Informix

 Well-know PC-based (“desktop”) relational DBMSs include

B.A. Part-II (Semester-IV) Paper : BAP-203 108

 Microsoft Access

 Microsoft FoxPro

 Borland dBase

Different Faces of Access

 Microsoft generally likes to incorporate as many features as possible into its

products. For example, the Access package contains the following elements:

 A Relational database system that supports two industry standard

query languages: Structured Query Language (SQL) and Query By

Example (QBE);

 A full-featured procedural programming language essentially a

subset of Visual Basic, a simplified procedural macro language

unique to Access;

 A rapid application development environment complete with visual

form and report development tools;

 A sprinkling of objected-oriented extensions;

 Various wizards and builders to make development easier.

For new users, these “multiple personalities” can be a source of enormous

frustration. The problem is that each personality is based on a different set of assumptions

and a different view of computing. For instance

 The relational database personality expects you to view your

application as sets of data;

 The procedural programming personality expects you to view your

application as commands to be executed sequentially;

 The object-oriented personality expects you to view your application

as objects which encapsulate state and behavior information.

 Microsoft makes no effort to provide an overall logical integration of these

personalities (indeed, it is unlikely that such an integration is possible). Instead, it is

up to you as a developer to pick and choose the best approach for implementing

your application.

 Since there are often several vastly different ways to implement a particular

feature in Access, recognizing the different personalities and exploiting the best

features (and avoiding the pitfalls) of each are important skills for Access developers.

 The advantage of these multiple personalities is that it is possible to use

Access to learn about an enormous range of information systems concepts without

having to interact with a large number of “single-personality” tools, for example:

 Oracle for relational databases

 PowerBuilder for rapid applications development,

 SmallTalk for object-oriented programming.

 Keep this advantage in mind as we switch back and forth between

personalities and different computing paradigms.

B.A. Part-II (Semester-IV) Paper : BAP-203 109

Important Definitions related to database in context to Microsoft Access:

 Microsoft Access is a powerful program to create and manage your databases.

It has many built in features to assist you in constructing and viewing your

information. Access is much more involved and is a more genuine database

application than other programs such as Microsoft Works.

 This lesson will help you get started with Microsoft Access and may solve some of

your problems, but it is a very good idea to use the Help Files that come with Microsoft

Access. First of all you need to understand how Microsoft Access breaks down a database.

Some keywords involved in this process are: Database File, Table, Record, Field, Data-type.

Here is the Hierarchy that Microsoft Access uses in breaking down a database.

 This lesson will help you get started with Microsoft Access and may solve

some of your problems, but it is a very good idea to use the Help Files that come with

Microsoft Access (or any program you use for that matter), for further assistance.

2.7.3 Brief overview of Relational Databases and Database Applications

 The first databases implemented during the 1960s and 1970s were based

upon either flat data files or the hierarchical or networked data models. These

methods of storing data were relatively inflexible due to their rigid structure and

heavy reliance on applications programs to perform even the most routine

processing.

Database File: This is your main file that encompasses the

entire database and that is saved to your hard-drive or

floppy disk. Example: StudentDatabase.mdb

Table:A table is a collection of data about a specific topic.

There can be multiple tables in a database.

Example: Students,Teachers

Field: Fields are the different categories within a Table.

Tables usually contain multiple fields.

Example: Student Last Name , Student First Name

Datatypes: Data types are the properties of each field.

A field only has one datatype.

FieldName: Student Last Name

Datatype: Text

B.A. Part-II (Semester-IV) Paper : BAP-203 110

 In the late 1970s, the relational database model which originated in the

academic research community became available in commercial implementations

such as IBM DB2 and Oracle. The relational data model specifies data stored in

relations that have some relationships among them (hence the name relational).

 In relational databases such as Sybase, Oracle, IBM DB2, MS SQL Server and

MS Access, data is stored in tables made up of one or more columns (Access calls a

column a field). The data stored in each column must be of a single data type such

as Character, Number or Date. A collection of values from each column of a table is

called a record or a row in the table.

 Different tables can have the same column in common. This feature is used to

explicitly specify a relationship between two tables. Values appearing in column A in

one table are shared with another table.

 Below are two examples of tables in a relational database for a local bank:

Customer Table

CustomerID Name Address City State Zip

Number Character Character Character Character Character

1001 Mr. Smith 123 Lexington Smithville KY 91232

1002 Mrs. Jones 12 Davis Ave. Smithville KY 91232

1003 Mr. Axe 443 Grinder Ln. Broadville GA 81992

1004 Mr. & Mrs. Builder 661 Parker Rd. Streetville GA 81990

Accounts Table

CustomerID AccountNumber AccountType DateOpened Balance

Number Number Character Date Number

1001 9987 Checking 10/12/1989 4000.00

1001 9980 Savings 10/12/1989 2000.00

1002 8811 Savings 01/05/1992 1000.00

1003 4422 Checking 12/01/1994 6000.00

1003 4433 Savings 12/01/1994 9000.00

1004 3322 Savings 08/22/1994 500.00

1004 1122 Checking 11/13/1988 800.00

B.A. Part-II (Semester-IV) Paper : BAP-203 111

 The Customer table has 6 columns (CustomerID, Name, Address, City, State

and Zip) and 4 rows (or records) of data. The Accounts table has 5 columns

(CustomerID, AccountNumber, AccountType, DateOpened and Balance) with 7 rows

of data.

 Each of the columns conforms to one of three basic data types: Character,

Number or Date. The data type for a column indicates the type of data values that

may be stored in that column.

 Number - may only store numbers, possibly with a decimal point.

 Character - may store numbers, letters and punctuation. Access calls

this data type Text.

 Date - may only store date and time data.

 In some database implementations other data types exist such as Images (for

pictures or other data). However, the above three data types are most commonly

used.

 Notice that the two tables share the column CustomerID and that the values

of the CustomerID column in the Customer table are the same as the values in the

CustomerID column in the Accounts table. This relationship allows us to specify that

the Customer Mr. Axe has both a Checking and a Savings account that were both

opened on the same day: December 1, 1994.

 Another name given to such a relationship is Master/Detail. In a

master/detail relationship, a single master record (such as Customer 1003, Mr. Axe)

can have many details records (the two accounts) associated with it.

 In a Master/Detail relationship, it is possible for a Master record to exist

without any Details. However, it is impossible to have a Detail record without a

matching Master record. For example, a Customer may not necessarily have any

account information at all. However, any account information must be associated

with a single Customer.

 Each table also must have a special column called the Key that is used to

uniquely identify rows or records in the table. Values in a key column (or columns)

may never be duplicated. In the above tables, the CustomerID is the key for the

Customer table while the AccountNumber is the key for the Accounts table.

2.7.4 A Business Example

 In this section, we will outline a business example that will be used as a basis

for the examples throughout the lesson. In organizations, the job of analyzing the

business and determining the appropriate database structure (tables and columns) is

typically carried out by Systems Analysts. A Systems Analyst will gather information

about how the business operates and will form a model of the data storage

requirements. From this model, a database programmer will create the database

tables and then work with the application developers to develop the rest of the

database application.

B.A. Part-II (Semester-IV) Paper : BAP-203 112

 For this lesson, we will consider a simple banking business. The bank has many

customers who open and maintain one or more accounts. For each Customer, we keep a

record of their name and address. We also assign them a unique CustomerID. We assign

this unique identifier both for convenience and for accuracy. It is much easier to identify a

single customer using their CustomerID rather than by looking up their full name and

address. In addition, it is possible for the bank to have two customers with the same name

(e.g., Bill Smith). In such cases, the unique CustomerID can always be used to tell them

apart.

 In a similar fashion, all accounts are assigned a unique account number. An

account can be either a checking account or a savings account. Savings accounts

earn interest but the only transactions allowed are deposits and withdrawals.

Checking accounts do not earn interest. We maintain the date that the account was

opened. This helps us track our customers and can be useful for marketing

purposes. Finally, we maintain the current balance of an account.

 In any database application, each of the tables requires a means to get data

into them and retrieve the data at a later time. The primary way to get data into

tables is to use data entry forms. The primary ways to get data back out of tables or

to display data in tables.

2.7.5 Starting Microsoft Access

 As with most Windows 95/98/NT/2000 programs, Access can be executed by

navigating the Start menu in the lower left-hand corner of the Windows Desktop. A

view of a Windows Desktop is given here:

 (Note that your Windows desktop may look slightly different).

 To start Access, click on the Start button, then the Programs menu, then

move to the MS-Office menu and finally click on the Microsoft Access menu item.

