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1.1.0 Objectives 

The prime goal of this unit is to enlighten the basic concepts of algorithm study, 

recurrence relations, discrete numeric functions and generating functions. During 

the study in this particular lesson, our main objective is to discuss problems that can 

be solved by using step-by-step methods, more formally known as algorithms. 

Further, we have discussed in detail about the 

 Characteristics of algorithms.  

 Efficiency of algorithms. 

 Growth rates: the   notation. 

1.1.1 Introduction to Algorithm 

The word algorithm comes from the name of Persian author, Abu Jafar, who wrote a 

book on mathematics. It has several applications and the work regarding algorithm 

has gained significant importance. In computer science, the analysis of algorithms 

is the determination of the amount of resources (such as time and storage) necessary 

to execute them or we can say that algorithms are used to design a method that can 

be used by the computer to find out the solution of a particular problem. Most 
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algorithms are designed to work with inputs of arbitrary length. Usually, the 

efficiency or running time of an algorithm is stated as a function relating the input 

length to the number of steps (time complexity) or storage locations (space 

complexity). 

Algorithm analysis is an important part of a broader computational complexity 
theory, which provides theoretical estimates for the resources needed by any 
algorithm which solves a given computational problem. These estimates provide an 
insight into reasonable directions of search for efficient algorithms. So, an algorithm 
may be defined as follows : 

 An algorithm is a set of rules for carrying out calculation either by hand or on 
a machine. 

 It is a finite step-by-step list of well-defined instructions for solving a 
particular problem. 

 An algorithm is a sequence of computational steps that transform the input 
into the output. 

For example : The algorithm described below is designed to find out the minimum of 

three numbers ba,  and .c  

1. min=a  

2. If b < min, then min=b . 

3. If c < min, then min= c . 

1.1.2 Various Characteristics of Algorithms 

1. Input : The algorithm starts with an input or we can say that the algorithm 

receives input. The input involves the supply of one or more quantities. 

2. Output : The algorithm ends with an output or we can say that the algorithm 

produces output. The result we obtain at the end is called output and at least 

one quantity is produced. 

3. Precision : The steps involved in the algorithm are precisely stated. Each 

instruction mentioned in the algorithm should be clear and unambiguous. 

4. Determinism : The intermediate results of each step of execution are unique 

and determined only by the inputs and the results of the preceding steps. 

5. Finiteness : The number of steps in an algorithm should be finite. It means 

that if we trace out the instruction of an algorithm, then for all the cases, the 

algorithm must terminate after a finite number of steps. 

6. Correctness : The output produced by an algorithm must be correct. 

7. Generality : The algorithm must apply to a set of inputs. 

8. Effectiveness : Every instruction stated in an algorithm should be very basic 

and clear so that it can be carried out very effectively. 

 



B.A. PART-III     3               MATHEMATICS OPT.- III 

 
1.1.3  Study of Algorithms 

The study of algorithm involves several important and active areas of research out of 

which the most essential are discussed below: 

1. Creating an Algorithm : The art of creating an algorithm can never be fully 

automated. By mastering these design strategies, it will become very easy to 

design new and useful algorithms. 

2. Algorithm Validation : After the process of design of an algorithm, it is 

necessary to check that it computes the correct answer for all the possible 

legal inputs. This process is known as algorithm validation. 

3. Analysis of Algorithm or Performance Analysis : As an algorithm is 

executed, it uses the computer's central processing unit (CPU) to perform 

operations and its memory to hold the program and data. Analysis of 

algorithms refers to the task of determining the computing time and storage 

that an algorithm requires and it should be done with great mathematical 

skills. 

4. Testing a Program : It consists of two phases: debugging and profiling (or 

performance measurement). Debugging is the process of executing programs 

on sample data set to investigate whether faulty errors occur and, if so, 

correct them. Profiling is the process of executing a correct program on data 

sets and measuring the time and space it takes to compute the results. 

1.1.3.1  Aspects of Algorithm Efficiency 

The two important aspects of algorithm efficiency are: 

I. The amount of time required to execute an algorithm and 

II. The amount of memory space needed to run a program. 

A computer requires a certain amount of time to carry out arithmetic 

operations. Moreover, different algorithms need different amount of space to hold 

numbers in memory for later use. An analysis of the time required to execute an 

algorithm of a particular size is referred to as the time complexity of the algorithm 

while an analysis of the computer memory required involves the space complexity of 

the algorithm. 

Let M  be an algorithm and n  be the size of the input data. The time and space used 

by the algorithm are the two main features for the efficiency of M . The time is 

measured by counting the number of key operations. For example : In sorting and 

searching, one counts the number of comparisons but in arithmetic, one counts 

multiplications and neglects the additions. 

These key operations are so defined that the time for the other operations is more 

than or at most proportional to the time for the key operations. The space is 

measured by counting the maximum of memory needed by an algorithm.  
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1.1.3.2  Some Important Functions 

Functions play an important role in the study of algorithms and their analysis. Some 

of the important mathematical functions which are used very often in algorithms, are 

discussed below: 

1. Absolute Value Function : Let x  be any real number. Then, the absolute 

value of  x , denoted by x  may be defined as 








0,
0,

xx
xx

x
 

For example : .99,22   

2. Characteristic Function : Let Abe any set and S be any subset of  A . Then, 

characteristic function denoted by 







Sx
Sx

cS ,0
,1

 

For example : If },,{ cbaA   and },{ baS  , then 0)(,1)(,1)(  ccbcac sSS  

because Sba ,  and .Sc  So, we can write 

 )0,(),1,(),1,( cbacS  . 

3. Floor Function : For any real number x , the floor function of x  means the 

greatest  integer which is less than or equal to x . It is denoted by  .x  

For example :       22,54.4,258.2  . 

4. Ceiling Function : For any real number x , the ceiling function of x  means 

the least integer which is greater than or equal to x . It is denoted by  .x  

For example :       22,44.4,358.2  . 

5. Integer Function : For any real number x , the integer function of x  converts 

x  into an integer by deleting the fractional part of x . It is denoted by INT( x ). 

For example : INT(2.44)=2, INT(-4.44)=-4. 

Note :  (i) If x  is an integer, then    .xx   Otherwise    xx 1 . 

(ii)   1 nxnnx  and   nxnnx  1 . 

(iii) INT( x )=  x  if x  is positive and INT( x )=  x  if x  is negative. 

6. Remainder Function : Let M be a positive integer and k  be any integer. 

Then, k (mod M ) is called the remainder function and it denotes the integer 

remainder when k is divided by M .  Also, k (mod M ) is a unique integer such 

that rMqk   where .0 Mr   
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Note : (i) For positive numbers, we simply divide k  by M  to obtain 

remainder r  but  for negative numbers, we divibe k  by M  to get remainder 

r  and k (mod M )=M - r  if .0r  

For example : 26(mod4)=2 and -35(mod9)=9-8=1. 

7. Logarithm and Exponent Functions : Let b be any positive integer. The 

logarithm of any positive number x  to base b  is written as xblog  and it 

represent exponent to which b must be raised to obtain x . Mathematically, 

we can write xy blog  iff xb y  . 

For example : 6216log3   

Note : (i) For any base b , 01log b  and 1log bb  because 10 b  and .1 bb   

(ii) Logarithm of a negative number and logarithm of zero is not defined. 

1.1.4 Recursive Algorithm 

A recursive algorithm is an algorithm which is used with smaller or simpler input 

values and which obtains the result for the current input by applying simple 

operations to the returned value for the smaller or simpler input. In other words, if a 

problem can be solved utilizing solutions to smaller versions of the same problem, 

and the smaller versions reduce to easily solvable cases, then one can use a recursive 

algorithm to solve that problem. For example, the elements of a recursively defined 

ser or a recursively defined function can be obtained by a recursive algorithm. 

If a set or a function is defined recursively, then a recursive algorithm to compute its 

members or values describes the definition. Initial steps of the recursive algorithm 

correspond to the basis clause of the recursive definition and they identify the basis 

elements. It is then followed by the steps corresponding to the inductive clause, 

which reduce the computation for an element of one generation to that of elements of 

the immediately preceding generation.  

1.1.5 Complexity of Algorithms 

For an algorithmM , the complexity may be described by the function )(nf  which 

gives the running tine and/or storage space requirement of the algorithm in terms of 

the size n  of the input data. In most of the cases, the storage space required by an 

algorithm is simply a multiple of the data size. Accordingly, unless otherwise stated 

or implied, the term complexity shall refer to the running time of the algorithm. The 

complexity function )(nf , which we assume gives the running time of an algorithm, 

usually depends not only on the size n  of the input data but also on the particular 

data. In the complexity theory, the following two cases are usually investigated: 

1. Worst Case : The maximum value of )(nf  for any possible input. 

2. Average Case : The expected value of )(nf . 
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The analysis of average case assumes a use of probability distribution for the input 

data and we assume that the possible permutations of a data set are equally likely. 

Also, the following result is used for an average case: 

Suppose the numbers knnn ,........,, 21  occur with respective probabilities kppp ,........,, 21 , 

then the expectation or average value E  is given by 

...............2211 kk pnpnpnE   

1.1.5.1  Standard Functions Measuring Complexity of Algorithms 

Algorithms are generally compared or analysed on the basis of their complexity which 

is further measured in terms of the size of input data n  described by the 

mathematical function )(nf . As n  grows, complexity of algorithm M  also increases 

and our interest is to measure this rate of growth. For the purpose, we compare )(nf  

with some standard functions with different rate growths such that 

.2,,,log,,log 32

22

nnnnnnn   Now, complexity of any algorithm is measured in terms of 

these standard functions and we use a special notation for this, called Big-O notation, 

as defined below:  

Big-   : Let )(xf  and )(xg  are functions defined on the set (or subset) of real 

numbers. Then, )(xf  is called order of )(xg  or big-   of )(xg , written 

as  )()( xgxf  , if there exist a real number m  and a positive constant c  such that 

for all mx  , we have )()( xgcxf  . 

To show that  )()( xgxf  we have to find the value of m  and c . Further, big-  

gives an upper bound on number of key operations or we can say that big-  gives 

information about maximum number of key operations. For getting lower bound, we 

define the function big-omega ( ). 

Big-omega : Let )(xf  and )(xg  are functions defined on the set (or subset) of real 

numbers. Then,  )()( xgxf   of there exist positive constants c  and k such that 

)()( xgcxf    for all kx  . Further, )(xf  is called big-omega of )(xg . 

Big-theta :  Let )(xf  and )(xg  are functions defined on the set (or subset) of real 

numbers. Then,  )()( xgxf   of there exist positive constants 21,cc  and k such 

that )()()( 21 xgcxfxgc    for all kx  . Further, )(xf  is called big-theta of )(xg  if 

)(xf  is both big-O and big-omega of )(xg .  

1.1.6 Growth Rate Functions 

The time efficiency of almost all the algorithms can be characterized by the following 

growth rate functions: 
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1. O( l )-Constant Time : This means that the algorithm requires the same fixed 

number of steps regardless of the size of the task. 

For Example (Assuming a reasonable implementation of the task) : 

i. Push and pop operations for a stack (containing n elements); 

ii. Insert and remove operations for a queue. 

2. O(n )-Linear Time : This means that the algorithm requires a number of steps 

proportional to the size of the task. 

For Example (Assuming a reasonable implementation of the task) : 

i. Traversal of a tree with n  nodes; 

ii. Calculating n -factorial or 
thn  Fibonacci number by using the method 

of iteration. 

3. O(
2n )-Quadratic Time : This means that the algorithm requires a number of 

steps proportional to the square of size of the task. 

For Example : 

i. Comparing two dimensional array of size n  by n ; 

ii. Find duplicates in an unsorted list of n  elements (implemented with 

two nested loops). 

4. O( nlog )-Logarithmic Time :  

For Example : 

i. Binary search in a sorted list of n  elements; 

ii. Insert and find operations for a binary search tree with n  nodes.  

5. O( nn log )-" nn log " Time :  

For Example : 

i. More advanced sorting algorithms - quicksort, mergesort. 

6. O(
na )( )1a -Exponential Time :  

For Example : 

i. Recursive Fibonacci Implementation; 

ii. Generating all permutations of n  symbols. 

Remarks : (i) The order of asymptotic behavior of the above described functions is 

 O( l )<O( nlog )<O( n )<O( nn log )<O(
2n )-O(

3n )<O(
na ) 

So, the best time is the constant time and the worst time is the exponential time and 

polynomial growth is considered manageable as compared to exponential growth. 

(ii) If a function (which describes the order of growth of an algorithm) is a sum of 

several terms, its order of growth is determined by the fastest growing term. In 

particular, if we have a polynomial of the form 

01

1

1 .....................)( ananananp k

k

k

k  
 , 
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then its growth is of the order 
kn  i.e., )(np O(

kn ). 

1.1.7 Some Important Examples 

Example 1.1 : Find  100log2  

Sol. 6426   and 12827  . 

so 7100log6 2   

.6100log2   

Example 1.2 : Show that 12)( 2  xxxf  is O(
2x ). 

Sol. Let 1x  

which gives 
21 xx                                                                                            ....(1) 

Now, 1212)( 22  xxxxxf                                         [since yxyx  ] 

22222 4212)( xxxxxxxf                                                      [using (1)] 

14)( 2  xxxf         

which gives )(xf  O(
2x )  

Example 1.3 : Suppose the polynomial 
n

nxaxaxaaxP  ..........)( 2

210  is of 

degree n . Show that )(xP  O(
nx ). 