B.A. Part-II (Semester-IV) Paper : BAP-203 113

The MS Office Professional menu is shown below.

 Note that this arrangement of menus may vary depending on how MS Office

was installed on the PC you are using.

B.A. Part-II (Semester-IV) Paper : BAP-203 114

Once Access is running, an initial screen will be displayed:

 From this initial screen, the user can create a new database (either blank or

with some tables created with the database wizard), or open up an existing database.

 In general, the first time one begins a project, a new, blank database should

be created. After that point, use the Open existing database option to re-open the

database created previously.

Warning - If you have previously created a database, and then create it again using

the same name, you will overwrite any work you have done.

 For the purposes of this lesson, if you are going through these steps for the

first time, choose the option to create a new, blank database as shown in the above

figure.

 By selecting Blank Database and clicking on the OK button, the following

screen will appear. In order to give the new database a file name, fill in File Name as

a:\bankdb.mdb and click on the Create button to create the database as in the

following figure:

B.A. Part-II (Semester-IV) Paper : BAP-203 115

 In the above file name, the a:\ indicates that the new database will be created

on the A: disk drive. bankdb is the name chosen for this particular database and

.mdb is the three letter extension given for Microsoft DataBase files.

 It is advisable to keep the name of the database (bankdb in the above

example) relatively short and do not use spaces or other punctuation in the name of

the database. Also, the name of the database should reflect the database's contents.

 Once the new database is created, the following main Access screen will

appear. There are different versions of Ms-Access. Now how it will appear depends

upon which version of MS-Access is installed on your system. Following are the

appearance of two different version i.e. MS-Access 97 and MS-Access 2000 -

B.A. Part-II (Semester-IV) Paper : BAP-203 116

MS-Access 97

B.A. Part-II (Semester-IV) Paper : BAP-203 117

MS-Access 2000

 The two main features of this main screen are the menu bar that runs along

the top of the window and the series of tabs in the main window. The menu bar is

similar to other Microsoft Office products such as Excel. The menus include:

 File - Menu items to Open, Close, Create new, Save and Print databases and

their contents. This menu also has the Exit item to exit Access.

 Edit - Cut, Copy, Paste, Delete

 View - View different database objects (tables, queries, forms, reports)

 Insert - Insert a new Table, Query, Form, Report, etc.

 Tools - A variety of tools to check spelling, create relationships between

tables, perform analysis and reports on the contents of the database.

 Window - Switch between different open databases.

 Help - Get help on Access.

The tabs in the main window for the database include:

 Tables - Displays any tables in the database.

 Queries - Displays any queries saved in the database.

 Forms - Displays any forms saved in the database.

B.A. Part-II (Semester-IV) Paper : BAP-203 118

 Reports - Displays any reports saved in the database.

 Macros - Displays any macros (short programs) stored in the database.

 Modules - Displays any modules (Visual Basic for Applications procedures) stored

in the database.

 In MS Access 2000, these tabs appear along the left hand side of the window

by default. MS Access 2000 also adds some selections such as Web Pages and

Favorites.

2.7.6 Creating and Viewing Tables

 Tables are the main units of data storage in Access. Recall that a table is

made up of one or more columns (or fields) and that a given column may appear in

more than one table in order to indicate a relationship between the tables.

 From the business example discussed earlier, we concluded that two tables

would be sufficient to store the data about Customers and their bank Accounts. We

now give the step-by-step instructions for creating these two tables in Access.

 There are a number of ways to create a table in Access. Access provides

wizards that guide the user through creating a table by suggesting names for tables

and columns. The other main way to create a table is by using the Design View to

manually define the columns (fields) and their data types.

 While using the wizards is a fast way to create tables, the user has less

control over the column names (fields) and data types. In this lesson, we will describe

the steps to create a table using the Design View. Students are encouraged to

experiment on their own with using the Create Table by using wizard.

Creating a Table Using the Design View

 To create a table in Access using the Design View, make sure the Tables tab is

displayed (that is, Access should be set to work with tables rather than with queries, forms,

reports, etc.) and perform the following steps:

1. For Access '97, Click on the New button and highlight Design View in

the dialog box that appears:

B.A. Part-II (Semester-IV) Paper : BAP-203 119

Then click on the OK button.

For Access 2000, double click on the "Create Table in Design View" item.

2. The Table Design View will appear. Fill in the Field Name, Data Type

and Description for each column/field in the table. The CustomerID

field is filled in below:

Note that the default name given for the table is Table17. In a later step, we will

assign an appropriate name for this table.

Fill in the information for the fields as follows:

Field Name Data Type Description

CustomerID Number The Unique Identifier for a Customer

Name Text The Name of the Customer

Address Text The Address of the Customer

City Text The City of the Customer

State Text The home State of the Customer

Zip Text The Zip Code of the Customer

A figure showing the design view with the new table definition filled in is given

below:

B.A. Part-II (Semester-IV) Paper : BAP-203 120

3. Now that all of the fields have been defined for the table, a Primary Key

should be defined. Click on the CustomerID field with the Right mouse

button and choose Primary Key from the pop-up menu.

Notice that a small key appears next to the field name on the left side.

Note: To remove a primary key, simply repeat this procedure to toggle the primary

key off.

4. As a final step, the table must be saved. Pull down the File menu and

choose the Save menu item. A dialog box will appear where the name

B.A. Part-II (Semester-IV) Paper : BAP-203 121

of the new table should be specified. Note that Access gives a default

name such as Table1 or Table2. Simply type over this default name

with the name of the table.

For this example, name the table: Customer Then click on the OK button.

 At this point, the new Customer table has been created and saved. Switch

back to the Access main screen by pulling down the File menu and choosing the

Close menu item. This will close the Design View for the table and display the Access

main screen. Notice that the new Customer table appears below the Table tab.

 When defining the fields (columns) for a table, it is important to use field

names that give a clear understanding of the data contents of the column. For

example, does the field CNO indicate a Customer Number or a Container Number ?

 Field names in Access can be up to 64 characters long and may contain

spaces. However, the use of spaces in field names and table names is strongly

discouraged. If you wish to make field names easier to read, consider using an

underscore character to separate words. However be certain no spaces appear before

or after the underscore.

B.A. Part-II (Semester-IV) Paper : BAP-203 122

 The following table summarizes some different ways to give field names:

Description Bad Good

Unique identifier for a

customer
CID

CustomerID or

Customer_ID

Description for a product PDESC ProductDescription

Employee's home

telephone number

Employee_home_telephone_numb

er
HomePhone

Bank account number BA# AccountNumber

2.7.7 Viewing and Adding Data to a Table

 Data can be added, deleted or modified in tables using a simple spreadsheet-

like display. To bring up this view of a single table's data, highlight the name of the

table and then click on the Open button.

 In this view of the table, shown in the figure below, the fields (columns) appear

across the top of the window and the rows or records appear below. This view is similar to

how a spreadsheet would be designed.

 Note at the bottom of the window the number of records is displayed. In this

case, since the table was just created, only one blank record appears.

 To add data to the table, simply type in values for each of the fields (columns).

Press the Tab key to move between fields within a record. Use the up and down

arrow keys to move between records. Enter the data as given below:

B.A. Part-II (Semester-IV) Paper : BAP-203 123

CustomerID Name Address City State Zip

1001 Mr. Smith 123 Lexington Smithville KY 91232

1002 Mrs. Jones 12 Davis Ave. Smithville KY 91232

1003 Mr. Axe 443 Grinder Ln. Broadville GA 81992

1004 Mr. & Mrs. Builder 661 Parker Rd. Streetville GA 81990

 To save the new data, pull down the File menu and choose Save.

 To navigate to other records in the table, use the navigation bar at the bottom

of the screen:

 To modify existing data, simply navigate to the record of interest and tab to

the appropriate field. Use the arrow keys and the delete or backspace keys to change

the existing data.

 To delete a record, first navigate to the record of interest. Then pull down the

Edit menu and choose the Delete menu item.

 To close the table and return to the Access main screen, pull down the File

menu and choose the Close menu item.

2.7.8 Summary

 Microsoft Access is a relational database management system (DBMS).

Microsoft Access is a powerful program to create and manage your databases. It has

many built in features to assist you in constructing and viewing your information. In

the above section we learnt about the basics of the MS-Access, how we can create

B.A. Part-II (Semester-IV) Paper : BAP-203 124

databases. Further how tables can be created in the database. In the last we learnt

how data can be read, modified and deleted from tables.

2.7.9 Self Understanding

Q1. Explain the Features of MS-Access.

Q2. Explain the various components of MS-Access

Q3. List down the steps taking suitable examples how database can be

created in MS-Access.