Sol. Let 1x  

so, 
nxxxx  ...................1 32
                                                                     ....(1)                          

Now, 
n

nxaxaxaaxP  ..........)( 2

210                                          

                 
n

nxaxaxaa  ..........2

210                          [since yxyx  ] 

                   

                 
n

n xaxaxaa  ..........2

210           

                 
n

n xaxaxaa  ..........1. 2

210                

                 
n

n

nnn xaxaxaxa  ..........210                                          [using (1)] 

                   n

n xaaaa  ..........210 =
mcn  

where  naaaac  ..........210  

so, 1)(  xxcxP n
 

which gives )(xP  O(
nx ) . 
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Example 1.4 : Find Big-  notation for log n . Further give Big-  estimate for 

nnnnnf log)3(log3)( 2    

Sol. Let n  be any natural number. 

As we know nn .............3.2.1  

Now, n .......................4321  

so, 
nnnnnnnn  ....................................3.2.1  

nnn .1  for all 1n  

so, n O(
nn ) with 1,1  mc  

 nlog O(log
nn )=O( n logn )                                                                             ...(1) 

For the second part, Let 1n  

so, 
21 nn                                                                                                          ...(2) 

so,  nnnnnf log)3(log3)( 2    

               nnnn log)3(log3 2                                            [since yxyx  ] 

               nnnnnn log).3(log.3 22                                                [using (1) and (2)] 

               nnnn log4log3 22   

nnnf log.7)( 2  for all 1n  

so, f(n) is O( nn log2
) with .1,7  mc  

Example 1.5 : Prove that 758)( 23  xxxf  is ))(( xg  where .)( 3xxg   

Sol. Let 0x  

then, 02 x  

Now, 
323 8758)( xxxxf                                                               075 2 x  

3.8)( xxf                    0x  

)(.8)( xgxf                 0x  

Hence )(xf  is ))(( xg  where .0,8  kc  

1.1.8 Summary 

In this lesson, we have studied about the algorithms. From our study, we can say 

that an algorithm is a sequence of instructions. Each individual instruction must be 

carried out, in its proper place, by the person or machine for whom the algorithm is 

intended. Consequently, an algorithm should always be considered in the context of 

certain assumptions. In more detail, we have discussed about the efficiency and 

complexity of algorithms, on the basis of which, we have learnt the procedure to 
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compare the algorithms. Further, we have also given an idea of recursive algorithms 

that may be useful for understanding the recurrence relations which will be 

discussed in the next part of this unit. 

1.1.9 Self Check Exercise 

1) Show that  497 2 xx  O(
2x ). 

2) Let },,,,.........,,{ zyxcbaU   and },,,,{ uoieaA  . Find the characteristic 

function of A . 

3) Show that )27()( 2  nnng  is O(
3n ). 

4) Show that 749 34  xxx  is ).( 4x  

5) Find Big-  notation for .n  

1.1.10 Suggested Readings 

1. Norman L. Biggs, Discrete Mathematics, Oxford University Press. 

2. Harmohan Sharma, Ganesh Kumar Sethi, Discrete Mathematics, Sharma 

Publications, Jalandhar. 

3. C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill, 

International Edition, Computer Science Series, 1986. 
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1.2.0 Objectives  

The prime goal of this lesson is to enlighten the basic concepts of discrete numeric 

functions along with the detail elaboration of operations on numeric functions. 

Further, the knowledge about generating functions and several important results 

concerning them is also provided under this lesson. 

1.2.1 Introduction 

From our previous study, we are already familiar with the concept of function or 

mapping  which may be defined as a rule YXf :  that associates each element of 

X  with a unique element of .Y  Further, we recall the definition of sequence: 

Def : Sequence 

Let ,.....}3,2,1{  is the set of natural numbers and 

..},.........3,2,1,0,1,2,3..,{.........   is the set of integers. A mapping :S  is 

called the sequence of integers. The image of any natural number n  is called the 
thn  

term of S and denoted by )(nS  or nS . Further, n  is also called the index or argument. 

So, we can write ,......},........,,,{ 321 naaaaS  .  

Note: (i) Numeric functions, discrete functions etc. are also used for sequence. 
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        (ii) The sequences can also be expressed in a compact form known as the 

closed form expression. For example, the closed form expression of 

ni
n

i




....21
1

 is .
2

)1( nn
 

1.2.2 Discrete Numeric Function  

A function whose domain is the set of natural numbers and range is the set of real 

numbers is known as discrete numeric function or simply numeric function. If 

:a  is a discrete numeric function, then )0(a =value of a  at 0 is denoted by 0a . 

Similarly, 1)1( aa  , 2)2( aa  ,............., rara )( ,.........so on. Here, ra  represents the 

general form of numeric function ,.....},....,,{ 210 raaaaa  . 

1.2.3 Operations on Numeric Functions 

Let a  and b be two numeric functions and   be any real number. Then, we may 

define the following operations on numeric functions: 

I. Sum: The sum ba  is a numeric function such that the value of ba   at r is 

equal to the sum of the values of a  and b  at r . 

II. Product: The product ba. is a numeric function such that the value of ba.  at 

r is equal to the product of the values of a  and b  at r . 

III. Convolution: The convolution of a  and b denoted by ba  is a numeric 

function c  such that 




 
r

i

iriorrror babababac
0

11 ................  

IV. Modulus of Numeric Function: The modulus of a numeric function a  may 

be defined as : raa   if ra  is non-negative and raa   if ra  is negative.  

V. Multiplication of Numeric Function by a Real Number: The multiplication a 

numeric function a  with real number   denoted by a  is also a numeric 

function whose value at r  is equal to   times ra . 

VI. Forward Difference of a Numeric Function: The forward difference of a 

numeric function a  is also a numeric function whose value at r  is equal to 

rr aa 1  . It is denoted by a . 

VII. Backward Difference of a Numeric Function: The forward difference of 

numeric function a  is also a numeric function, denoted by a , such that 

1 rrr aaa  for 1r and 00 a . 

VIII. aS i
and aS i

 Numeric Functions: If we denote the numeric functions 

aS i
and aS i

 by b and c  respectively, then these may be defined as follows: 
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 ira
ir

b
ir

r ,
10,0

 

and irr ac   for 0r . Here, i  is some positive integer. 

1.2.4 Some Important Examples 

Example 1: If 





  3,52

20,0
r

r
a rr and 








2,2
10,23

rr
rb

r

r  

(i) Find rc if rrr bac  .  (ii) Find rd if rrr bad  . 

Sol. By the definition of sum and product of two given numeric functions, we may 

express rc  and  rd  as follows: 

(i) 













 3,72
2,4

10,23

rr
r

r
bac

r

r

rrr     and    (ii) 





  3,10522.

20,0
1 rrr

r
bad rrrrr  

Example 2: Evaluate ba  for the following numeric functions: 








3,0
20,1

r
r

ar    and  







3,0
20,1

r
rr

br  

Sol. For the given ra  and rb , the numeric functions a  and b  are given by 

,......}0,0,0,1,1,1{a  and ,.......}0,0,0,3,2,1{b . 

The convolution of a  and b is a numeric function bac  such that 




 
r

i

iriorrror babababac
0

11 ................  

So, we have  

6)1)(1()2)(1()3)(1(
3)1)(1()2)(1(

1)1)(1(

0211203

01101

000






bababac
babac

bac
 

Similarly, 3,5 43  cc and 0rc  for 5r . 

Numeric function c  is given by .},.........0,0,0,3,5,6,3,1{c , 

where 






















5,0
4,3
3,5
2,6
1,3
0,1

r
r
r
r
r
r

cr  

Example 3: If the numeric function a  is defined as 





  4,52

30,2
r

r
a rr . Then, evaluate 

(i) aS 2
    (ii) aS 2

   (iii) a     (iv) a . 
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Sol. (i) For the numeric functiona , the numeric functions aS i
 is given by 








 ira
ir

aS
ir

r

i

,
10,0

  

For 2i , 







 2,
10,0

2

2

ra
r

aS
r

r  

For given ra , we have 












 6,52

52,2
10,0

)2(

2

r
r
r

aS
r

r  

(ii) The numeric functions aS i
 is defined as irr

i aaS 
   for 0r . 

 2

2


  rr aaS  for 0r . 

For given ra , we have 





 



2,52
10,2

)2(
2

r
r

aS rr  

(iii) The numeric function a  is defined as 

 rrr aaa  1  for .0r   

For given ra , we have 

















4,22
3,32

20,0

)1(

4

r
r

r
a

rr
r  

(iii) The numeric function a  is defined as 

 1 rrr aaa  for 1r  and 00 a . 

For given ra , we have 




















5,22
4,52

31,0
0,2

)1(

4

r
r

r
r

a

rr

r  

1.2.5  Generating Function 

Let S be a sequence with terms ,.........,, 210 SSS .so on. Then, we may define the 

generating function ),( zSG  of the sequence S  by the following infinite series: 






................),( 3

3

2

210

0

zSzSzSSzSzSG
n

n

n . 

For example : Let the sequence S  is ........,.........3,2,1 222
so on. 

Then, 





0

2221202 )1(................3.2.1),(
n

nznzzzzSG  
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1.2.6 Generating Functions of Some Standard Sequences 

 

I. aSn  , 0n  

      













0 00

),(
n n

n

n

nn

n zaazzSzSG  

  ).............1(),( 32  zzzazSG  

  
z

a
zSG




1
),(                                     ]

1
[

r

a
S


  

II. 
n

n bS  , 0n  

      













0 00

)(),(
n n

n

n

nnn

n bzzbzSzSG  

  ).............)()(1),( 32  bzbzbzzSG  

       
bz

zSG



1

1
),(    

III. 
n

n cbS  , 0n  

On the similar lines as above, it can be proved that 

     
bz

c
zSG




1
),(  

IV. nSn        

      









0

32

0

..............320),(
n n

nn

n zzznzzSzSG  

  ).............321(),( 2  zzzzSG  

       
2)1(

),(
z

z
zSG


  

Result: Generating function of sum of two sequences is equal to the sum of their 

generating functions. or 

If nnn baS  , then ),(),(),( zbGzaGzSG  . 

Proof: We can prove this result very easily. 

As we know that 





0

),(
n

n

n zSzSG  

which gives  













0 00

)(),(
n n

n

n

n

n

n

n

nn zbzazbazSG  
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Therefore, ),(),(),( zbGzaGzSG   

1.2.7 Operations on Sequences 

If ts, are two sequences of natural number n , then we may define the following 

operations: 

1. )()())(( ntnsnts   

))(()( nscncs  , where c  is constant. 

)()()( ntnsnst   

2. Convolution Operation:  





n

r

rntrsnts
0

)()())((  

3. Pop Operation s  (read as s pop): 

)1()(  nsns  

4. Push Operation s  (read as s push): 








0,0
0),1(

)(
n

nns
ns  

Def : If s  is a sequence of numbers, we define 

         ))1(( nsns  if 1n  and  ss 1  

Also,  ))1(( nsns  and  ss 1 . 

In general, )()( mnsmns   

and 







nmnms
nm

mns
),(

,0
)(  

On the basis of above operations on sequences, we may state the following 

Important results: 

1. ),(),(),( ztGzsGztsG   

2. ),(),( zscGzcsG  , where c  is constant. 

3. ),(),(),( ztGzsGztsG   

4. 
z

szsG
zsG

)0(),(
),(


  

5. ),(),( zszGzsG   

6. 
n

n

r

r

z

zrszsG

znsG








1

0

)(),(

),(  

7. ),(),( zsGzznsG n  
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1.2.8 Some Important Examples 

Example 11.4: Write the generating function of the sequence 7)1.(24.3  nn

ns . 

Sol. For the given sequence ns , 

zzzzzz
zsG

































1

7

1

2

41

3

1

1
.7

)1(1

1
2

41

1
3),( . 

Example 2.5: Find the sequence whose generating function is 
21

1

zz 
. 

Sol. Here, 
21

1
),(

zz
zsG


                          (1) 

The roots of the equation 01 2  zz  are given by 

0101 22  zzzz  

which gives 
2

)15(
,

2

15 
z  

Let 
 

2

15
,

2

15 



                 (2) 

))((12   zzzz  or ))((1 2   zzzz  

))((

1

))((

1

))((

1

1

1
2  
















zzzzzz
 

 































zzzzzz 

111111

1

1
2

 






































 








 zz

zsG

1

1

1

11
),(  

which gives 






























































 11

11111111
nnnn

ns 
 

Using the values of   and  , from (2), we get the required solution as 





































 11

15

2

15

2

5

1
nn

ns  

Example 6: If 12  nsn  and 4 ntn . Find ))(3(),)(( nsnts   and ))(2( nt  . 
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Sol. 



n

r

rntrsnts
0

)()())((  

which gives 



n

r

n

r

nrrrnrnrnts
0

32

0

2 4)4()4)(1())((  

or 



n

r

n

r

n

r

n

r

nrrrnnts
000

3

0

2 1)4()4())((  

or )4(
2

)1(

4

)1(

6

)12)(1(
)4())((

22










 nn
nnnnnnn

nnts  

or )4()1(
2

1
)1(

4

1
)12)(4)(1(

6

1
))(( 22  nnnnnnnnnnnts  

Now, 1061)3()3())(3( 22  nnnnsns  

and 242)2())(2(  nnntnt for 4n . 