Q4. Explain the steps to be followed in creating the tables in database and

how the data can be fed in the tables.

Q5. Explain how the data in the tables can be viewed, modified and

deleted.

B.A. Part-II

Semester-IV

Paper : BAP-203

DBMS

Lesson No. 2.8 Author : Vishal Goyal

QUERIES IN MS-ACCESS

Structure:

2.8.0 Introduction

2.8.1 Objectives

2.8.2 Queries in MS-Access

2.8.3 Setting Query Properties

2.8.4 Setting Field Properties

2.8.5 Viewing Results and SQL Equivalent

2.8.6 Creating and Running Queries

2.8.7 Integrity Constraints

2.8.8 Referential Integrity

2.8.9 Join Types

2.8.10 Summary

2.8.11 Self Understanding

2.8.0 Introduction

 Queries offer the ability to retrieve and filter data, calculate summaries

(totals), and update, move and delete records in bulk. Mastering Microsoft Access

queries will improve your ability to manage and understand your data and simplify

application development. In the following section we will explain how to retrieve data

from database using queries. In addition to it, how to create and run queries after

creating queries will be explained. Moreover, how integrity and referential constraints

are implemented in the database.

2.8.1 Objectives

After reading this lesson you will be able to learn

 How to create Queries

 How to run queries

 How to set Integrity and referential constraints

 Various types of Joins available in MS-Access

2.8.2 Queries in MS-Access

 Microsoft Access is now the most popular Windows database program. A

major reason for its success is its revolutionary query interface. Once data is

collected in a database, analysis and updates need to be performed. Queries offer the

ability to retrieve and filter data, calculate summaries (totals), and update, move and

delete records in bulk. Mastering Microsoft Access queries will improve your ability to

manage and understand your data and simplify application development.

B.A. Part-II (Semester-IV) Paper : BAP-203 126

 The visual representation of tables and the graphical links between them

makes Microsoft Access queries extremely easy to use. Fortunately, the nice user

interface also allows very powerful and advanced analysis. The entire query engine is

modeled on SQL systems and allows switching between the graphical query design

and SQL syntax. Many Microsoft Access users and developers learned SQL from this

feature.

 Knowing the many features of Microsoft Access queries will allow you to

perform advanced analysis quickly without programming.

Query Types

 Microsoft Access supports many types of queries. Here is a description of the

major categories:

 Select Queries

 Retrieve records or summaries (totals) across records. Also includes cross-

tabulations.

 Make Table Queries

Similar to Select queries but results are placed in a new table.

 Append Queries

 Similar to Select queries but results are added to an existing table.

 Update Queries

 Modify data in the records.

 Delete Queries

 Records are deleted from a table.

 Select queries are the most common queries and can be used for viewing and

a data source for forms, reports, controls, and other queries. The other queries create

or change data and are known collectively as Action queries.

Basic Select Queries

 The most basic Select queries retrieve the records you specify from a table.

You can choose the fields from a table to display, and specify the criteria for selecting

records. In the most cases, while viewing the query results you can modify the data

and update the original records. These updateable views are extremely powerful.

Selecting Table and Fields

 The first step in creating a query is to specify the table or tables to use and

the fields to display. Selecting tables is simple. Just choose the table from the list

when the query is first created or use the Add Table command from the Query menu.

The selected table is placed on the upper portion of the query design window. From

there you can select the fields for the query by double clicking on them or selecting

several fields (using Shift-Click or Ctrl-Click) and dragging them to the bottom

portion: the query by example (QBE) grid. Make sure the Show option is checked to

display the field.

B.A. Part-II (Semester-IV) Paper : BAP-203 127

Sorting and Reordering Fields

 Once the fields are placed on the QBE grid, you can reorder the fields by

clicking on the column and dragging it to the place you want. To sort the results,

specify the Sort option under the fields to sort. You can choose Ascending or

Descending order. Note that you can turn off the Show setting and sort on a field

that does not appear in the display.

Renaming Fields

 A very nice feature of Microsoft Access queries is the ability to rename fields.

You may have stored your data in fields that are not easily understood by users. By

using a query expression, you can change the field name the user sees. For instance,

a field named "CustID" could be changed to "Customer ID" by placing the new name

followed by a colon and the original name in the QBE field cell: Customer

ID:[CustID].

Using Calculated Fields (Expressions)

 In addition to retrieving fields from a table, a Select query can also display

calculations (expressions). Of course, expressions cannot be updated since they

do not exist in the original table. Expressions are extremely powerful and allow

you to easily display complex calculations. There is an Expression Builder that

simplifies the selection of fields and functions. By default, expression fields are

named "Expr1", "Expr2", etc.; therefore, you usually want to rename them to

something more understandable.

2.8.3 Setting Query Properties

 While designing a query, you can choose View | Properties or right click on

the top portion of the query and choose Properties to see and modify the query

properties.

Description

 This property lets you provide a description of the query. This should help you

in remembering the purpose of the query.

Output All Fields

 This option is usually set to No. If it is changed to Yes, all the fields of all the tables

in the query are shown. In general, you should leave this property alone and

specify the fields desired in the QBE grid.

Top Values

 Rather than retrieving all records, you can specify the top n records or n

percent, where n is the value specified here.

Unique Values

 By default this is set to No and all records are retrieved. If this is changed to

Yes, every record retrieved contains unique values (SQL uses the SELECT DISTINCT

command). That is, no retrieved records are identical. For instance, you can run a

query for the State field of the Patient table. With this set to No, the result is a record

B.A. Part-II (Semester-IV) Paper : BAP-203 128

for each patient. When set to Yes, only the list of unique states is displayed. When

set to Yes, the query is not updateable.

Unique Records

 By default this is set to Yes and all records are retrieved. For one table

queries, this property is ignored. For multi-table queries, if it is set to No, (similar to

using a DISTINCTROW in a SQL statement) only the Unique Records and Unique

Values properties are linked and only one can be set to Yes (both can be No). When

Unique Records is Yes, Unique Values is automatically set to No. When both

properties are set to No, all records are returned.

Other Properties

 The Other properties are more technical and rarely need to be modified

(unless you are using SQL tables). For more information refer to Microsoft Access'

on-line help system.

2.8.4 Setting Field Properties

 In addition to query properties, each field also has properties that can be set.

Move to a field in the QBE grid and right click. Depending on the field type, different

properties are available. The most important properties are for numeric and date

fields. You can specify how the fields are formatted when the query is run.

2.8.5 Viewing Results and SQL Equivalent

 Once the query is completed, you can view its results by switching from

Design to DataSheet view. You can also view the SQL equivalent. You can even edit

the SQL syntax directly and view the results and/or switch to Design view.

Setting Criteria

 The bottom section of the QBE grid is several rows for Criteria. These are

optional entries to specify which records are retrieved. If you want all the Patients

from the state of Virginia, just enter "VA" in the State's criteria. To further narrow the

scope, you can enter criteria for several fields.

Multi-Field Query Criteria

 Entering criteria on the same row for several fields performs an AND query

between the fields. That is, records that match the criteria in field 1 AND the criteria

in field 2, etc. are retrieved. If criteria is placed in different rows, an OR query is

performed: retrieve all records matching criteria in field 1 OR criteria in field 2, etc.

Criteria Types

 The simplest criteria is the exact match. Just enter the value desired in the

field's criteria section. Remember that by using the Show option to eliminate the field

from the display, you can specify criteria in fields the user never sees.

 <>, <, >, Between .. And ..

 You can also retrieve records where a field does not have a particular value by

using "< >" followed by the value you don't want. Similarly, you can use >, <, >=, or

B.A. Part-II (Semester-IV) Paper : BAP-203 129

<= for ranges. To select records with values between two values, use the BETWEEN ..

AND .. syntax.

Nulls

 To select records with Null values, enter Is Null. The opposite is Not Is Null. For text

fields, remember that zero length strings ("") are not nulls.

OR and IN(.., .., ..)

 To select records where a field can have one of several values, use the OR

command. You can simply say: "MD" or "DC" or "VA". Alternatively, the IN command

performs the same function: IN("MD", "DC", "VA"). The second syntax is easier if you

have many values. Of course, if you have a very large number of values, it is better to

keep those values in a table and link your query to it. That is easier to maintain than

OR or IN clauses inside queries.

Wildcard Searches

 Sometimes, you need to search for a particular letter or digit. Combined with

the Like command, wildcards let you specify such criteria. These are the wildcard

characters Microsoft Access uses:

 ? Single Character

 * Any number of Characters

 # Single Digit

 [..] Character List

 [!..] not in Character List

 For instance, if you are interested in a text field where the second letter is "a",

the criteria would be: Like "?a*". If you were seeking values where the second letter

could be an "a" or "e", the criteria would be: Like "?[ae]*". The opposite of this (all

values that do not have "a" or "e" as the second letter) is performed by adding an "!":

Like "?[!ae]*". Finally, to select a range of letters (say "a" through "e"), add a dash

between the letters: Like "?[a-e]*".

 To search for a wildcard character, enclose the value in brackets. For instance, to

find values that end in a question mark, use this: Like "*[?]"

2.8.6 Creating and Running Queries

 Queries are a fundamental means of accessing and displaying data from

tables. Queries can access a single table or multiple tables. Examples of queries for

our bank database might include:

 Which Customers live in Georgia ?

 Which Accounts have less than a $500 balance ?

 In this section, we show how to use the Access Wizards to create queries for a

single table and for multiple tables.

Single Table Queries

 In this section, we demonstrate how to query a single table. Single table

queries are useful to gain a view of the data in a table that:

B.A. Part-II (Semester-IV) Paper : BAP-203 130

 only displays certain fields (columns) in the output

 sorts the records in a particular order

 performs some statistics on the records such as calculating the sum of

data values in a column or counting the number of records, or

 filters the records by showing only those records that match some

criteria. For example, show only those bank customers living in GA.

 Creating a query can be accomplished by using either the query design view

or the Query wizard. In the following example, we will use the query wizard to create

a query.

 Queries are accessed by clicking on the Queries tab in the Access main

screen. This is shown below:

 To create a new query, click on the New button. The New Query menu will

appear as below. Select the Simple Query wizard option and click the OK button.

B.A. Part-II (Semester-IV) Paper : BAP-203 131

 The first step in the Simple Query wizard is to specify the table for the query

and which fields (columns) should be displayed in the query output. Three main

sections of this step are:

1. Tables/Queries - A pick list of tables or queries you have created.

2. Available Fields - Those fields from the table that can be displayed.

3. Selected Fields - Those fields from the table that will be displayed.

 For this example, pull down the Tables/Queries list and choose the Customer

table. Notice that the available fields change to list only those fields in the Customer

table. This step is shown below:

 From the list of Available fields on the left, move the Name, Address, City and

State fields over to the Selected Fields area on the right. Highlight one of the fields

and then click on the right arrow button in the center between the two areas.

Repeat this for each of the four fields to be displayed. When done with this step, the

wizard should appear as below:

B.A. Part-II (Semester-IV) Paper : BAP-203 132

 Click on the Next button to move to the next and final step in the Simple

Query wizard.

 In the final step, give your new query a name. For this example, name the

query: Customer Address

 At this point, the wizard will create the new query with the option to either:

 Open the query to view information - that is, the wizard will execute

the query and show the data.

 Modify the query design - the wizard will switch to the Design View to

allow further modification of the query.

B.A. Part-II (Semester-IV) Paper : BAP-203 133

 For this example, choose Open the query to view information and click on the

Finish button. When this query executes, only the customer's name, address, city

and state fields appear, however, all of the rows appear as shown in the figure below:

B.A. Part-II (Semester-IV) Paper : BAP-203 134

 Close this query by pulling down the File menu and choosing the Close menu

item. The Access main screen showing the Queries tab should appear. Note the new

query CustomerAddress appears under the Queries tab.

 In the following example, we will modify the CustomerAddress query to only

display customers in a certain state. To accomplish this, we will make use of the

Query Design View.

 Open up the CustomerAddress query in the design view by highlighting the

name of the query and clicking on the Design button. The design view will appear as

in the figure below:

 The Query Design view has two major sections. In the top section, the table(s)

used for the query are displayed along with the available fields. In the bottom

section, those fields that have been selected for use in the query are displayed.

 Each field has several options associated with it:

 Field - The name of the field from the table

 Table - The table the field comes from

 Sort - The order in which to sort on this field (Ascending, Descending

or Not Sorted)

 Show - Whether or not to display this field in the query output

B.A. Part-II (Semester-IV) Paper : BAP-203 135

 Criteria - Indicates how to filter the records in the query output.

 For this example, we will filter the records to only display those customers

living in the State of Georgia (GA). We will also sort the records on the City field.

 To sort the records on the City field, click in the Sort area beneath the City field.

Choose Ascending from the list as shown in the figure below:

 To filter the output to only display Customers in Georgia, click in the Criteria

area beneath the State field and type the following statement:= 'GA'

 The = 'GA' statement tells Access to only show those records where the value

of the State field is equal to 'GA'.

Run the query by pulling down the Query menu and choosing the Run menu item.

The output is shown in the figure below:

B.A. Part-II (Semester-IV) Paper : BAP-203 136

 Finally, save and close this query to return to the Access main screen.

Exercise: Single Table Queries

 For this exercise, use the Simple Query wizard to create a query on the

Accounts table showing just the AccountNumber, AccountType and Balance fields.

1. From the Access main screen, click on the Queries tab. Then click on the

New button.

2. Choose the Simple Query wizard option and click on the OK button.

3. Under Table/Queries: choose the Accounts table. Then move the

AccountNumber, AccountType and Balance fields over to the Selected fields

area. Then click the Next button.

4. In the next panel, you will be asked to choose between a detail or summary

query. Choose detailed query and click on the Next button.

5. Name the new Query : AccountsQuery and click on the Finish button.

The output is shown below:

 Close this query by pulling down the File menu and choosing Close.

 In the next part of the exercise, we will modify the query to sort the output on

the account number and only display the Savings accounts.

1. From the Queries tab on the Access main screen, highlight the

 AccountsQuery and click on the Design button.

2. Change the Sort order for the AccountNumber field to Ascending.

 Add the following statement to the Criteria: are under the AccountType field:

3. = 'Savings'

B.A. Part-II (Semester-IV) Paper : BAP-203 137

4. Run the query by pulling down the Query menu and choosing the Run menu

 item. The output is shown below:

 Finally, save and close the query to return to the Access main screen.

2.8.7 Integrity constraints

 Now we describe how to define relationships in a Microsoft Access database.

What Are Table Relationships

 In a relational database, relationships enable you to prevent redundant data. For

example, if you are designing a database that will track information about books, you

might have a table called Titles that stores information about each book, such as the

book’s title, date of publication, and publisher. There is also information you might want

to store about the publisher, such as the publisher's phone number, address, and zip

code. If you were to store all of this information in the titles table, the publisher’s phone

number would be duplicated for each title that the publisher prints. A better solution is

to store the publisher information only once in a separate table, Publishers. You would

then put a pointer in the Titles table that references an entry in the Publishers table.

 To make sure that your data is not out of sync, you can enforce referential

integrity between the Titles and Publishers tables. Referential integrity relationships

help ensure that information in one table matches information in another. For

example, each title in the Titles table must be associated with a specific publisher in

the Publishers table. A title cannot be added to the database for a publisher that

does not exist in the database.

B.A. Part-II (Semester-IV) Paper : BAP-203 138

Types of Table Relationships

 A relationship works by matching data in key columns, usually columns with the

same name in both tables. In most cases, the relationship matches the primary key from

one table, which provides a unique identifier for each row, with an entry in the foreign key

in the other table. For example, sales can be associated with the specific titles sold by

creating a relationship between the title_id column in the Titles table (the primary key) and

the title_id column in the Sales table (the foreign key).

 There are three types of relationships between tables. The type of relationship that

is created depends on how the related columns are defined.

One-To-Many Relationships

 A one-to-many relationship is the most common type of relationship. In this

type of relationship, a row in table A can have many matching rows in table B, but a

row in table B can have only one matching row in table A. For example, the

Publishers and Titles tables have a one-to-many relationship: each publisher

produces many titles, but each title comes from only one publisher. A one-to-many

relationship is created if only one of the related columns is a primary key or has a

unique constraint. In Access, the primary key side of a one-to-many relationship is

denoted by a key symbol. The foreign key side of a relationship is denoted by an

infinity symbol.

Many-To-Many Relationships

 In a many-to-many relationship, a row in table A can have many matching

rows in table B, and vice versa. You create such a relationship by defining a third

table, called a junction table, whose primary key consists of the foreign keys from

both table A and table B. For example, the Authors table and the Titles table have a

many-to-many relationship that is defined by a one-to-many relationship from each

of these tables to the TitleAuthors table. The primary key of the TitleAuthors table is

the combination of the au_id column (the authors table’s primary key) and the

title_id column (the Titles table’s primary key).