Example 7: If 
nncnnbnna 2)(,2/)(,)(  . Find ),2( zaG  , ),*( zbbG  and ),2( zcG . 

Sol. For nna )( , 212))(2( ssnna   where 2, 21  sns  

zz

z
zsGzsGzaG







1

2

)1(
),(),(),2(

221  

Further, 
2)1(2

1
),(

2
)(

z

z
zbG

n
nb


  

4

2

)1(4

1
),(),(),*(

z

z
zbGzbGzbbG


  

Now, 
z

zcGzcGnc n

21

2
),(2),2(2)(


  

1.2.9 Summary 

In this lesson, we have studied in detail about the discrete numeric functions and 

learnt the various operations on these functions. These numeric functions will help 

us to understand the concept of recurrence relations which will be discussed in the 

next lesson. Further, we have also gained the knowledge about the generating 

functions of some standard sequences and their various operations. The concept is 

made more clear with the help of suitable examples. 

1.2.10 Self Check Exercise 

1. Determine ba*  for the following numeric functions: 








3,0
20,1

r
r

ar and 







3,0
20,1

r
rr

br  

2. Write the sequence whose generating function is 
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(i) 
2321

53

zz

z




     (ii) 
2)1(1

2

z

z

z 



 

3. If .3,2 n

n

n

n TS  Then, find the convolution TS *  and verify that 

),(),(),*( zTGzSGzTSG   

 

1.2.11 Suggested Readings 

1. Norman L. Biggs, Discrete Mathematics, Oxford University Press. 

2. Harmohan Sharma, Ganesh Kumar Sethi, Discrete Mathematics, Sharma 

Publications, Jalandhar. 

3. C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill, 

International Edition, Computer Science Series, 1986. 
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3.0 Objectives 

The prime goal of this lesson is to enlighten the basic concepts of recurrence 

relations and their solutions. During the study in this lesson, our main objectives are 

 To study the basic concept of recursion. 

 To understand the procedure of solving homogeneous and non-homogeneous 

recurrence relations. 

 To understand the procedure of finding the generating function and sequence 

of a recurrence relation. 

3.1 Introduction 

The technique of defining a function, a set or an algorithm in terms of itself is known 

as recursion. An example is presented recursively, if every object is described in 

terms of two forms out of which one form is the basis for recursion which is written 

by a simple definition. The second form is written by a recursive description in which 

objects are described in terms of themselves i.e. the objects should be described in 

terms of simpler objects, where simpler means closer to the basis of recursion. 
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3.2 Some Recursive Definitions  

I. The recursive definition of n is given by  

10   and )1(  nnn . 

Here 
thn  term is expressed as a function of previous term and 10   is called 

basis. 

II. The recursive definition of binomial coefficient ),( knC  for knkn  ,0,0 , is 

given by 

1)0,(,1),(  nCnnC  and )1,1(),1(),(  knCknCknC  if .0 kn  

Here
thn term is expressed as a function of previous terms and 

1)0,(,1),(  nCnnC  are basis. 

III. The recursive definition of a polynomial expression may be elaborated as: 

Let S be the set of coefficients, then 

(i) A zeroth degree polynomial is an element of S . 

(ii) For 1n , 
thn degree polynomial expression is of the form axxp )( , where 

)(xp  is 
thn )1(  degree polynomial expression and .Sa  

IV. The recursive definition of Fibonacci Sequence, F is given by 1,1 10  FF  

and 12   kkk FFF  for .2k  Here, basis is the specification of first two 

numbers 0F  and .1F  

V. The recursive definition of positive integers can be given by the Peano's 

Axioms, as explained below: 

Axiom 1: 1  i.e. 1 is a natural number. 

Axiom 2:  For each n , there exists a unique natural number 
*n , called the 

successor of n  given by .1 nn  

Axiom 3:  1 is not the successor of any natural number. 

Axiom 4:  If nm,  and 
** nm  , then .nm   

Axiom 5:  If ,A such that (i) A1 and (ii) AnAn  *
, then .A  This 

axiom is also called the Principle of Mathematical Induction. 

In the above definition, number 1 is the basis element and recursion is that if 

n  is a positive integer, then its successor is also a positive integer. 

3.3 Some Important Examples 

Example 3.1: Determine )2,3(C by the recursive definition of binomial coefficient. 

Sol. By recursive definition: 1)0,(,1),(  nCnnC  and 

)1,1(),1(),(  knCknCknC  if .0 kn                                                          (1) 
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Put 2,3  kn  in (1) and we get 

)1,2()2,2()2,3( CCC                                                                                            (2) 

Now put 1,2  kn  in (1) and we get 

211)0,1()1,1()1,2(  CCC                          

So, from (2), .321)2,3( C  

Example 3.2: Write 9824)( 23  nnnxp in telescoping form. 

Sol. Here, 9824)( 23  nnnxp = 9)8)24((9)824( 2  nnnnnn  

9)8)2))4(((()(  nnnxp  is the required telescoping form. 

Example 3.3: If 2)0( B  and 3)1()(  kBkB  for .1k  Evaluate )2(B  by the 

recursion formula and by the method of iteration. 

Sol. By recursion formula: 

8353)32(3)3)0((3)1()2(  BBB  

By iteration method: 

5323)0()1(  BB  

8353)1()2(  BB . 

3.4 Recurrence Relation 

For a numeric function ,.....),,......,,,( 210 raaaa  an equation relating ra , for any r , to 

one or more of the ia 's, ri  , is called a recurrence relation. It is also known as a 

difference equation. It is clear from the above definition that a step-by-step 

computation can be carried out to determine ra  from 1ra , 2ra ,........, and 1ra  from 

ra , 1ra ,........, and so on. It must be clear that the value of function at one or more 

points, known as the boundary conditions, must be given so that the computation 

procedure can be initiated. So, we may state here that the numeric function is also 

known as the solution of recurrence relation as it can be described by a recurrence 

relation together with an appropriate set of boundary conditions. 

3.5 Linear Recurrence Relation with Constant Coefficients 

A recurrence relation of the form 

)(...................22110 rfacacacac krkrrr                                                         (1) 

is known as a linear recurrence relation with constant coefficients. Here, ic 's are 

constants and the above recurrence relation is of 
thk  order provided that the 

coefficients 0c  and kc  are non-zero. 
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Note: (i) Order of a recurrence relation is the difference between highest and lowest 

subscript. For example, 48 2

2   raa rr  is second order linear recurrence relation 

with constant coefficients. 

          (ii) The recurrence relation can also be determined from solution. For example, 

consider the closed form expression  .0,2.9)(  kkS k
 

For ,1k  )1(2)2.9.(2)2.2.(9)( 11   kSkS kk
 

0)1(2)(  kSkS  and 9)0( S  defines linear recurrence relation. 

3.5.1     Homogeneous and Non-Homogeneous Recurrence Relation 

A recurrence relation of the form 

)()(...................)2()1()( 21 kfnkSCkSCkSCkS n   

is known as a (i) linear non-homogeneous relation if )(kf is a function of k  or a 

constant, (ii) homogeneous relation if 0)( kf . Here nCCC ,........, 21  are constants. 

3.5.2     Characteristic Equation and Characteristic Roots 

For 
thn  order linear recurrence relation of the form 

)()(...................)2()1()( 21 kfnkSCkSCkSCkS n  , 

the characteristic equation is given by 

.0................ 1

2

2

1

1  


nn

nnn CaCaCaCa  

Further, roots of the above characteristic equation are known as the characteristic 

roots and these roots may be real or imaginary.  

3.6 How to Find Solutions of Recurrence Relation 

Let the recurrence relation is of the form 

)()(...................)2()1()( 21 kfnkSCkSCkSCkS n                                   (1) 

Case I : For 0)( kf , the above relation (1) is homogeneous relation for which the 

solution can be obtained as 

Step I. Write down the characteristic equation given by 

0................ 1

2

2

1

1  


nn

nnn CaCaCaCa                                                         (2) 

Step II. Solve (2) and let the roots be ..,,........., 21 naaa  

Step III. If all the roots are different, then the general solution is given by 
k

nn

kk abababkS ................)( 2211  . 

If two real roots 21,aa  are such that 21 aa  , then solution is given by 

k

nn

kk ababakbbkS ................)()( 33121   and so on. 

Case II : If )(kf  is a function of k , the above relation (1) is non-homogeneous 

relation whose solution consists of two parts out of which one is homogeneous 
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solution and the other is particular solution and the general solution is given by 

).()()( )()( kSkSkS ph   For the homogeneous solution )()( kS h
 , we put 0)( kf  and 

the solution is obtained as described under case I. The method for finding the 

particular solution )()( kS p
 is explained below: 

3.6.1    How to Find Particular Solution 

Case I. When )(kf  is a constant 

Let the particular solution is given by dkS )( , then (1) becomes 

)(.....21 kfdCdCdCd n   which gives 
nCCC

kf
d




.......1

)(

21

. 

If 0.....1 21  nCCC , then it is a case of failure and we try for particular 

solution kdkS )( . If for this too, the case fails, then the particular solution is taken 

as dkkS 2)(   and so on. 

Case II. When )(kf  is a linear function i.e., kppkf 10)(   

Let the particular solution is given by kddkS 10)(  , then (1) becomes 

        kppnkddCkddCkddCkdd n 101010210110 )(.....)2()1(   

On equating the coefficients of terms containing k  and that of constant terms in the 

above expression, the values of 0d  and 1d  may be evaluated and then the particular 

solution kddkS 10)(   is known. 

Note: If  )(kf  is an 
thm degree polynomial of the 

form
m

mkpkpkppkf  .....)( 2

210 , 

then the particular solution is given by ..........)( 2

210

m

mkdkdkddkS   

It must be noted that if the particular solution contains any term similar to that of 

homogeneous solution, then the particular solution is multiplied by k .  

Case III. When )(kf  is an exponential function i.e., 
kpakf )(  

Let the particular solution is given by
kdakS )( , then (1) becomes 

knk

n

kkk padaCdaCdaCda   .....2

2

1

1 . 

From the above equation, the value of d  can be determined and then the particular 

solution is known. It must be noted that if the homogeneous solution contains a term 

containing
ka , then the particular solution is multiplied by k  and given 

by
kdkakS )( . Further, if the homogeneous solution contains a term containing 

kka , 

then the particular solution is given by 
kadkkS 2)(   and so on. 
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3.7 How to Find Generating Function and Sequence of a Recurrence Relation 

Let the recurrence relation is of the form 

0)(...................)2()1()( 21  rnSCnSCnSCnS r for .rn   

Step I. Multiply both sides by 
nz  and sum up terms from rn   to  , we get 

.0)(.........)2()1()( 21  














 rn

n

r

rn

nn

rnrn

n zrnSCznSCznSCznS  

Step II. If 





0

)(),(
n

nznSzSG  be the generating function, then write each term in 

terms of ).,( zSG  

Step III. Solve the equation for ),( zSG  and then with the help of standard 

generating functions (as discussed in the previous lesson 11), the sequence )(nS  can 

be obtained.  

3.8 Some Important Examples 

Example 9.4: Solve .11)1(,3)0(,0)2(9)1(10)(  SSkSkSkS  

Sol. Put 
kakS )(  in 0)2(9)1(10)(  kSkSkS  and we obtain 

0910 21   kkk aaa    091022   aaa k
 

09102  aa  0)9)(1(  aa   

which gives 9,1  aa  

kkk CCCCkS 9.9.1.)( 2121                                                                          ...(1) 

Put 0k  and 1k in (1), we get 

21

0

21 39.)0( CCCCS                                                                               ...(2) 

and 21

1

21 9119.)1( CCCCS                                                                     ...(3) 

Now, subtracting (2) from (3), we have 188 22  CC  

Put 12 C  in (2), we obtain 21 C . 

So, 
kkS 92)(   is the required solution. 

Example 3.5: Solve the recurrence relation: 21   nnn aaa  

Sol. Let 
2

nnnn baba   

 the given equation becomes: 21   nnn bbb  

Let 
n

n mb   

  010 222121   mmmmmmmmm nnnnnnn
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2

51

1.2

)1.(1.4)1()1(
01

2

2 



 mmm  

2

51
,

2

51 
 m  

which gives 

nn

n CCb 








 










 


2

51

2

51
21  and the required solution is given by 

2

21

2

2

51

2

51
























 










 


nn

nn CCba  

Example 3.6: Solve the recurrence relation: 
n

nnn nsss 2344 21    with .110  ss  

Sol. The solution of given non-homogeneous recurrence relation will consist of two 

parts i.e., homogeneous solution and particular solution. 