One-To-One Relationships

 In a one-to-one relationship, a row in table A can have no more than one

matching row in table B, and vice versa. A one-to-one relationship is created if both

of the related columns are primary keys or have unique constraints.

 This type of relationship is not common because most information related in

this way would be all in one table. You might use a one-to-one relationship to:

• Divide a table with many columns.

• Isolate part of a table for security reasons.

• Store data that is short-lived and could be easily deleted by simply

deleting the table.

• Store information that applies only to a subset of the main table.

B.A. Part-II (Semester-IV) Paper : BAP-203 139

 In Access, the primary key side of a one-to-one relationship is denoted by a key

symbol. The foreign key side is also denoted by a key symbol.

Defining Relationships Between Tables

 When you create a relationship between tables, the related fields do not have

to have the same names. However, related fields must have the same data type

unless the primary key field is an AutoNumber field. You can match an AutoNumber

field with a Number field only if the FieldSize property of both of the matching fields

is the same. For example, you can match an AutoNumber field and a Number field if

the FieldSize property of both fields is Long Integer. Even when both matching fields

are Number fields, they must have the same FieldSize property setting.

Defining a One-To-Many or One-To-One Relationships

 To create a one-to-many or a one-to-one relationship, follow these steps:

1. Close any tables that you have open. You cannot create or modify

relationships between open tables.

2. Press F11 to switch to the Database window.

3. On the Tools menu, click Relationships.

4. If you have not yet defined any relationships in your database, the Show Table

dialog box is automatically displayed. If you want to add the tables that you want

to relate, but the Show Table dialog box is not displayed, click Show Table on the

Relationships menu.

5. Double-click the names of the tables that you want to relate, and then close

the Show Table dialog box. To create a relationship between a table and itself,

add that table twice.

6. Drag the field that you want to relate from one table to the related field in the

other table. To drag multiple fields, press CTRL, click each field, and then

drag them.

 In most cases, you drag the primary key field (which is displayed in bold text)

from one table to a similar field (often with the same name) called the foreign

key in the other table.

7. The Edit Relationships dialog box is displayed. Ensure that the field names

displayed in the two columns are correct. You can change them if necessary.

 Set the relationship options if necessary. If you need information about a

specific item in the Edit Relationships dialog box, click the question mark

button, and then click the item. These options will be explained in detail later

in this article.

8. Click Create to create the relationship.

9. Repeat steps 5 through 8 for each pair of tables that you want to relate.

When you close the Edit Relationships dialog box, Microsoft Access asks if

you want to save the layout. Whether you save the layout or not, the

relationships that you create are saved in the database.

B.A. Part-II (Semester-IV) Paper : BAP-203 140

NOTE: You can create relationships in queries as well as tables. However,

referential integrity is not enforced with queries.

Defining a Many-To-Many Relationships

 To create a many-to-many relationship, follow these steps:

1. Create the two tables that will have a many-to-many relationship.

2. Create a third table, called a junction table, and then add to the junction table

new fields with the same definitions as the primary key fields from each of the

other two tables. In the junction table, the primary key fields function as

foreign keys. You can add other fields to the junction table, just as you can to

any other table.

3. In the junction table, set the primary key to include the primary key fields

from the other two tables. For example, in an TitleAuthors junction table, the

primary key would be made up of the OrderID and ProductID fields.

 NOTE: To create a primary key, follow these steps:

a. Open a table in Design view.

b. Select the field or fields that you want to define as the primary key. To

select one field, click the row selector for the desired field.

 To select multiple fields, hold down the CTRL key, and then click the

row selector for each field.

c. Click Primary Key on the toolbar.

NOTE: If you want the order of the fields in a multiple-field primary key to be

different from the order of those fields in the table, click Indexes on the

toolbar to display the Indexes dialog box, and then reorder the field names for

the index named PrimaryKey.

4. Define a one-to-many relationship between each of the two primary tables and

the junction table.

2.8.8 Referential Integrity

 Referential integrity is a system of rules that Microsoft Access uses to ensure

that relationships between records in related tables are valid, and that you do not

accidentally delete or change related data. You can set referential integrity when all

of the following conditions are met:

• The matching field from the primary table is a primary key or has a

unique index.

• The related fields have the same data type. There are two exceptions.

An AutoNumber field can be related to a Number field with a FieldSize

property setting of Long Integer, and an AutoNumber field with a

FieldSize property setting of Replication ID can be related to a Number

field with a FieldSize property setting of Replication ID.

• Both tables belong to the same Microsoft Access database. If the tables

are linked tables, they must be tables in Microsoft Access format, and

B.A. Part-II (Semester-IV) Paper : BAP-203 141

you must open the database in which they are stored to set referential

integrity. Referential integrity cannot be enforced for linked tables from

databases in other formats.

The following rules apply when you use referential integrity:

• You cannot enter a value in the foreign key field of the related table

that does not exist in the primary key of the primary table. However,

you can enter a Null value in the foreign key, specifying that the

records are unrelated. For example, you cannot have an order that is

assigned to a customer that does not exist, but you can have an order

that is assigned to no one by entering a Null value in the CustomerID

field.

• You cannot delete a record from a primary table if matching records

exist in a related table. For example, you cannot delete an employee

record from the Employees table if there are orders assigned to the

employee in the Orders table.

• You cannot change a primary key value in the primary table, if that

record has related records. For example, you cannot change an

employee's ID in the Employees table if there are orders assigned to

that employee in the Orders table.

Cascading Updates and Deletes

 For relationships in which referential integrity is enforced, you can specify

whether you want Microsoft Access to automatically cascade update or cascade

delete related records. If you set these options, delete and update operations that

would normally be prevented by referential integrity rules are allowed. When you

delete records or change primary key values in a primary table, Microsoft Access

makes the necessary changes to related tables to preserve referential integrity.

If you click to select the Cascade Update Related Fields check box when you define

a relationship, any time that you change the primary key of a record in the primary

table, Microsoft Access automatically updates the primary key to the new value in all

related records. For example, if you change a customer's ID in the Customers table,

the CustomerID field in the Orders table is automatically updated for every one of

that customer's orders so that the relationship is not broken. Microsoft Access

cascades updates without displaying any message.

NOTE: If the primary key in the primary table is an AutoNumber field, selecting the

Cascade Update Related Fields check box will have no effect, because you cannot

change the value in an AutoNumber field.

 If you select the Cascade Delete Related Records check box when you define a

relationship, any time that you delete records in the primary table, Microsoft Access

automatically deletes related records in the related table. For example, if you delete a

customer record from the Customers table, all the customer's orders are automatically

B.A. Part-II (Semester-IV) Paper : BAP-203 142

deleted from the Orders table (this includes records in the Order Details table related to

the Orders records). When you delete records from a form or datasheet with the Cascade

Delete Related Records check box selected, Microsoft Access warns you that related

records may also be deleted. However, when you delete records using a delete query,

Microsoft Access automatically deletes the records in related tables without displaying a

warning.

2.8.9 Join Types

 There are three join types, as follows:

Option 1 defines an inner join. An inner join is a join where records from

two tables are combined in a query's results only if values in the

joined fields meet a specified condition. In a query, the default

join is an inner join that selects records only if values in the

joined fields match.

Option 2 defines a left outer join. A left outer join is a join in which all the

records from the left side of the LEFT JOIN operation in the

query's SQL statement are added to the query's results, even if

there are no matching values in the joined field from the table

on the right.

Option 3 defines a right outer join. A right outer join is a join in which all

the records from the right side of the RIGHT JOIN operation in the

query's SQL statement are added to the query's results, even if

there are no matching values in the joined field from the table on

the left.

2.8.10 Summary

 In this lesson you have learnt how to create and run queries in MS-Access,

how integrity and referential constraints can be implemented on tables in MS-Access

database.

2.8.11 Self Understanding

Q1. Explain the steps in MS-Access for creating and running queries.

Q2. Explain the various steps for Defining Relationships Between Tables

Q3. What do you mean by Referential Integrity. How it can be implemented

in MS-Access. Explain taking suitable example.

Q4. What are the various join types available in MS-Access database.

B.A. Part-II

Semester-IV

Paper : BAP-203

DBMS

Lesson No. 2.9 Author : Vishal Goyal

INTRODUCTION TO FORMS

Structure:

2.9.0 Introduction

2.9.1 Objectives

2.9.2 Create Form by Using Wizard

2.9.3 Create Form in Design View

2.9.4 Adding Records Using A Form

2.9.5 Editing Forms

2.9.6 Form Control

2.9.7 Sorting and filtering

2.9.8 Summary

2.9.9 Self Understanding

2.9.0 Introduction

 A form is nothing more than a graphical representation of a table. You can

add, update, and delete records in your table by using a form. Although a form can

be given different from a table, they both still manipulate the same information and

the same data. Hence, if you change a record in a form, it will be changed in the

table also. A form is very good to use when you have numerous fields in a table. This

way you can see all the fields in one screen, whereas if you were in the table view

(datasheet) you would have to keep scrolling to get the field you desire.

 Forms are used as an alternative way to enter data into a database table. In

the following sections of this lesson, we will explain how to create forms through

wizard and design view. In addition, how to add various controls to forms, filtering

and sorting data.

2.9.1 Objectives

 After reading this lesson we will be able to

 Create and edit Forms

 How to add records using forms

 Steps for adding various Form Controls to form

 Filter and Sort Data

2.9.2 Create Form by Using Wizard

 To create a form using the assistance of the wizard, follow these steps:

1. Click the Create form by using wizard option on the database window.

2. From the Tables/Queries drop-down menu, select the table or query whose

datasheet the form will modify. Then, select the fields that will be included on

B.A. Part-II (Semester-IV) Paper : BAP-203 144

the form by highlighting each one on the Available Fields window and clicking

the single right arrow button > to move the field to the Selected Fields

window. To move all of the fields to Selected Fields, click the double right

arrow button >>. If you make a mistake and would like to remove a field or all

of the fields from the Selected Fields window, click the left arrow < or left

double arrow << buttons. After the proper fields have been selected, click the

Next > button to move on to the next screen.

3. On the second screen, select the layout of the form.

 Columnar - A single record is displayed at one time with labels and

form fields listed side-by-side in columns

 Justified - A single record is displayed with labels and form fields are

listed across the screen

 Tabular - Multiple records are listed on the page at a time with fields in

columns and records in rows

 Datasheet - Multiple records are displayed in Datasheet View

 Click the Next > button to move on to the next screen.

B.A. Part-II (Semester-IV) Paper : BAP-203 145

4. Select a visual style for the form from the next set of options and click Next >.

B.A. Part-II (Semester-IV) Paper : BAP-203 146

5. On the final screen, name the form in the space provided. Select "Open the

form to view or enter information" to open the form in Form View or "Modify

the form's design" to open it in Design View. Click Finish to create the form.

2.9.3 Create Form in Design View

 To create a form from scratch without the wizard, follow these steps:

1. Click the New button on the form database window.

2. Select "Design View" and choose the table or query the form will be

associated with the form from the drop-down menu.

3. Select View|Toolbox from the menu bar to view the floating toolbar

with additional options.

B.A. Part-II (Semester-IV) Paper : BAP-203 147

4. Add controls to the form by clicking and dragging the field names from the

Field List floating window. Access creates a text box for the value and label for

the field name when this action is accomplished. To add controls for all of the

fields in the Field List, double-click the Field List window's title bar and drag

all of the highlighted fields to the form.

B.A. Part-II (Semester-IV) Paper : BAP-203 148

2.9.4 Adding Records Using A Form

 Input data into the table by filling out the fields of the form. Press the Tab key

to move from field to field and create a new record by clicking Tab after the last field

of the last record. A new record can also be created at any time by clicking the New

Record button at the bottom of the form window. Records are automatically saved

as they are entered, so no additional manual saving needs to be executed.

2.9.5 Editing Forms

 The follow points may be helpful when modifying forms in Design View.

 Grid lines - By default, a series of lines and dots underlay the form in

Design View so form elements can be easily aligned. To toggle this feature

on and off select View|Grid from the menu bar.

 Snap to Grid - Select Format|Snap to Grid to align form objects with the

grid to allow easy alignment of form objects or uncheck this feature to

allow objects to float freely between the grid lines and dots.

 Resizing Objects - Form objects can be resized by clicking and dragging the

handles on the edges and corners of the element with the mouse.

 Change form object type - To easily change the type of form object without

having to create a new one, right click on the object with the mouse and

select Change To and select an available object type from the list.

 Label/object alignment - Each form object and its corresponding label are

bounded and will move together when either one is moved with the mouse.

However, to change the position of the object and label in relation to each

other (to move the label closer to a text box, for example), click and drag

the large handle at the top, left corner of the object or label.

 Tab order - Alter the tab order of the objects on the form by selecting View|Tab

Order... from the menu bar. Click the gray box before the row you would like to

B.A. Part-II (Semester-IV) Paper : BAP-203 149

change in the tab order, drag it to a new location, and release the mouse

button.

 Form Appearance - Change the background color of the form by clicking the

Fill/Back Color button on the formatting toolbar and click one of the color

swatches on the palette. Change the color of individual form objects by

highlighting one and selecting a color from the Font/Fore Color palette on the

formatting toolbar. The font and size, font effect, font alignment, border around

each object, the border width, and a special effect can also be modified using

the formatting toolbar:

 Page Header and Footer – Headers and footers added to a form will only

appear when it is printed. Access these sections by selecting View|Page

Header/Footer on the menu bar. Page numbers can also be added to these

sections by selecting Insert|Page Numbers. A date and time can be added

from Insert|Date and Time.... Select View|Page Header/Footer again to

hide these sections from view in Design View.

2.9.6 Form Control

 This section explains the uses for other types of form controls including lists,

combo boxes, checkboxes, option groups, and command buttons.

List and Combo Boxes

 If there are small, finite number of values for a certain field on a form, using combo

or list boxes may be a quicker and easier way of entering data. These two control types

B.A. Part-II (Semester-IV) Paper : BAP-203 150

differ in the number of values they display. List values are all displayed while the combo

box values are not displayed until the arrow button is clicked to open it as shown in these

examples:

Combo Box List Box

Reed Hall Academic 3

Ben Hill Griff in III Hall

Reed Hall

 By using a combo or list box, the name of the academic building does not need to

be typed for every record. Instead, it simply needs to be selected from the list. Follow these

steps to add a list or combo box to a form:

1. Open the form in Design View.

2. Select View|Toolbox to view the toolbox and make sure the "Control

Wizards" button is pressed in.

3. Click the list or combo box tool button and draw the outline on the

form. The combo box wizard dialog box will appear.

4. Select the source type for the list or combo box values and click Next >.

5. Depending on your choice in the first dialog box, the next options will

vary. If you chose to look up values from a table or query, the following

box will be displayed. Select the table or query from which the values

of the combo box will come from. Click Next > and choose fields from

the table or query that was selected. Click Next > to proceed.

B.A. Part-II (Semester-IV) Paper : BAP-203 151

6. On the next dialog box, set the width of the combo box by clicking and

dragging the right edge of the column. Click Next >.

7. The next dialog box tells Access what to do with the value that is selected.

Choose "Remember the value for later use" to use the value in a macro or

procedure (the value is discarded when the form is closed), or select the

B.A. Part-II (Semester-IV) Paper : BAP-203 152

field that the value should be stored in. Click Next > to proceed to the final

screen.

8. Type the name that will appear on the box's label and click Finish.

Check Boxes and Option Buttons

 Use check boxes and option buttons to display yes/no, true/false, or on/off

values. Only one value from a group of option buttons can be selected while any or

all values from a check box group can be chosen. Typically, these controls should be

used when five or less options are available. Combo boxes or lists should be used for

long lists of options. To add a checkbox or option group:

1. Click the Option Group tool on the toolbox and draw the area where

the group will be placed on the form with the mouse. The option group

wizard dialog box will appear.

2. On the first window, enter labels for the options and click the tab key

to enter additional labels. Click Next > when finished typing labels.

B.A. Part-II (Semester-IV) Paper : BAP-203 153

3. On the next window, select a default value if there is any and click

Next >.

4. Select values for the options and click Next >.

B.A. Part-II (Semester-IV) Paper : BAP-203 154

5. Choose what should be done with the value and click Next >.

6. Choose the type and style of the option group and click Next >.

B.A. Part-II (Semester-IV) Paper : BAP-203 155

7. Type the caption for the option group and click Finish.

Command Buttons

 In this example, a command button beside each record is used to open

another form.

1. Open the form in Design View and ensure that the Control Wizard button on

the toolbox is pressed in.

2. Click the command button icon on the toolbox and draw the button on the form.

The Command Button Wizard will then appear.

3. On the first dialog window, action categories are displayed in the left list while

the right list displays the actions in each category. Select an action for the

command button and click Next >.

B.A. Part-II (Semester-IV) Paper : BAP-203 156

[

4. The next few pages of options will vary based on the action you selected.

Continue selecting options for the command button.

5. Choose the appearance of the button by entering caption text or selecting a

picture. Check the Show All Pictures box to view the full list of available

images. Click Next >.