Homogeneous Solution: The associated homogeneous relation is 

044 21   nnn sss  

Its characteristic equation is   044044 2221   aaaaaa nnnn
 

2,20)2(044 22  aaaa  

 the homogeneous solution is   nh

n nccs 221

)(    

Particular Solution: Here 
nnnf 23)(   

Since base 2 in 
n2  is a characteristic root repeated twice, therefore the particular 

solution is given by  
n

n qndcns 22  

Using this value of ns in the given equation, we obtain 

    nnnn nnqdncnqdncqndcn 232)2()2(42)1()1(42 22122  
 

    nnn nnnqcdcnnnqcdcnqndcn 2324484421224442 2222 
 

nn nqcdcn 232.24   

Equating the coefficients of like terms, we get 

12,04,3  qcdc  
2

1
,12,3  qdc  

So, 
122)(

21232
2

1
123  nnp

n nnnns  is the required particular solution. 

 general solution is  
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  `12

21

)()(
21232  nnp

n

h

nn nnnccsss                                                       ...(1) 

It is given that .110  ss  So, put 0n and 1n  in the general solution and we get 

  11121012020 11

0

10  cccs  

and 16222162)11(111232)( 22211  ccccs
2

7
2  c  

Put in (1), 
`12 21232

2

7
11 







  nn

n nnns  

Example 3.7: Find the particular solution of 
2

21 365 rsss rrr     

Sol. Let 
2)(

crbras
p

r   

Using this value of rs in the given equation, we obtain 

 

    2222 3)2()2(6)1()1(5 rrcrbarcrbacrbra   

2222 32424612661055555 rcrccrbbracrccrbbracrbra   

22 319721422 rcbacrbrcr   

Equating the coefficients of like terms, we get 

2r :     
2

3
32  cc  

r   :     
2

21
21

2

3
1420142  bbcb  

constant  :  
2

45

2

90
20

2

3
19

2

21
7201972  aaacba  

2)(

2

3

2

21

2

45
rra

p

r   

Example 3.8: By finding the generating function of sequence )(nS , find the solution 

of recurrence relation 0)(12)1(7)2(  nSnSnS  for 0n  with 5)1(,2)0(  SS  

Sol. The given recurrence relation can also be written as 

0)2(12)1(7)(  nSnSnS  

Multiplying both sides by 
nz  and summing up terms from 2n  to  , we get 

0)2(12)1(7)(
222

 










 n

nn

nn

n znSznSznS  

0)2(12)1(7)1()0(),(
2

21

2

 







 n

nn

n

znSznSzzSSzSG  
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  0),(12)0(),(752),( 2  zSGzSzSGzzzSG  

  0),(122),(752),( 2  zSGzzSGzzzSG  

0),(1214),(752),( 2  zSGzzzSzGzzSG  

  zzSGzz 92),(1271 2   

zz
zz

zz

z

zz

z
zSG

41

1

31

3

)41(
4

3
1

4

9
2

3

4
1)31(

32

)41)(31(

92

1271

92
),(

2 












 











 













 

which gives 
nnnnnS 4343.3)( 1  
 

3.9 Summary 

In this lesson, we have tried to elaborate the concept of recursion with the help of 

recursive definitions. On the same ground, we have learnt about the recurrence 

relations and generating functions of recurrence relations. Further, this lesson 

teaches us the procedure to find out the general and particular solutions of 

recurrence relations. During the study, it is found that the numeric function is also 

known as the solution of recurrence relation. The concept is made more clear with 

the help of suitable examples. 

3.10 Self Check Exercise 

1) Write short note on recursion. 

2) Solve 6,95 01   sss nn . 

3) Solve 
n

nnn nsss 2)1(44 21   . 

4) If the solution of recurrence relation 621   nnn csbsas  is 243  nn
, then 

find .,, cba  

5) Define the Febonacci sequence and find its generating function. 

6) By finding the generating function of sequence )(nS , find the solution of 

recurrence relation 0)2(4)1(3)(  nSnSnS  for 2n  with 

2)1(,3)0(  SS . 

3.11 Suggested Readings 

1. Norman L. Biggs, Discrete Mathematics, Oxford University Press. 

2. Harmohan Sharma, Ganesh Kumar Sethi, Discrete Mathematics, Sharma 

Publications, Jalandhar. 

3. C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill, 

International Edition, Computer Science Series, 1986. 
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I An Introduction to Relations : As we are already familiar with the concept of sets. To

further understand the theory of relations, we define following terms:

Ordered Pair : By an ordered pair, we mean a pair of the form (a, b) (written in particular

order) where a ∈ A and b ∈ B. Any two ordered pairs (a, b) and (c, d) are equal i.e. (a, b) = (c, d)

iff a = c and b = d. Further, (a, b) 6= (b, a) unless a = b.

Product Set : Consider two non-empty arbitrary sets A and B. The set of all ordered pairs

(a, b) where a ∈ A, b ∈ B is called the product or Cartesian Product of A and B, written as

A× B read as A cross B, i.e. A× B = {(a, b) : a ∈ A and b ∈ B}.
NOTE : For A× A, we write A2.

For example : 1. R2 = R×R is the set of ordered pairs of real numbers and R2 is known as the

cartesian plane.

2. Let A = {1, 2} and B = {a, b, c}, then A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)},
B × A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}. Note that A × B 6= B × A and n(A × B) =

n(A) · n(B).
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The idea of product of sets can be extended to any finite number of sets. For any non-empty sets

A1, A2, ......., An, the set of all ordered n-tuples (a1, a2, ......, an) where ai ∈ Ai ∀i = 1, 2, ......, n,

is called the product of the sets A1, A2, ........, An denoted by A1 ×A2 × ..........×An =
∏n

i=1
Ai.

Relation : Let A and B be non-empty arbitrary sets. A binary relation or simply a relation

from A to B is a subset of A× B. Suppose R is a relation from A to B. Then, R is the set of

ordered pairs (a, b) where a ∈ A and b ∈ B; and for each pair (a, b), exactly one of the following

is true :

1. (a, b) ∈ R i.e. a is related to b written as aRb.

2. (a, b) /∈ R i.e. a is not related to b written as a��Rb.

Remarks : 1. If R is a relation from a set A ( 6= φ) to itself, i.e. R is a subset of A2 = A× A,

then we say R is a relation on A.

2. The domain of a relation R is the set of all first elements of the ordered pairs which belong

to R. Similarly, range R is the set of all second elements of ordered pairs that belong to R.

For example : Let A = {1, 2, 3}, B = {x, y, z}, R = {(1, y), (1, z), (3, y)}. Here R ⊂ A× B,

∴ R is a relation from A to B with Domain={1, 3} and Range={y, z}.
n-ary Relation : By the n-ary relation, we mean a set of ordered n-tuples. For any non-empty

set S, a subset of the product set Sn is called an n-ary relation on S. In particular, a subset of

S3 is called a ternary relation on S.

Some Important Relations : Let A be any arbitrary non-empty set.

1. Identity Relation : An important relation on A is that of equality {(a, a) : a ∈ A},
usually denoted by ‘=’. This relation is also called the identity or diagonal relation on A,

denoted by △A or △ or IA.

2. Universal Relation : The relation A× A is called Universal relation on A.

3. Empty Relation : The relation φ ⊂ A × A is known as empty or void or null relation

on A.

Inverse Relation : Let R be any relation from a set A to set B. The inverse of R, denoted

by R−1 is a relation from B to A such that R−1 = {(b, a) : (a, b) ∈ R}.
For example : Let R = {(1, y), (1, z), (3, y)} be a relation from A = {1, 2, 4} to B = {x, y, z},
then R−1 = {(y, 1), (z, 1), (y, 3)}. Note that domain of R becomes range of R−1 and vice versa.

Remarks : 1. (R−1)−1 = R.
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2. If R is a relation on A ( 6= φ), then R−1 is also a relation on the set A.

Types of Relations: Consider any arbitrary set A ( 6= φ).

1. Reflexive Relation : A relation R on set A is reflexive if (a, a) ∈ R or aRa ∀a ∈ A.

For example : (i) Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 2), (1, 3), (3, 3)}
is reflexive on A as ∀a ∈ A, (a, a) ∈ R but R1 = {(1, 1), (1, 2), (2, 2), (2, 3)} is not reflexive

since 3 ∈ A but (3, 3) /∈ R.

(ii) The relation of ‘less than equal to’ i.e. ≤ on Z (the set of integers) is a reflexive

relation since every number is less than equal to itself.

(iii) The relation of inclusion i.e. ⊆ on P (A) (where A 6= φ) is a reflexive relation since

every set is a subset of itself.

NOTE : An identity relation on A ( 6= φ) denoted by ‘IA’ is always a reflexive relation on

A but the converse is not true.

2. Symmetric Relation : A relation R on set A is said to be symmetric if whenever

(a, b) ∈ R, then (b, a) ∈ R or if aRb then bRa for a, b ∈ A.

For example : (i) Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 1), (3, 3)} is

symmetric on A but R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)} is not symmetric since (2, 3) ∈
R but (3, 2) /∈ R.

(ii) The relation of ‘less than equal to’ i.e. ≤ on Z (the set of integers) is not a symmetric

relation because if a ≤ b (i.e. aRb), then b��≤a (i.e. b��Ra), where a, b ∈ Z.

(iii) The relation of parallelism on the set L of lines in a plane is symmetric because if

l1, l2 ∈ L such that l1Rl2 i.e. l1 is parallel to l2, then l2 is also parallel to l1 i.e. l2Rl1.

3. Anti-Symmetric Relation : It is just the opposite of symmetric relation. A relation R

on set A is said to be anti-symmetric if whenever (a, b) ∈ R and (b, a) ∈ R or if aRb and

bRa, then a = b, where a, b ∈ A.

For example : (i) Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (3, 3)} is anti-

symmetric on A but R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)} is not anti-symmetric because

(1, 2), (2, 1) ∈ R but 1 6= 2.

(ii) The relation of ‘less than equal to’ i.e. ≤ on Z (the set of integers) is an anti- symmetric

relation since if a ≤ b, then b��≤a, where a, b ∈ Z.
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(iii) The relation of inclusion i.e. ⊆ on P (A) (where A 6= φ) is an anti-symmetric relation

because if R ⊆ S, then S��⊆R, where R, S ⊆ A.

4. Transitive Relation : A relation R on set A is said to be transitive if whenever (a, b) ∈ R

and (b, c) ∈ R, then (a, c) ∈ R or if aRb and bRc, then aRc, where a, b, c ∈ A.

For example : (i) Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (3, 3)} is transitive

relation on A but R1 = {(1, 1), (1, 2), (2, 3), (2, 2)} is not transitive since (1, 2), (2, 3) ∈ R

but (1, 3) /∈ R.

(ii) The relation of ‘less than equal to’ i.e. ≤ on Z (the set of integers) is a transitive

relation, ∵ if a ≤ b and b ≤ c, then a ≤ c, where a, b, c ∈ Z.

(iii) The relation of inclusion i.e. ⊆ on P (A) (where A 6= φ) is a transitive relation, ∵ if

R ⊆ S and S ⊆ T , then R ⊆ T , where R, S, T ∈ P (A).

5. Equivalence Relation : A relation R on set A is said to be an equivalence relation if it

is reflexive, symmetric and transitive.

For example : (i) Let A = {1, 2, 3}, then the relation

R = {(1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (2, 3), (3, 2), (3, 1), (1, 3)} is an equivalence relation

on A since it is reflexive, symmetric and transitive.

(ii) The relation of parallelism on the set L of lines in a plane is an equivalence relation.

Reflexivity : Since every line is parallel to itself, ∴ l1Rl1 ∀ l1 ∈ L.

Symmetry : Let l1, l2 ∈ L be such that l1 is parallel to l2, then l2 is also parallel to l1 i.e.

if l1Rl2, then l2Rl1.

Transitivity : Let l1, l2, l3 ∈ L be such that l1 is parallel to l2 and l2 is parallel to l3, then

l1 is also parallel to l3 i.e. if l1Rl2 and l2Rl3, then l1Rl3.

6. Partial Order Relation : A relation R on set A is said to be an partial order relation

if it is reflexive, anti-symmetric and transitive.

For example : (i) Let A = {1, 2, 3}, then the relation

R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3), (1, 3)} is a partial order relation on A since it is

reflexive, anti-symmetric and transitive.

(ii) Let A be any arbitrary set and P (A) denotes the power set of A. Then, the relation

of inclusion ‘⊆’ on P (A) is a partial order relation.

4



Reflexivity : Since every set is a subset of itself, ∴ LRL ∀L ∈ P (A).

Anti-Symmetry : Let L,M ∈ P (A) be such that L ⊆ M and M ⊆ L, then L = M .

Transitivity : Let L,M,N ∈ P (A) be such that L ⊆ M and M ⊆ N , then L ⊆ N .

II POSET : A non-empty set P together with a partial order relation R on P , is called a

partially ordered set or POSET. It is represented as (P,R) or (P,≤). Here ‘≤’ denotes the

partial order relation on the set P .

For example : 1. (N,≤) (here ≤ stands for ‘divisibility’) is a POSET.

2. Let X 6= φ, then (P (X),≤) (here ≤ stands for ‘⊆’) is a POSET.

3. (N,≤) (here ≤ stands for ‘less than equal to ≤’ ) is a POSET.

II(a) Comparable and Non-Comparable Elements : Let (P,≤) be a POSET, then a, b ∈ P

are said to be comparable if a ≤ b or b ≤ a. Otherwise a and b are said to be non-comparable.

For example : In POSET (N,≤) (where ≤ stands for ‘less than equal to ≤’ ), 2 ≤ 3 ∴ 2 and 3

are comparable. Moreover in this POSET, any two elements are comparable.

TOSET : A partially ordered set (P,≤) in which every two elements are comparable is called

a totally ordered set (TOSET) or linearly ordered set. In other words, if (P,≤) is a TOSET as

if a, b ∈ P , then either a ≤ b or b ≤ a. In this case, ≤’ is called a total ordering relation.

For example : (N,≤) (here ≤ stands for ‘less than equal to ≤’ ) is a TOSET.

II(b) Hasse Diagram : It is the pictorial representation of a POSET (P,≤). It is a directed

graph whose vertices are the elements of P and there is a directed edge from a to b whenever

a << b in P (which means a is immediate predecessor of b or b is immediate successor of a or b

is a cover of a). Instead of drawing an arrow from a to b, we place b higher than a and draw a

line between them. Also, there is a directed path from vertex x to vertex y if x < y (i.e. either

x << y or ∃a1, a2, ..., am such that x << a1 << a2 << ......... << am << y).

Remarks : 1. If a ≤ b, then a lies below b and if b ≤ a, then b lies below a.

2. No horizontal line is drawn in Hasse diagram.

3. There can be no cycles in a Hasse diagram since the relation is anti-symmetric.

For example : Firstly we define the set Dm : Set of positive divisors of m (m ∈ Z+) under the

relation of divisibility. Clearly (Dm,≤) is a POSET.

1. D36 = {1, 2, 3, 4, 6, 9, 12, 18, 36}, (D36,≤) is a POSET.

2. D12 = {1, 2, 3, 4, 6, 12}, (D12,≤) is a POSET.

The Hasse diagrams of D36 and D12 are shown in the following diagrams.
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[a] [b]

Figure 1:

II(c) Chain and Anti-Chain : Let (P,≤) be a POSET. A subset of P is called a chain if

every two elements in the subset are related. Moreover, number of elements in a chain refers

to the length of chain. Now, a subset of P is called an anti-chain if no two distinct elements in

the subset are related to each other.

For example : Consider a relation

R = {(a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (b, c), (b, e), (c, c), (c, e), (d, d), (d, e), (e, e)}
on the set A = {a, b, c, d, e}. Clearly R is a partial order relation on A and Hasse diagram is

given by

Clearly, {a, b, c, e}, {a, b, c}, {a, d, e} are chains and {b, d}, {c, d} are anti-chains.

Remark : If the POSET (P,≤) is a TOSET, then it is also called a chain.

II(d) Maximal and Minimal Elements : Let (P,≤) be a POSET.

Maximal Element : An element a ∈ P is called maximal element of P if there is no element

c in P such that a ≤ c.

Minimal Element : An element b ∈ P is called minimal element of P if there is no element c

in P such that c ≤ b.
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Remarks : 1. b is called minimal element if no edge enters b (from below) and a is called

maximal element if no edge leaves a (in upward direction) in the Hasse diagram.

2. If P is infinite set, then P may have no maximal and no minimal element.

For example : (Z,≤)

3. If P is finite set, then P must have atleast one maximal element and atleast one minimal

element.

II(e) Greatest and Least Elements

Let (P,≤) be a POSET. If ∃ an element a ∈ P such that x ≤ a ∀x ∈ P , then a is called greatest

or last or unity element of P . It is denoted by ‘1’. Similarly, If ∃ an element b ∈ P such that

b ≤ x ∀x ∈ P , then b is called least or first or zero element of P . It is denoted by ‘0’.

Remarks : 1. Greatest and least elements are related to every element of the POSET.

2. If a POSET has both least and greatest element, it is called a bounded POSET.

3. P can have atmost one first element, which must be a minimal element and P can have

atmost one last element which must be a maximal element. P may have neither a first element

nor a last element even when P is finite.

For example : Let X = {1, 2, 3}, (P (X),≤) (≤ stands for ⊆) is POSET.

Let A = {φ, {1, 2}, {2, 3}}, then (A,≤) is POSET with φ as least element but no greatest

element.

Similarly, B = {{1, 2}, {2}, {3}, {1, 2, 3}}, then (B,≤) is POSET with no least element but

{1, 2, 3} greatest element.

C = {φ, {1, 2}, {1}, {2}}, then (C,≤) is POSET with both least element and greatest element.

D = {{1}, {2}, {1, 3}}, then (D,≤) is POSET with neither least element nor greatest element.

II(f) l.u.b and g.l.b : Let (P,≤) be a POSET. Let S be a non-empty subset of P . An element

a ∈ P is called an upper bound of S if x ≤ a ∀x ∈ S. Further, if a is an upper bound of S such

that a ≤ b for all other upper bounds b of S, then a is called l.u.b or supremum of S.

Similarly, An element c ∈ P is called a lower bound of S if c ≤ y ∀y ∈ S. Further, if c is a lower

bound of S such that d ≤ c for all other lower bounds d of S, then c is called g.l.b or infimum

of S.

Remark : Greatest and least element belong to the set whereas l.u.b and g.l.b may or may not

belong to the set.

For example : 1. (Z,≤) (≤ stands for ‘less than equal to’) is a POSET.

Let S = {...........− 2,−1, 0, 1, 2}, then Sup S=l.u.b. S =2 but it has no infimum.

2. Consider D105 = {1, 3, 5, 7, 15, 21, 35, 105}, then (D105,≤) is a POSET.

7



l.u.b of 3 and 7 is 21 (upper bounds are 21 and 105).

l.u.b of 3 and 5 is 15 (upper bounds are 15 and 105).

g.l.b of 15 and 35 is 5 (lower bounds are 5 and 1).

Moreover, least element of the POSET is 1 and the greatest element is 105. These evaluations

are very easy to understand from the Hasse diagram of D105.

[a] [b]

Figure 2:

3. Consider the Hasse diagram of (D30,≤) (shown in the above figure).

Clearly, l.u.b and g.l.b of 10 and 15 are 30 and 5 respectively.

Remark : 1) If the relation is of set inclusion (⊆), then the l.u.b and g.l.b of two sets are the

union and intersection of two sets respectively.

2) If the relation is of divisibility (/), then the l.u.b and g.l.b of two numbers are the l.c.m and

g.c.d of two numbers respectively.

3) If the relation is of less than equal to (≤), then the l.u.b and g.l.b of two numbers are the

greater and smaller of two numbers respectively.

The brief concept of l.u.b and g.l.b for the most common relations is summarised below:

III Product of Two POSETs : Let (A,R) and (B,R′) be two POSETs. Then, prove that

(A × B,R′′) is a POSET with partial order relation R′′ defined by (a, b)R′′(a′, b′) if aRa′ in A

and bR′b′ in B.

Proof : Reflexivity : Let (a, b) ∈ A× B be any arbitrary element.
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Relation l.u.b g.l.b

⊆ union intersection

/ l.c.m g.c.d

≤ greater element smaller element

Then a ∈ A and b ∈ B. ∴ aRa in A and bR′b in B.

=⇒ (a, b)R′′(a′, b′) (by defn), showing that R′′ is reflexive relation on A× B.

Anti-Symmetry : Let (a, b), (c, d) ∈ A× B be such that (a, b)R′′(c, d) and (c, d)R′′(a, b).

=⇒ aRc in A, bR′d in B and cRa in A, dR′c in B.

=⇒ aRc, cRa in A and bR′d, dR′b in B, which gives a = c in A and b = d in B (∵ R and R′

are anti-symmetric relations on A and B respectively.)

∴ (a, b) = (c, d) in A× B =⇒ R′′ is anti-symmetric relation on A× B.

Transtivity : Let (a, b), (c, d), (e, f) ∈ A × B be such that (a, b)R′′(c, d) and (c, d)R′′(e, f).

=⇒ aRc in A, bR′d in B and cRe in A, dR′f in B.

=⇒ aRc, cRe in A and bR′d, dR′f in B, which gives aRe in A and bR′f in B (since R and R′

are transitive relations on A and B respectively).

∴ (a, b)R′′(e, f) in A× B (by defn) which shows that R′′ is transitive relation on A× B.

Hence (A× B,R′′) is a POSET.

IV Lattice : A POSET (P,≤) is said to be a lattice if every pair of elements have g.l.b and

l.u.b that belongs to P i.e. ∀a, b ∈ P , a ∧ b ∈ P and a ∨ b ∈ P ,

where a ∨ b = l.u.b{a, b}=Sup.{a, b} and a ∧ b =g.l.b{a, b}=inf.{a, b}.
Here a∨ b is read as ‘a join b’ and a∧ b is read as ‘a meet b’. (P,∨,∧) is the algebraic structure
defined by lattice (P,≤).

For example : 1. The POSET (D12,≤) (where ≤ stands for divisibility) is lattice. We can show

it with the help of following operation tables :

Clearly, ∀a, b ∈ D12, a ∨ b ∈ D12 and a ∧ b ∈ D12, ∴ (D12,≤) is a lattice.

2. (D30,≤) (≤ stands for /) is a lattice.

3. (P (X),≤) (≤ stands for ⊆) is a lattice.

4. (N,≤) (where ≤ is ≤ or /) are lattices.

Remark : For any a, b in lattice (P,≤), a (or b) ≤ a ∨ b and a ∧ b ≤ a (or b).

Result 1 : Every chain is a lattice.
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∨ 1 2 3 4 6 12

1 1 2 3 4 6 12

2 2 2 6 4 6 12

3 3 6 3 12 6 12

4 4 4 12 4 12 12

6 6 6 6 12 6 12

12 12 12 12 12 12 12

∧ 1 2 3 4 6 12

1 1 1 1 1 1 1

2 1 2 1 2 2 2

3 1 1 3 1 3 3

4 1 2 1 4 2 4

6 1 2 3 2 6 6

12 1 2 3 4 6 12

Proof : In a chain (P,≤), every two elements are comparable i.e. either a ≤ b or b ≤ a

∀a, b ∈ P . If a ≤ b, then sup{a, b}=b ∈ P and inf {a, b}=a ∈ P , similarly for b ≤ a. Hence

every pair of elements have l.u.b and g.l.b belonging to the set P , therefore (P,≤) is a lattice.

Result 2 : Show that a lattice with three of fewer elements is a chain (try yourself).

Result 3 : Let (L,≤) be a lattice. For any elements a, b ∈ L, prove that a∧ b = a iff a∨ b = b.

Proof : Let a, b ∈ L and a ∧ b = a, =⇒ a =glb{a, b} which gives a ≤ b.

∴ a ∨ b =lub {a, b} = b.

Result 4 : Let (L,≤) be a lattice. For any elements a, b ∈ L, prove that

If a and b have lub (or glb), then this lub (or glb) is unique.

Proof : If possible, let l1 and l2 be two distinct lub’s (or glb’s) of a and b.

Let l1 be lub (or glb) and l2 ∈ P , then l2 ≤ l1 (or l1 ≤ l2).

Let l2 be lub (or glb) and l1 ∈ P , then l1 ≤ l2 (or l2 ≤ l1).

∴ By the anti-symmetry property, l1 = l2.
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B.A. Part-III OPT-III

Semester-VI Discrete Mathematics-II

Lesson No. 2.2 Author : Dr. Chanchal

Boolean Algebra-II

I Product of Two Lattices

II Properties of Lattice

III Principle of Duality

IV Complete Lattice

V Sublattice

VI Bounded Lattice

VII Isomorphic Lattices

VIII Distributive Lattice

IX Complemented Lattice

X Boolean Algebra

XI Laws of Boolean Algebra

XII Boolean Functions and Expressions

I Product of Two Lattices : Let (A,≤) and (B,≤) be two lattices. Then A× B = {(a, b) :
a ∈ A and b ∈ B} is a POSET under ≤ defined by (a1, b1) ≤ (a2, b2) iff a1 ≤ a2 in A and b1 ≤ b2

in B. Here, (A× B,≤) is called product of lattices.

Theorem 1 : Prove that product of two lattices is a lattice.

Proof : Let (a1, b1), (a2, b2) ∈ A× B, =⇒ a1, a2 ∈ A and b1, b2 ∈ B.

=⇒ a1 ∧ a2 ∈ A and b1 ∧ b2 ∈ B (∵ (A,≤) and (B,≤) are lattices).

∴ a1 ∧ a2 ≤ a1 and b1 ∧ b2 ≤ b1.

Also, a1 ∧ a2 ≤ a2 and b1 ∧ b2 ≤ b2.
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=⇒ (a1 ∧ a2, b1 ∧ b2) ≤ (a1, b1) and (a1 ∧ a1, b1 ∧ b2) ≤ (a2, b2),

∴ (a1 ∧ a2, b1 ∧ b2) is lower bound of {(a1, b1), (a2, b2)}.
Suppose (a, b) is any other lower bound of {(a1, b1), (a2, b2)}.
So, (a, b) ≤ (a1, b1) and (a, b) ≤ (a2, b2), =⇒ a ≤ a1, a ≤ a2, b ≤ b1, b ≤ b2.

=⇒ a is lower bound of {a1, a2} in A and b is lower bound of {b1, b2} in B.

=⇒ a ≤ a1 ∧ a2, (∵ a1 ∧ a2 is g.l.b)

Similarly, b ≤ b1 ∧ b2, (∵ b1 ∧ b2 is g.l.b)

=⇒ (a, b) ≤ (a1 ∧ a2, b1 ∧ b2).

∴ (a1 ∧ a2, b1 ∧ b2) is g.l.b of {(a1, b1), (a2, b2)}.
Similarly, we can prove that (a1 ∨ a2, b1 ∨ b2) is l.u.b of {(a1, b1), (a2, b2)}.
So, both g.l.b and l.u.b of (a1, b1), (a2, b2) exist and belong to A× B.

=⇒ A× B is a lattice.

II Properties of Lattice

Let (P,∨,∧) be the algebraic system defined by the lattice (P,≤).

• Idempotency Law : a ∧ a = a, a ∨ a = a ∀a ∈ P (a ∧ a = Inf{a, a} = a, a ∨ a=

sup{a, a} = a).

• commutative Law : a ∧ b = b ∧ a, a ∨ b = b ∨ a ∀a, b ∈ P .