6. Enter a name for the command button and click Finish to create the button.

B.A. Part-II (Semester-IV) Paper : BAP-203 157

2.9.7 Sorting and filtering

 Sorting and filtering allow you to view records in a table in a different way

either by reordering all of the records in the table or view only those records in a

table that meet certain criteria that you specify.

Sorting

 You may want to view the records in a table in a different order than they

appear such as sorting by a date or in alphabetical order, for example. Follow these

steps to execute a simple sort of records in a table based on the values of one field:

1. In table view, place the cursor in the column that you want to sort by.

2. Select Records|Sort|Sort Ascending or Records|Sort|Sort Descending from the

menu bar or click the Sort Ascending or Sort Descending buttons on the toolbar.

 To sort by more than one column (such as sorting by date and then sorting

records with the same date alphabetically), highlight the columns by clicking and

dragging the mouse over the field labels and select one of the sort methods stated

above.

Filter by Selection

 This feature will filter records that contain identical data values in a given

field such as filtering out all of the records that have the value "Smith" in a name

field. To Filter by Selection, place the cursor in the field that you want to filter the

other records by and click the Filter by Selection button on the toolbar or select

Records|Filter|Filter By Selection from the menu bar. In the example below, the

cursor is placed in the City field of the second record that displays the value "Ft.

Myers" so the filtered table will show only the records where the city is Ft. Myers.

Filter by Form

 If the table is large, it may be difficult to find the record that contains the

value you would like to filter by so using Filter by Form may be advantageous

B.A. Part-II (Semester-IV) Paper : BAP-203 158

instead. This method creates a blank version of the table with drop-down menus for

each field that each contain the values found in the records of that field. Under the

default Look for tab of the Filter by Form window, click in the field to enter the filter

criteria. To specify an alternate criteria if records may contain one of two specified

values, click the Or tab at the bottom of the window and select another criteria from

the drop-down menu. More Or tabs will appear after one criteria is set to allow you to

add more alternate criteria for the filter. After you have selected all of the criteria you

want to filter, click the Apply Filter button on the toolbar.

 The following methods can be used to select records based on the record

selected by that do not have exactly the same value. Type these formats into the field

where the drop-down menu appears instead of selecting an absolute value.

Filter by Form

Format Explanation

Like "*Street" Selects all records that end with "Street"

<="G" Selects all records that begin with the letters A through G

>1/1/00 Selects all dates since 1/1/00

<> 0 Selects all records not equal to zero

Saving a Filter

 The filtered contents of a table can be saved as a query by selecting File|Save

As Query from the menu bar. Enter a name for the query and click OK. The query is

now saved within the database.

B.A. Part-II (Semester-IV) Paper : BAP-203 159

Remove a Filter

 To view all records in a table again, click the depressed Apply Filter toggle

button on the toolbar.

2.9.8 Summary

 In this lesson you have learnt how to create and edit forms, how form controls

can be added to forms, how the data in the tables can sorted, how data can be

entered through forms, how the data can filtered using filters.

2.9.9 Self Understanding

Q1. Explain the various steps involved in creating the forms using Wizard.

Q2. Explain step to step process in creating forms in Design View.

Q3. Explain various Form Controls.

Q4. Explain in detail using suitable example about Filters.

Q5. How data can be sorted in tables ?

B.A. Part-II

Semester-IV

Paper : BAP-203

DBMS

Lesson No. 2.10 Author : Vishal Goyal

REPORTS AND MACRO

Structure:

2.10.0 Introduction

2.10.1 Objectives

2.10.2 Creating Reports by Using Wizard

2.10.3 Creating Reports in Design View

2.10.4 Printing Reports

2.10.5 What is Macro?

2.10.6 Creating Macros

2.10.7 Running Macros

2.10.8 Modules

2.10.9 Macro vs. Modules (or VBA)

2.10.10 Jumping to the Internet

2.10.11 Summary

2.10.12 Self Understanding

2.10.0 Introduction

 A report is an effective way to present your data in a printed format. Because you

have control over the size and appearance of everything on a report, you can display the

information the way you want to see it. Reports are similar to queries in that they retrieve

data from one or more tables and display the records. Unlike queries, however, reports add

formatting to the output including fonts, colors, backgrounds and other features. Reports

are often printed out on paper rather than just viewed on the screen. In this section, we

cover how to create simple reports using the Report wizard. Reports will organize and group

the information in a table or query and provide a way to print the data in a database.

2.10.1 Objectives

 After reading this lesson you will be able to

 Create reports using the Wizard and through Design View

 Printing Reports

 Creating and running Macros

 What are Modules and how to use them?

2.10.2 Creating Reports by using Wizard

 Create a report using Access' wizard by following these steps:

1. Double-click the "Create report by using wizard" option on the Reports

Database Window.

B.A. Part-II (Semester-IV) Paper : BAP-203 161

2. Select the information source for the report by selecting a table or

query from the Tables/Queries drop-down menu. Then, select the

fields that should be displayed in the report by transferring them from

the Available Fields menu to the Selected Fields window using the

single right arrow button > to move fields one at a time or the double

arrow button >> to move all of the fields at once. Click the Next >

button to move to the next screen.

Select fields from the list that the records should be grouped by and

click the right arrow button > to add those fields to the diagram. Use

the Priority buttons to change the order of the grouped fields if more

than one field is selected. Click Next > to continue.

B.A. Part-II (Semester-IV) Paper : BAP-203 162

3. If the records should be sorted, identify a sort order here. Select the

first field that records should be sorted by and click the A-Z sort

button to choose from ascending or descending order. Click Next > to

continue.

4. Select a layout and page orientation for the report and click Next >.

B.A. Part-II (Semester-IV) Paper : BAP-203 163

5. Select a color and graphics style for the report and click Next >.

B.A. Part-II (Semester-IV) Paper : BAP-203 164

6. On the final screen, name the report and select to open it in either

Print Preview or Design View mode. Click the Finish button to create

the report.

2.10.3 Creating Reports in Design View

 To create a report from scratch, select Design View from the Reports Database

Window.

1. Click the New button on the Reports Database Window. Highlight

"Design View" and choose the data source of the report from the drop-

down menu and click OK.

B.A. Part-II (Semester-IV) Paper : BAP-203 165

2. You will be presented with a blank grid with a Field Box and form element

toolbar that looks similar to the Design View for forms. Design the report

in much the same way you would create a form. For example, double-

click the title bar of the Field Box to add all of the fields to the report at

once. Then, use the handles on the elements to resize them, move them to

different locations, and modify the look of the report by using options on

the formatting toolbar. Click the Print View button at the top, left corner

of the screen to preview the report.

2.10.4 Printing Reports

 Select File|Page Setup to modify the page margins, size, orientation, and

column setup. After all changes have been made, print the report by selecting

File|Print from the menu bar or click the Print button on the toolbar.

Macros

2.10.5 What is Macro?

 A macro is a set of one or more actions that each performs a particular

operation, such as opening a form or printing a report. Macros can help you to

B.A. Part-II (Semester-IV) Paper : BAP-203 166

automate common tasks. For example, you can run a macro that prints a report

when a user clicks a command button.

 A macro can be one composed of a sequence of actions, or it can be a macro

group. You can also use a conditional expression1 to determine whether in some

cases an action will be carried out when a macro runs.

2.10.6 Creating Macros

1. In the Database window, click the Macros tab and then click New.

2. In the Action column, click in the first cell and then click the arrow to

display the action list.

3. Click the action you want to use.

4. Type a comment for the action. Comments are optional, but make your

macro easier to understand and maintain.

5. In the lower part of the window, specify arguments2 for the action, if

any are required.

6. To add more actions to the macro, move to another action row, and

repeat steps 2 through 5. Microsoft Access carries out the actions in

the order you list them.

Tip : To quickly create a macro that carries out an action on a specific database

object3, drag the object from the Database window to an action row in the Macro

window. For example, you can create a macro that opens a form by dragging the form

to an action row. To do this, click Tile Vertically on the Windows menu to position

the Macro window and Database window so that they're both visible on your screen;

1. Conditional expression is an expression that Microsoft Access evaluates and compares to a specific value

¾ for example, If...Then and Select Case statements. If the condition is met, one or more operations are

carried out. If the condition isn't met, Microsoft Access skips the operations associated with the

expression and moves to the next expression. You can use conditional expressions in macros and Visual

Basic code.

2. Argument is a constant, variable, or expression that supplies information to an action, event, method,

property, or procedure.
3. Database objects include tables, queries, forms, reports, macros, and modules.