• Associative Law : (i) a ∧ (b ∧ c) = (a ∧ b) ∧ c, (ii) a ∨ (b ∨ c) = (a ∨ b) ∨ c ∀a, b, c ∈ P

Proof of (ii) : Let a ∨ (b ∨ c) = g and (a ∨ b) ∨ c = h

T.P. h = g (so, we prove h ≤ g and g ≤ h).

Since g is the join of a and b ∨ c, ∴ a ≤ g and b ∨ c ≤ g.

Further b ∨ c ≤ g =⇒ b ≤ g and c ≤ g.

Now, a ≤ g, b ≤ g =⇒ g is an u.b. of {a, b}.

=⇒ a ∨ b ≤ g (∵ a ∨ b is the l.u.b of {a, b}).

Now c ≤ g and a ∨ b ≤ g, =⇒ g is an u.b. of {a ∨ b, c}

=⇒ (a ∨ b) ∨ c ≤ g or h ≤ g (∵ (a ∨ b) ∨ c is the l.u.b of {a ∨ b, c}).

Similarly, we can prove that g ≤ h. Combining the two, we get g = h.
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• Absorption Law : a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a ∀a, b ∈ P .

Proof : Since a ≤ a ∨ b, therefore a ∧ (a ∨ b) = a.

• Consistency Law : a ≤ b iff a ∧ b = a iff a ∨ b = b.

Proof : a ≤ b (given). Also a ≤ a, ∴ a is the lower bound of {a, b}.

=⇒ a ≤ a ∧ b ........(1) (∵ a ∧ b is the g.l.b of {a, b}).

Again a ∧ b=g.l.b {a, b} and g.l.b {a, b} ≤ a i.e. a ∧ b ≤ a.........(2)

Combining (1) and (2), we get a ∧ b = a

∴ a ≤ b =⇒ a ∧ b = a.

Further, a = a ∧ b =⇒ a ≤ b

Hence a ≤ b iff a ∧ b = a.

Similarly, we can prove that a ≤ b iff a ∨ b = b.

On similar lines, we can prove part (i).

III Product of Two Lattices : Let (A,≤) be a POSET. Define a binary relation ≤R on A

such that a ≤R b iff b ≤ a (or a ≥ b) for a, b ∈ A. Moreover, (A,≤R) is also a POSET. Further

if (A,≤) is a lattice, then (A,≤R) is also a lattice.

For writing the dual of a statement : interchange ∨ with ∧, ∧ with ∨ and ≤ (i.e. a ≤ b) with

≤R or ≥ (i.e. a ≤R b or a ≥ b).

Problem : For any a, b, c, d in a lattice (A,≤) : if a ≤ b and c ≤ d, then a ∨ c ≤ b ∨ d and

a ∧ c ≤ b ∧ d.

Proof : Since b ≤ b ∨ d and d ≤ b ∨ d.

Now a ≤ b and b ≤ b ∨ d =⇒ a ≤ b ∨ d.

Similarly c ≤ d and d ≤ b ∨ d =⇒ c ≤ b ∨ d.

=⇒ b ∨ d is the u.b. of {a, c}.
=⇒ a ∨ c ≤ b ∨ d

Similarly, the other part can be proved.

IV Complete Lattice : A lattice (P,≤) is said to be complete iff every non empty subset of

P has supremum and infimum in P .

For example : 1. Every finite lattice is complete lattice.
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2. (Z,≤) is a lattice but it is not complete since {x ∈ Z : x > 0} ⊆ Z has no supremum in Z.

V Sublattice : Let (P,≤) be a lattice. A non-empty subset S of P is called a sublattice of P

if for all a, b ∈ S, a ∨ b, a ∧ b ∈ S.

For example : 1. Every lattice is sublattice of itself.

2. If (P,≤) be any lattice and a ∈ P , then ({a},≤) is a sublattice of (P,≤).

VI Bounded Lattice : Let (P,≤) be any lattice. Then ‘0’ is called universal lower bound of

P if for any x ∈ P, 0 ≤ x. Also, P has universal upper bound ‘1’ if for any x ∈ P, x ≤ 1. If a

lattice has both universal lower bound and universal upper bound, then it is called a bounded

lattice.

For example : 1. Let A 6= φ, then (P (A),≤) (where ≤ stands for ⊆) is a bounded lattice with

φ as universal lower bound and A as universal upper bound.

2. (N,≤) (where the relation is ≤) is a lattice but it is not bounded as ‘1’ is the universal lower

bound but there is no such upper bound.

Remark : The universal lower bound and upper bound (if exist) are always unique (prove it).

Result 1 : (i)a ∨ 1 = 1, (ii)a ∧ 1 = a, (iii)a ∨ 0 = a, (iv)a ∧ 0 = 0∀a ∈ P .

Proof (i) : 1 ≤ a ∨ 1...........(1)

Moreover, 1 is the universal upper bound, ∴ a ∨ 1 ≤ 1...........(2)

Combining (1) and (2), a ∨ 1 = 1

(ii) : a ∧ 1 ≤ a............(3)

Further, a ≤ a and a ≤ 1,

=⇒ a ∧ a ≤ a ∧ 1 (∵ a ≤ b and c ≤ d gives a ∧ b ≤ c ∧ d)

which gives, a ≤ a ∧ 1............(4)

Combining (3) and (4), a = a ∧ 1.

Similarly, we can prove the other two parts.

VII Isomorphic Lattices : A lattice (P1,≤) is said to be isomorphic to lattice (P2,≤) if there

exists a bijection f from P1 onto P2 such that

f(a ∧ b) = f(a) ∧ f(b) and f(a ∨ b) = f(a) ∨ f(b) ∀a, b ∈ P1.

VIII Distributive Lattice : A lattice (P,≤) is said to be distributive lattice iff distributive

laws hold, i.e.
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a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ∀a, b, c ∈ P .

Otherwise, it is called non-distributive lattice.

For example : (P (X),≤) (X 6= φ and ≤ stands for ⊆) is a distributive lattice since

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) ∀A,B,C ∈ P (X)

Article 1 : In any lattice (P,≤), prove the following distributive inequalities :

(i) a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c),

(ii) a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c) ∀a, b, c ∈ P .

Proof : (i) a ∧ b = Inf {a, b} ≤ a and a ∧ b ≤ b.

Also, b ≤ Sup {b, c} = b ∨ c,

∴ a ∧ b ≤ b ∨ c (since a ∧ b ≤ b and b ≤ b ∨ c),

=⇒ a ∧ b is the lower bound of {a, b ∨ c},
=⇒ a ∧ b ≤ a ∧ (b ∨ c)............(1)

Similarly, a ∧ c ≤ c ≤ b ∨ c, =⇒ a ∧ c ≤ b ∨ c

Also, a ∧ c ≤ a,

=⇒ a ∧ c ≤ a ∧ (b ∨ c)............(2)

From (1) and (2), a ∧ (b ∨ c) is the upper bound of {a ∧ b, a ∧ c},
which gives (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c).

On similar lines, we can prove the (ii) part.

Article 2 : Prove that direct product of two distributive lattices is distributive.

Proof : Let (L,≤) and (M,≤) be two distributive lattices.

T.P. L×M = {(a, b) : a ∈ L, b ∈ M} is distributive lattice.

Let (a1, b1), (a2, b2), (a3, b3) ∈ L×M .

=⇒ a1, a2, a3 ∈ L and b1, b2, b3 ∈ M

Now, (a1, b1) ∧ [(a2, b2) ∨ (a3, b3)] = (a1, b1) ∧ (a2 ∨ a3, b2 ∨ b3)

= (a1 ∧ (a2 ∨ a3), b1 ∧ (b2 ∨ b3))

= ((a1 ∧ a2) ∨ (a1 ∧ a3), (b1 ∧ b2) ∨ (b1 ∧ b3)) (∵ L and M are distributive lattices.)

= (a1 ∧ a2, b1 ∧ b2) ∨ (a1 ∧ a3, b1 ∧ b3)

= [(a1, b1) ∧ (a2, b2)] ∨ [(a1, b1) ∧ (a3, b3)]

Similarly, we can prove the other part of distributive law and hence L×M is also distributive

lattice.

Article 3 : Prove that every sub-lattice of distributive lattice is distributive.

Proof : Let (S,≤) be a sub-lattice of distributive lattice (P,≤).

Let a, b, c ∈ S =⇒ a, b, c ∈ P
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=⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) in P

Since S is closed under ∨ and ∧.
∴ a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) in S

Hence (S,≤) is distributive lattice.

Article 4 : Prove that dual of distributive lattice is also distributive.

Proof : Try yourself.

IX Complemented Lattice : To define complemented lattice, we firstly introduce the concept

of complement of an element.

Complement : An element x of a bounded lattice (P,∨,∧, 0, 1), where 0 is the universal

lower bound and 1 is the universal upper bound, is called a complement of an element a ∈ P if

a∨x = 1 and a∧x = 0. Due to commutative property, we can also say that a is the complement

of x.

Remarks : 1. An element of a lattice may or may not have the complement.

2. An element of a lattice may have more than one complement in the lattice.

3. 0 ∨ 1 = 1 and 0 ∧ 1 = 0 i.e. 0 and 1 are complements of each other.

Theorem 2 (Uniqueness Theorem) : Let (P,≤) be a bounded distributive lattice. Prove

that complement of any element (if it exists) is unique.

Proof : Let a ∈ P . Suppose that a1 and a2 are two complements of a in P.

By definition of complement, a ∨ a1 = 1 = a ∨ a2, a ∧ a1 = 0 = a ∧ a2.

Now, a1 = a1 ∨ 0 = a1 ∨ (a ∧ a2) = (a1 ∨ a) ∧ (a1 ∨ a2) = 1 ∧ (a1 ∨ a2) = a1 ∨ a2

∴ a1 = a1 ∨ a2...............(1)

Similarly, a2 = a2 ∨ 0 = a2 ∨ (a ∧ a1) = (a2 ∨ a) ∧ (a2 ∨ a1) = 1 ∧ (a2 ∨ a1) = a2 ∨ a1

i.e. a2 = a1 ∨ a2..................(2)

From (1) and (2), a1 = a2 i.e. complement of every element is unique.

Complemented Lattice : A lattice (P,≤) is said to be complemented if it is bounded and

every element in P has a complement.

For example : 1. (D6,≤) is a complemented lattice, as it is bounded lattice with 1 as universal

lower bound and 6 as universal upper bound. Moreover, 1̄ = 6, 2̄ = 3, 3̄ = 2, 6̄ = 1.

2. Let X 6= φ, then (P (X),∪,∩, φ,X) is a complemented lattice since ∀A ∈ P (X), X − A(Ac)

is the complement of A. Moreover, it is a bounded distributive lattice, therefore complement of

every element is unique.

3. (D12,≤) is not a distributive lattice. It is bounded with 1 as universal lower bound and 12

16



as universal upper bound. Moreover, 1̄ = 12, 1̄2 = 1, 3̄ = 4, 4̄ = 3 but complement of 2 and 6

does not exist.

X Boolean Algebra : A complemented and distributive lattice is called a Boolean Lattice.

An algebraic system (B,∨,∧,′ ) or (B,+, ·,′ ) defined by the boolean lattice (B,≤) is known as

a boolean algebra.

For example : 1. Let X 6= φ, then (P (X),∪,∩,′ ) is a boolean algebra.

2. (D70,≤) is a boolean algebra.

Remarks : 1. A finite boolean algebra has exactly 2n elements for some n > 0.

2. a+ b, a · b ∈ B ∀a, b ∈ B.

3. a+ b = b+ a and a · b = b · a ∀a, b ∈ B.

4. ∃0, 1 ∈ B such that a+ 0 = 0 and a.1 = a ∀a, b ∈ B.

5. ∀a ∈ B ∃a′ ∈ B such that a+ a′ = 1 and a · a′ = 0.

6. ∀a, b, c ∈ B, a+ (b · c) = (a+ b) · (a+ c) and a · (b+ c) = (a · b) + (a · c).

XI Laws of Boolean Algebra

Let (B,+, ·,′ ) be a boolean algebra.

• Idempotent Laws : a+ a = a and a · a = a, ∀a ∈ B.

Proof : a+ a = (a+ a) · 1 = (a+ a) · (a+ a′) = a+ (a · a′) = a+ 0 = a.

Now, a · a = a · a+ 0 = a · a+ a · ā = a · (a+ a′) = a · 1 = a.

• Absorption Laws : a+ a · b = a, a · (a+ b) = a ∀a, b ∈ B.

Proof : a+ a · b = a · 1 + a · b = a · (1 + b) = a · 1 = a.

Now, a · (a+ b) = a · a+ a · b = a+ a · b

• Involution Law : (a′)′ = a, ∀a ∈ B.

Proof : Since a′ + a = 1 and a′ · a = 0, ∴ a is the complement of a′.

Moreover, being a bounded distributive lattice, this complement is unique.

Hence, (a′)′ = a .

• De-Morgans’s Laws : (a+ b)′ = a′ · b′ and (a · b)′ = a′ + b′, ∀a, b ∈ B.
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Proof : To prove the first part, we prove that the complement of a + b is a′ · b′ i.e.
(a+ b) + (a′ · b′) = 1 and (a+ b) · (a′ · b′) = 0.

Now, (a+ b) + (a′ · b′) = (a+ b+ a′) · (a+ b+ a′) (∵ (a+ b · c) = (a+ b) · (a+ c)),

= (a+ a′ + b) · (a+ 1) = (1 + b) · (a+ 1) = 1 · 1 = 1.