B.A. Part-II (Semester-IV) Paper : BAP-203 167

then click the tab in the Database window for the type of object you want to drag,

click the object, and drag it to an action row. Dragging a macro adds an action that

runs the macro, while dragging other objects (tables, queries, forms, reports, or

modules) adds an action that opens the object.

2.10.7 Running Macros

 When you run a macro, Microsoft Access starts at the beginning of the macro and

carries out all the actions in the macro until it reaches either another macro (if the macro is

in a macro group) or the end of the macro.

 You can run a macro directly, from another macro or an event procedure4, or

in response to an event5 that occurs on a form, report, or control. For example, you

can attach a macro to a command button on a form so that the macro runs when a

user clicks the button. You can also create a custom menu command or toolbar

button that runs a macro, assign a macro to a key combination, or run a macro

automatically when you open a database.

Create a command button running a Macro

1. Open a form in Design view.

2. Click the Control Wizards tool in the toolbox if it's pressed in. This

turns off the wizard.

3. In the toolbox, click the Command Button tool .

4. On the form, click where you want to place the command button.

5. Make sure the command button is selected, and then click Properties

 on the toolbar to open its property sheet.

6. In the OnClick property box, enter the name of the macro or event

procedure that you want to run when the button is clicked, or click the

Build button to use the Macro Builder or Code Builder.

7. If you want to display text on the command button, type the text in the

Caption property box. If you don't want text on the button, you can use

a picture instead.

2.10.8 Modules

 A module is a collection of Visual Basic for Applications (VBA) declarations and

procedures that are stored together as a unit. Refer to Fig. 1.

4. Event procedure is a procedure automatically executed in response to an event initiated by the user or

program code, or triggered by the system.

5. Event is an action recognized by an object, such as a mouse click or key press, for which you can define

a response. An event can be caused by a user action or a Visual Basic statement, or it can be triggered by

the system. Using properties associated with events, you can tell Microsoft Access to run a macro, call a

Visual Basic function, or run an event procedure in response to an event.

B.A. Part-II (Semester-IV) Paper : BAP-203 168

 There are two basic types of modules: class modules6 and standard modules7.

Each procedure in a module can be a Function procedure8 or a Sub procedure9.

Fig. 1 Module

2.10.9 Macro vs. Modules (or VBA)

 In Microsoft Access, you can accomplish many tasks with macros or through

the user interface. In many other database programs, the same tasks require

programming. Whether to use a macro or Visual Basic for Applications often depends

on what you want to do.

When should I use a macro?

 Macros are an easy way to take care of simple details such as opening and

closing forms, showing and hiding toolbars, and running reports. You can quickly

6. Class module is a module that can contain the definition for a new object. When you create a new

instance of a class, you create the new object. Any procedures defined in the module become the

properties and methods of the object. Class modules in Microsoft Access exist both independently and in

association with forms and reports.

7. Standard module is a module in which you can place Sub and Function procedures that you want to be

available to other procedures throughout your database.

8. Function procedure is a procedure that returns a value and that can be used in an expression. You declare

a function with the Function statement and end it with the End Function statement

9. Sub procedure is a procedure that carries out an operation. Unlike a Function procedure, a Sub procedure

doesn't return a value. You declare a Sub procedure with the Sub keyword and end it with an End Sub

statement.

B.A. Part-II (Semester-IV) Paper : BAP-203 169

and easily tie together the database objects you've created because there's little

syntax to remember; the arguments for each action are displayed in the lower part of

the Macro window.

 In addition to the ease of use macros provide, you must use macros to:

 Make global key assignments.

 ���Carry out an action or series of actions when a database first

opens. However, you can use the Startup dialog box to cause certain

things to occur when a database opens, such as open a form.

When should I use VBA?

 You should use Visual Basic instead of macros if you want to:

 Make your database easier to maintain. Because macros are separate

objects from the forms and reports that use them, a database

containing many macros that respond to events on forms and reports

can be difficult to maintain. In contrast, Visual Basic event procedures

are built into the form's or report's definition. If you move a form or

report from one database to another, the event procedures built into

the form or report move with it.

 Create your own functions. Microsoft Access includes many built-in

functions, such as the IPmt function, which calculates an interest

payment. You can use these functions to perform calculations without

having to create complicated expressions. Using Visual Basic, you can

also create your own functions either to perform calculations that

exceed the capability of an expression or to replace complex

expressions. In addition, you can use the functions you create in

expressions to apply a common operation to more than one object.

 Mask error messages. When something unexpected happens while a

user is working with your database, and Microsoft Access displays an

error message, the message can be quite mysterious to the user,

especially if the user isn't familiar with Microsoft Access. Using Visual

Basic, you can detect the error when it occurs and either display your

own message or take some action.

 Create or manipulate objects. In most cases, you'll find that it's easiest

to create and modify an object in that object's Design view. In some

situations, however, you may want to manipulate the definition of an

object in code. Using Visual Basic, you can manipulate all the objects

in a database, as well as the database itself.

 Perform system-level actions. You can carry out the RunApp action in a

macro to run another Windows-based or MS-DOS–based application from

your application, but you can't use a macro to do much else outside

Microsoft Access. Using Visual Basic, you can check to see if a file exists on

B.A. Part-II (Semester-IV) Paper : BAP-203 170

the system, use Automation or dynamic data exchange (DDE) to

communicate with other Windows-based applications such as Microsoft

Excel, and call functions in Windows dynamic-link libraries (DLLs).

 Manipulate records one at a time. You can use Visual Basic to step

through a set of records one record at a time and perform an operation

on each record. In contrast, macros work with entire sets of records at

once.

 Pass arguments to your Visual Basic procedures. You can set

arguments for macro actions in the lower part of the Macro window

when you create the macro, but you can't change them when the

macro is running. With Visual Basic, however, you can pass

arguments to your code at the time it is run or you can use variables

for arguments — something you can't do in macros. This gives you a

great deal of flexibility in how your Visual Basic procedures run.

2.10.10 Jumping to the Internet

 There are three types of Web pages Microsoft Access creates:

 Data access pages

 Server-generated HTML

 Static HTML

Data access pages

 You create a data access pages as a database object that contains a

shortcut to the location of the page's corresponding HTML file.

 Use pages to view, edit, update, delete, filter, group, and sort live data from

either a Microsoft Access database or a Microsoft SQL Server database, in

Microsoft Internet Explorer 5 or later. A page can also contain additional

controls called including a spreadsheet, a PivotTable list, and a chart.

 To make your pages available on the World Wide Web, you publish the

pages to Web Folders or a Web server, and make the Access database

or SQL Server database available to users of the page. Internet

Explorer needs to download the page only once from the Web server to

let you view and interact with the data on the page. Because a page

uses Dynamic HTML, access to the database is generally very efficient

in a client/server environment.

Server-generated HTML

 You can create server-generated HTML files, either ASP or IDC/HTX,

from tables, queries, and forms. Server-generated HTML files are

displayed in a table format in a Web browser. Use server-generated

HTML files when you want to use any Web browser, your data changes

B.A. Part-II (Semester-IV) Paper : BAP-203 171

frequently, you need to see live data in a table connected to an ODBC

data source, but you only need to see read-only data.

 Once you output ASP or IDC/HTX files, you must publish these files to

be processed on a supported Web server product and platform.

 Each time a user opens or refreshes an ASP or HTX file from a Web

browser, the Web server dynamically creates an HTML file, and then

sends that HTML file to the Web browser.

Static HTML

 You can create static HTML files from tables, queries, forms, and reports. In

a Web browser, reports display in a report format, and tables, queries, and

forms display in a datasheet format.

 Use static HTML files when you want to use any Web browser that

supports HTML version 3.2 or later and your data does not change

frequently.

 To make your static HTML files available on the World Wide Web, you

publish the files to Web Folders or a Web server.

 When you access the data through a Web browser, the browser only

needs to download the static HTML file once from the Web server to let

you view the data. However, the r.esulting HTML files are a snapshot of

the data at the time you published your files. There is no ODBC data

source connected to the static HTML file, and If your data changes, you

must export your files again to be able to view new data in a Web

browser.

2.10.11 Summary

 In this lesson you have learnt how to create and print reports. You have also

learnt what are modules and how to use the modules. You have also learnt about

macros, creating macros and running macros.

2.10.12 Self Understanding

Q1. What is a report and how it can be created using Wizard?

Q2. How Reports can be created using Design View?

Q3. What is a macro? How it is created and run?

Q4. What do you mean by Modules and how can it be used?

Q5. Differentiate Macros with Modules.

Type Setting :

Department of Distance Education, Punjabi University, Patiala.