Now, (a+ b) · (a′ · b′) = a · (a′ · b′) + b · (a′ · b′), (∵, (a+ b) · c = a · c+ b · c),

= (a · a′) · b′ + (b · b′) · a′ = 0 · b′ + 0 · a′ = 0 + 0 = 0

∴ (a+ b)′ = a′ · b′.

Similarly, we can prove the other part.

Problem : Reduce the following using boolean algebra :

(i) ((A · B′ + A · B · C)′ + A · (B + A · B′))′, (ii) A · B + A · C ′ + A′ · B′ · C · (A · B + C)

Solution : (i) A · (B + A · B′) = A · (B + A) · (B +B′) = A · ((B + A) · 1)
= A · (B + A) = A · B + A · A = A · B + A · 1 = A · (B + 1) = A · 1 = A,

i.e. A · (B + A · B′) = A.............(1)

Now, A · B′ + A · B · C = A · B′ + A · (B · C) = A · (B′ + (B · C)) = A · (B′ +B) · (B′ + C)

= (A · 1) · (B′ + C) = A · B′ + A · C,

=⇒ (A · B′ + A · B · C)′ = (A · B′ + A · C)′ = (A · B′)′ · (A · C)′ = (A′ + (B′)′) · (A′ + C ′)

= (A′ +B) · (A′ + C ′) = A′ + (B · C ′),

i.e. (A · B′ + A · B · C)′ = A′ + (B · C ′)..............(2)

Adding (1) and (2), we get

A · (B + A · B′) + (A · B′ + A · B · C)′ = A+ A′ + (B · C ′) = 1 +B · C ′ = B +B′ +B · C ′

= B′ +B +B · C ′ = B′ +B · (1 + C ′) = B′ +B · 1 = B′ +B = 1,

Hence, (A · (B + A · B′) + (A · B′ + A · B · C)′)′ = 1′ = 0

Try yourself for part (ii).

XII Boolean Expressions and Functions

Let (B,∨,∧,′ ) be a boolean algebra. Then, a boolean expression over (B,∨,∧,′ ) is defined as

follows :

(i) Any element of B is a boolean expression.

(ii) Any variable name is a boolean expression.

(iii) If e1 and e2 are boolean expressions, then e′1, e1∨e2, e1∧e2 etc. are also boolean expressions.
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For example : 0 ∨ x, ((2 ∧ 3)′ ∨ (x1 ∨ x′

2) ∧ (x1 ∧ x3)
′) are boolean expressions over the boolean

algebra ({0, 1, 2, 3},∨,∧,′ ).
Remark : A boolean expression that contains n distinct variables is known as boolean expres-

sion of n variables.

Assignment of Values : Let E(x1, x2, ....., xn) be a boolean expression of n variables over

a boolean algebra (B,∨,∧,′ ). By an assignment of values to the variables x1, x2, ......., xn, we

mean an assignment of elements of B to the values of the variables.

For example : Consider the boolean expression E(x1, x2, x3) = (x1 ∨ x2) ∧ (x′

1 ∨ x′

2) ∧ (x2 ∨ x3)
′

over boolean algebra ({0, 1},∨,∧,′ ), then the assignment of values x1 = 0, x2 = 1, x3 = 0 yields

E(0, 1, 0) = (0 ∨ 1) ∧ (0′ ∨ 1′) ∧ (1 ∨ 0)′ = 1 ∧ 1 ∧ 0 = 0.

Equivalent Boolean Expressions : Two boolean expressions E1(x1, x2, ...xn) and E2(x1, x2, ..., xn)

of n variables are said to be equivalent if they assume the same value for every assignment of

values to the n variables. We write it as E1(x1, x2, ...xn) = E2(x1, x2, ..., xn)

For example : 1. (x1 ∧ x2) ∨ (x1 ∧ x′

3) and x1 ∧ (x2 ∨ x′

3) are equivalent .

2. f1 = x1∨(x2∨x3) and f2 = (x1∨x2)∨x3 are equivalent over the boolean algebra ({0, 1},∨,∧,′ ),
as shown in the following table

x1 x2 x3 x1 ∨ x2 x2 ∨ x3 f1 f2

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 1

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

Boolean Function : A boolean function from Bn to B is specified by a boolean expression

E(x1, x2, x3, ...., xn) (or we can say that boolean expression is closed form expression for spec-

ifying a boolean function). Let each assignment of values to the variables x1, x2, x3, ...., xn be

an ordered n-tuple in the domain Bn and let the corresponding value of E(x1, x2, x3, ...., xn) be

the corresponding image in the range B.
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For example : Boolean expression (x′

1 ∧ x2 ∧ x′

3)∨ (x1 ∧ x′

2)∨ (x1 ∧ x3) over the boolean algebra

({0, 1},∨,∧,′ ) defines the following function f :

3-tuple f

(0,0,0) 0

(0,0,1) 0

(0,1,0) 1

(0,1,1) 0

(1,0,0) 1

(1,0,1) 1

(1,1,0) 0

(1,1,1) 1

Note : 1. Every function from Bn to B is not specified with the help of boolean expression

over (B,∨,∧,′ ).
For example : There is no boolean expression over the boolean algebra of four elements that

defines the following boolean function :

2-tuple (0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3)

f 1 0 0 3 1 1 0 3

2-tuple (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3)

f 2 0 1 1 3 0 0 2

2. A function from Bn to B is called a boolean function if it can be specified by a boolean

expression of n-variables.

Min Term and Max Term Normal Forms : We explain the concept of disjunctive normal

form (or min term normal form) and conjunctive normal form (or max term normal form) with

the help of following example :

Consider the following expression of three variables : f(x, y, z) = (x̄∧ z)∨ (y ∧ z)∨ (y ∧ z̄) over

the boolean algebra ({0, 1},∨,∧,′ ), here ’bar’ denotes the complement.

It can be simplified as : f(x, y, z) = (x̄ ∧ z) ∨ (y ∧ z) ∨ (y ∧ z̄) = (x̄ ∧ z) ∨ [y ∧ (z ∨ z̄)] =

(x̄ ∧ z) ∨ (y ∧ 1) = (x̄ ∧ z) ∨ y.
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The simplified expression takes the following values for possible assignment of values to variables

x, y, z:

x y z x̄ x̄ ∧ z f

0 0 0 1 0 0

0 0 1 1 1 1

0 1 0 1 0 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 1

1 1 1 0 0 1

Now, f = 1 and f = 0 corresponds to min-terms and max-terms respectively. So min terms

are x̄∧ ȳ∧ z, x̄∧ y∧ z̄, x̄∧ y∧ z, x∧ y∧ z̄ and x∧ y∧ z. Now, max terms are x∨ y∨ z, x̄∨ y∨ z

and x̄ ∨ y ∨ z̄.

For writing the disjunctive normal form, we take the join of all the min-terms as :

(x̄ ∧ ȳ ∧ z) ∨ (x̄ ∧ y ∧ z̄) ∨ (x̄ ∧ y ∧ z) ∨ (x ∧ y ∧ z̄) ∨ (x ∧ y ∧ z).

For writing the conjunctive normal form, we take the meet of all the max-terms as :

(x ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z̄).

Atom and Anti-atom : An element a is called an atom if it is an immediate successor of ’0’,

i.e. a 6= 0 is an atom if 0 ≤ b ≤ a, then either b = 0 or b = a. Similarly, an element a is called

an anti-atom if it is an immediate predecessor of ’1’, i.e. a 6= 1 is an anti-atom if a ≤ b ≤ 1,

then either b = 1 or b = 1.

For example : In (D110,∨,∧,′ ) where D110 = {1, 2, 5, 10, 11, 22, 55, 110}, the atoms are 2,5,11

and anti-atoms are 10,22,55.

Sub-Algebra : Let (B,+, ·,′ ) be a boolean algebra and A ⊆ B. Then (A,+, ·,′ ) is called a

sub-algebra of B if A itself is a boolean algebra.

For example : For the boolean algebra (D70,∨,∧,′ ), the two sub -algebras are given by A =

{1, 7, 10, 70} and B = {1, 2, 35, 70}.
Isomophic Boolean Algebras : Two boolean algebras (B,+, ·,′ ) and (B′,+, ·,′ ) are said to

be isomorphic if there is one-one correspondence between them, i.e., there exists a bijective map

f : B → B′ such that f(a+ b) = f(a) + f(b), f(a · b) = f(a) · f(b) and f(a′) = (f(a))′.
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B.A. Part-III OPT-III

Semester-VI Discrete Mathematics-II

Lesson No. 2.3 Author : Dr. Chanchal

Propositional Calculus

I Proposition

II Compound Proposition

III Basic Logical Operations

IV Another Definition of Proposition

V Logical Equivalence

VI Laws of the Algebra of Propositions

VII Conditional and Bi-conditional Statements

VIII Principle of Duality

IX Argument

X Logical Implication

XI Propositional Function

XII Universal Quantifier

XIII Existential Quantifier

XIV Negation of Quantified Statements

I Proposition : A proposition (or statement) is a declarative sentence 1 which is either true

or false but not both.

For example : It rains today (T or F but not both), I will go to college tomorrow (T or F but

not both), Taj Mahal is in Delhi (F), 2+3=6 (F) are propositions whereas the sentences like

1
It is a sensible combination of words
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What time is it?, Please submit your report as soon as possible, May god bless you! are not

the propositions as these are not declarative in nature.

Remarks:

1. A proposition is denoted with the help of letters (small or capital) like p, q, P, Q etc.

2. A proposition that is true under all circumstances is referred to as a Tautology but a

proposition which is false under all circumstances is referred to as a Contradiction.

3. The area of logic which deals with propositions is known as Propositional Calculus.

II Compound Proposition: A proposition whose nature (T or F) does not explicitly depend

upon another propositions is called a simple proposition. But many propositions are com-

posite in nature i.e. these are composed of sub-propositions and various connectives and such

propositions are called compound propositions. The simple propositions which are used to make

compound propositions are called components.The phrases or words which connect two simple

propositions are called logical connectives or simply connectives. Some of the connectives are :

and, or, not, if then, if and only if. Now, to show the truth values of a compound statement, we

draw a table known as truth table consisting of rows and columns. The number of columns

depend upon the number of simple propositions and how their relationships are involved while

the number of rows depend only upon the number of simple propositions. If there are n simple

propositions, then the no. of rows is 2n.

III Basic Logical Operations : Firstly, we discuss three basic logical operations viz. Con-

junction (∧), Disjunction (∨) and Negation (∼).

Conjunction : Any two propositions p and q can be combined by the word ‘and’ to form a

compound proposition called the conjunction of the original propositions. Symbolically, p ∧ q

read as ‘p and q’ denotes conjunction of p and q. If p and q are true, then p∧ q is true otherwise

it is false. The truth table is as shown below:

For example : 1. Let p : 3 + 5 = 8 and q = 3 is an even number, then p ∧ q : 3 + 5 = 8and 3 is

an even number. Now p is true but q is false, so p ∧ q is false.

2. Let p : Every even number is divisible by 2 and q : 5 is a prime number, then p∧q : Every even

number is divisible by 2 and 5 is a prime number. Here, p and q both are true, so p∧q is also true.

Disjunction : Any two propositions p and q can be combined by the word ‘or’ to form a

compound proposition called the disjunction of the original propositions. Symbolically, p ∨ q

23



Table 1: p ∧ q

p q p ∧ q

T T T

T F F

F T F

F F F

read as ‘p or q’ denotes disjunction of p or q. If p and q both are false, only then p ∨ q is false

otherwise it is true. The truth table is as shown below:

Table 2: p ∨ q

p q p ∨ q

T T T

T F T

F T T

F F F

For example : 1. Let p : 3 + 5 = 8 and q = 3 is an even number, then p ∨ q : 3 + 5 = 8 or 3 is

an even number. Now p is true but q is false, so p ∨ q is true.

2. Let p : Every even number is divisible by 3 and q : 4 is a prime number, then p∨q : Every even

number is divisible by 3 or 4 is a prime number. Here, p and q both are false, so p∨q is also false.

Negation : Given any proposition p, another proposition called the negation of p, can be

formed by writing ‘It is not the case that’ or ‘It is false that’ before p or, if possible by inserting

in p the word ‘not’. Symbolically, ∼ p read ‘not p’ denotes negation of p. If p is true, ∼ p is

false and vice versa, as shown in the table below:

For example : 1. Let p : He is a good student. Then ∼ p : It is not the case that he is a good

student or It if false that he is a good student or He is not a good student.

IV Another Definition of Proposition : Let P (p, q, ....) denote an expression constructed

from logical variables p, q, ...... which take on the value true (T) or false (F), and the logical
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Table 3: ∼ p

p ∼ p

T F

F T

connectives ∧,∨ and ∼. Such an expression P (p.q, .....) will be called a proposition. Moreover,

its truth value depends exclusively upon the truth values of its variables. For example : If P is

p ∧ q, then its truth value depends upon the truth values of p and q.

Tautology : Some propositions P (p, q, ....) contain only T in the last column of their truth

table i.e. they are true for any truth values of their variables. Such propositions are called

tautologies. Similarly, the propositions P (p, q, ....) which are false for any truth values of their

variables i.e. contain only F in the last column of their truth table, are called contradictions.

For example : p∨ ∼ p is a tautology and p∧ ∼ p is a contradiction, as shown below:

Table 4: p∨ ∼ p, p∧ ∼ p

p ∼ p p∨ ∼ p p∧ ∼ p

T F T F

F T T F

V Logical Equivalence : Two propositions P (p, q, ....) and Q(p, q, ......) are said to be logically

equivalent or simply equivalent or equal, denoted by P (p, q, ....) ≡ Q(p, q, .....), if they have

identical truth tables.

For example : ∼ (p ∧ q) ≡∼ p∨ ∼ q as shown in the table below :

Let p : Roses are red, q : Violets are blue, then ∼ p∧ ∼ q : Roses are not red and violets are

not blue and ∼ (p ∨ q) : It is not the case that roses are red or violets are blue.

VI Laws of the Algebra of Propositions

1. Idempotent Laws : p ∨ p ≡ p and p ∧ p ≡ p

2. Associative Laws : p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r and p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

3. Commutative Laws : p ∨ q ≡ q ∨ p and p ∧ q ≡ q ∧ p
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Table 5: ∼ (p ∧ q) ≡∼ p∨ ∼ q

p q ∼ p ∼ q p ∧ q ∼ (p ∧ q) ∼ p∨ ∼ q

T T F F T F F

T F F T F T T

F T T F F T T

F F T T F T T

4. Distributive Laws : p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) and p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

5. Identity Laws : p ∨ F ≡ p and p ∧ T ≡ p

6. Negation Laws : p∨ ∼ p ≡ T and p∧ ∼ p ≡ F , ∼ T ≡ F and ∼ F ≡ T

7. Involution Law : ∼ (∼ p) ≡ p

8. De-Morgan’s Laws : ∼ (p ∧ q) ≡∼ p∨ ∼ q and ∼ (p ∨ q) ≡∼ p∧ ∼ q

Here T (or 0) refers to tautology and F (or 1) refers to contradiction. All the above mentioned

laws can be proved very easily with the help of truth tables. For reference, see the proof of

negation laws in table 4 and the proof of De-Morgan’s laws in table 5.

VII Conditional and Bi-conditional Statements : Let p and q be the propositions. Then

the compound statement symbolically written as ‘p → q’ read as ‘If p then q’ or ‘p implies q’

or ‘p only if q’, is known as the conditional statement. Here p is called the hypothesis and q is

called the conclusion. Moreover, p → q is true if p is false or q is true or both and it is false if

the hypothesis i.e. p is true but the conclusion q is false. If p → q is the conditional statement,

then q → p is called its converse, ∼ p →∼ q is called its inverse and ∼ q →∼ p is called its

contrapositive.

Now, the compound statement symbolically written as ‘p ↔ q’ read as ‘p if and only if q’ stated

as ‘p is a NASC for q’, is known as the biconditional statement. This biconditional statement

is true if either p and q both true or false, and is false otherwise. The truth tables are as shown

below:

It is clear from the above table that p → q and ∼ q →∼ p are logically equivalent. Similarly,

q → p and ∼ p →∼ q are logically equivalent.
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Table 6: Conditional and Bi-conditional Statements

p q ∼ p ∼ q p → q q → p ∼ p →∼ q ∼ q →∼ p p ↔ q

T T F F T T T T T

T F F T F T T F F

F T T F T F F T F

F F T T T T T T T

For example : 1. Let p : 3 + 5 = 8 and q = 3 is an even number, then p → q : If3 + 5 = 8 then

3 is an even number and p ↔ q : 3+5=8 iff 3 is an even number. Now p is true but q is false,

so p → q is false and p ↔ q is also false.

2. Let p : Every even number is divisible by 2 and q : 3 is a prime number, then p → q : If

every even number is divisible by 3 then 3 is a prime number and p ↔ q : Every even number

is divisible by 3 iff 3 is a prime number . Here, p and q both are true, so p → q and p ↔ q are

also true.

NOTE: Any two propositions P(p,q,...) and Q(p,q,.....) are equivalent if P ↔ Q is a tautology.

VIII Principle of Duality : Let S be a statement which is a tautology, then the statement

formed by interchanging ∧ with ∨, ∨ with ∧, 0 with 1, 1 with 0, called dual of S denoted by

S∗ is also a tautology.

For example : 1. Dual of p ∨ 0 = p is p ∧ 1 = p and both are tautologies.

2. Dual of ∼ (p ∧ q) ≡∼ p∨ ∼ q is ∼ (p ∨ q) ≡∼ p∧ ∼ q and both are true i.e. tautologies.

IX Argument : An argument is an assertion that a given set of propositions P1, P2, ........, Pn,

called premises yield another propositionQ (called the conclusion). Such an argument is denoted

by P1, P2, .....Pn ⊢ Q. An argument P1, P2, .....Pn ⊢ Q is said to be valid or logical or true, if Q

is true whenever all the premises the true otherwise the argument is not valid and it is called a

fallacy.

For example : The argument (i) p, p → q ⊢ q (known as the law of detachment) is a valid

argument whereas the argument (ii) p → q, q ⊢ p is a fallacy. See the following truth table :

The premises p and p → q are true only in the first row and the conclusion q is also true. So,

argument (i) is valid. For argument (ii), the premises p → q and q are true in first row and
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p q p → q

T T T

T F F

F T T

F F T

third row, but the conclusion p is not true for both. So, argument (ii) is a fallacy.

Remark : The propositions P1, P2, ......, Pn are true simultaneously iff the proposition P1∧P2∧
P3........ ∧ Pn is true. Therefore, the argument P1, P2, .....Pn ⊢ Q is valid iff Q is true whenever

P1 ∧ P2 ∧ P3........ ∧ Pn is true or iff (P1 ∧ P2 ∧ P3..... ∧ Pn) → Q is a tautology.

For example : Let us prove the validity of the argument : If p implies q and q implies r, then

p implies r i.e. p → q, q → r ⊢ p → r. To prove the validity, it is sufficient to show that

[(p → q) ∧ (q → r)] → (p → r) is a tautology. The following table 7 proves for the same.

Table 7: Validity of p → q, q → r ⊢ p → r

. (i) (ii)

p q r p → q q → r p → r (p → q) ∧ (q → r) (ii) → (i)

T T T T T T T T

T T F T F F F T

T F T F T T F T

T F F F T F F T

F T T T T T T T

F T F T F T F T

F F T T T T T T

F F F T T T T T

On similar lines, we can prove the argument :

P1 : If a man is bachelor, he is unhappy.

P2 : If a man is unhappy, he dies young.

Q : Bachelors die young.

Let p : He is bachelor, q : He is unhappy, r : He dies young.
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So, the argument is p → q, q → r ⊢ p → r and the above table proves the same.

X Logical Implication: A proposition P (p, q, ....) is said to logically imply a proposition

Q(p, q, ....) written as P (p, q, ...) =⇒ Q(p, q.......) if Q(p, q, ....) is true whenever P (p, q, ......) is

true, or in other words P (p, q, ...) → Q(p, q.......) is a tautology.

For example : p logically implies p ∨ q as p ∨ q is true whenever p is true (see table 2).

Remark : Q(p, q, ....) is true whenever P (p, q, .....) is true, so the argument P (p, q, ....) ⊢
Q(p, q, .....) is valid and conversely. Or we can say that P ⊢ Q is valid iff the conditional

statement P → Q is always true i.e. a tautology. The following result holds :

For any propositions P (p, q, ....) and Q(p, q, .....), the following statements are equivalent:

(a) P (p, q, ....) logicallly implies Q(p, q, ....).

(b) The argument P (p, q, ...) ⊢ Q(p, q, ....) is valid.

(c) The conditional statement P (p, q, ....) → Q(p, q, ...) is a tautology.

XI Propositional Function : Let A be the given non-empty set. A propositional function

defined on A is an expression p(x), which has the property that p(a) is true or false for a ∈ A

i.e. it becomes a statement whenever x ∈ A. The set A is called domain of p(x) and the set

Tp of all those elements of A for which p(a) is true is called truth set of p(x). Mathematically,

Tp = {x : x ∈ A and p(x) is true}.
For example : Let the domain set A be N.

(i) Let p(x) be ‘x+ 2 > 7’, then Tp = {x : x ∈ N and x+ 2 > 7} = {6, 7, 8, .....}.
(ii) Let p(x) be ‘x+ 5 < 3’, then Tp = {x : x ∈ N and x+ 5 < 3} = φ.

(iii) Let p(x) be ‘x+ 5 > 1’, then Tp = {x : x ∈ N and x+ 5 > 1} = N.

Remarks : If p(x) is a propositional function defined on the set A, then

(i) p(x) can be true for all x ∈ A (Tp = A), for some x ∈ A (Tp ⊂ A) or for no x ∈ A (Tp = φ).

(ii) ∼ p(x) is true iff p(x) is false (i.e. a ∈ T c
p iff a /∈ Tp).

(iii) p(x) ∧ q(x) is true whenever p(x) is true and q(x) is true (i.e. a ∈ Tp ∩ Tq iff a ∈ Tp and

a ∈ Tq).

(iv) p(x)∨ q(x) is true whenever either p(x) is true or q(x) is true (i.e. a ∈ Tp ∪ Tq iff a ∈ Tp or

a ∈ Tq).

(v) De-Morgan’s Laws for Propositional Functions : ∼ (p(x) ∧ q(x)) ≡ (∼ p(x)) ∨ (∼ q(x)),

∼ (p(x) ∨ q(x)) ≡ (∼ p(x)) ∧ (∼ q(x)) (i.e.(Tp ∩ Tq)
c = T c

p ∪ T c
q , (Tp ∪ Tq)

c = T c
p ∩ T c

q ).
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XII Universal Quantifier : Let p(x) be a propositional function defined on the setA. Consider

the expression (∀x ∈ A)p(x) or ∀x, p(x), which reads ‘For every x in A, p(x) is a true statement’.

The symbol ∀ which reads ‘for all’ is known as the universal quantifier.

It is equivalent to Tp = {x : x ∈ A, p(x) is true } = A.

For example : (i) The proposition (∀n in N)(n+4 > 3) is true,∵ Tp = {n : n ∈ N, n+4 > 3} = N.

(ii) The proposition (∀n in N)(n+2 > 8) is false, ∵ Tp = {n : n ∈ N, n+2 > 3} = {7, 8, .....} 6= N.

XIII Existential Quantifier : Let p(x) be a propositional function defined on the set A.

Consider the expression (∃x ∈ A)p(x) or ∃x, p(x), which reads ‘There exists an x in A such that

p(x) is a true statement’. The symbol ∃ which reads ‘there exists’ of ‘for some’ or ‘for atleast

one’ is known as the existential quantifier.

It is equivalent to Tp = {x : x ∈ A, p(x) is true } 6= φ.

For example : (i) The proposition (∃n in N)(n+4 < 7) is true,∵ Tp = {n : n ∈ N, n+4 > 7} =

{1, 2} 6= φ.

(ii) The proposition (∃n in N)(n+ 6 < 4) is false, ∵ Tp = {n : n ∈ N, n+ 6 < 4} = φ.

XIV Negation of Quantified Statements : We understand this concept with the help of

examples.

(i) Let the statement be ‘All math majors are males’. Its negation is ‘It is not the case that all

math majors are males’ or ‘There exists atleast one math major who is not a male.’ Now, we

write it in the form of quantifiers:

Let M be the set of math majors.

∴∼ (∀x ∈ M) (x is male) ≡ (∃x ∈ M) (x is not male).

or ∼ (∀x ∈ M) p(x) ≡ (∃x ∈ M) (∼ p(x)), where p(x) : x is male.

Similarly, ∼ (∃x ∈ M) p(x) ≡ (∀x ∈ M) (∼ p(x))

NOTE : The above statements are known as De-Morgan’s laws.

(ii) Let the statement be ‘For all positive integers n, we have n+ 2 > 8. Its negation is ‘There

exists a positive integer n such that n+ 2 ≯ 8.

Exercise Set

1. Prove that : (i) p → q ≡ (∼ p) ∨ q, (ii) ∼ (p → q) ≡ p ∧ (∼ q).

2. Write the following statements in symbolic form and give their negations :

(i) If you work hard, you will get the first devision.

(ii) If it rains, he will not go to school.
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3. Prove that p → (q ∧ r) ≡ (p → q) ∧ (p → r).

4. Prove that p ↔ q ≡ (p ∧ q) ∨ (∼ p∧ ∼ q).

5. Prove that {[(p → q) ∨ p] ∧ q} → q is a tautology.

6. State the converse, inverse and contrapositive of the following implications :

(i) If 4x− 2 = 10, then x = 3.

(ii) If it snows tonight, then I will stay at home.

7. Test the validity of following arguments :

(i) It it rains, then crop will be good. It did not rain. Therefore, the crop will not be

good.

(ii) If I work, I cannot study. Either I work or pass Mathematics. I passed Mathematics.

Therefore, I studies.

8. Over the Universe of positive integers :

p(n) : n is prime and n < 32.

q(n) : n is a power of 3.

r(n) : n is a divisor of 27.

(a) What are the truth sets of these propositions?

(b) Which of the three propositions implies one of the others?

9. Use quantifier to say that
√
5 is not a rational number.

10. Let C(x) be ‘x is cold blooded. Let F (x) be ‘x is a fish and let S(x) be ’x lives in the

sea’.

Translate into a formula : Every fish is cold blooded.

Translate into English : (∃x)(S(x)∧ ∼ F (x)) and (∀x)(F (x) → S(x)).
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