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2.1.0 Objectives 

 The prime goal of this section is to study the vector differential and integral 

calculus. We often call this study as vector analysis or vector field theory. During the 

study in this particular lesson, our main objectives are 

 To discuss the limit, continuity and differentiability of vector functions. 

 To study the ordinary and partial differentiation of vector functions. 

 To study the integration of vector functions.  

2.1.1 Introduction to Vector Functions 

 Before introducing a vector function, we wish to make the readers familiar 

with scalar function. A scalar function ),( yxf  is a function defined at each point in 

a certain domainD . Its value is real and depends only on the point ),( yxP  in space, 

but not on any particular coordinate system being used. For every point Dyx ),( , 

f has a real value and we say that a scalar field f  is defined in D . 

1 
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For example : The distance function in 2- D  space which defines the distance 

between the points ),( yxP  and ),( 000 yxP , given by 

   2

0

2

0),()( yyxxyxfPf     

defines a scalar field, where domain D  is the whole of the 2-D  space.  

Now, we may define the vector function as: 

Vector Function : A function kfjfifPff ˆˆˆ)( 321 


 defined at each point DP  

is called a vector function and we say that a vector function is defined in D . In 

cartesian coordinates, we can write 

kyxfjyxfiyxff ˆ),(ˆ),(ˆ),( 321 


  

If we recall that a curve C  in the two dimensional yx  plane van be parameterized 

by btatyytxx  ),(),( . Then, the position vector of a point P  on the curve C  

can be written as jtyitxtr ˆ)(ˆ)()( 


. 

Therefore, the position vector of a point on a curve defines a vector function and the 

vector function may now be defined as 

Any vector r


 is said to be a vector function of t  if r


 varies continuously with 

the variation of scalar variable t .  

It is written as r


 or )(tr


 or )(tfr




 . 

For example : The position vector r


 of a particle moving along a curved path is a 

vector function of time t , where t  is a scalar. 

2.1.2 Limit and Continuity of Vector Functions 

Limit : The vector function )(tf


 has the limit l


 as at  , if )(tf


 is defined in some 

neighborhood of a , except possibly at at  , and 

0)( 


ltflt
at



   or  ltflt
at






)(  

Continuity : A vector function )(tf


 is said to be continuous at at  , if 

(i) )(tf


 is defined in some neighborhood of a ,  

(ii) )(tflt
at




 exists, and  

(iii) )()( aftflt
at






 

2.1.3 Differentiability of Vector Functions 

Let )(tfr




  be a vector function of the scalar variable t , 

)( ttfrr  
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)()( tfttfr




   

t

tfttf

t

r





 )()(






  

t

tfttf
lt
t 




)()(

0







, if it exists, is called the derivative of vector function r



 with 

respect to scalar variable t   and the vector function )(tfr




  is said to be 

differentiable.  It is denoted by
dt

rd


and therefore,  we can write 

 
t

tfttf
lt

t

rrr
lt

dt

rd

tt 







)()(

00












 

 

2.1.3.1 Some Useful Results Concerning Differentiation 

i.  
dt

bd

dt

ad
ba

dt

d








  

ii.   b
dt

ad

dt

bd
aba

dt

d 











...   

iii.   b
dt

ad

dt

bd
aba

dt

d 











  

iv.   a
dt

d

dt

ad
a

dt

d 



 
   

v.   


















dt

cd
bac

dt

bd
acb

dt

ad
cba

dt

d




















,,,,,,,,  

vi.      






 











dt

cd
bac

dt

bd
acb

dt

ad
cba

dt

d




















 

where cba






,,  are differentiable vector functions and   is a differentiable scalar 

function of the same variable t .  

Note: The readers may easily prove the above results.  

2.1.3.2 Derivative of a Vector Function in Terms of its Components 

Let r


 be a vector function of the scalar variable t . Let kzjyixr ˆˆˆ 


 where the 

components zyx ,, are functions of t  and kji ˆ,ˆ,ˆ  are fixed unit vectors. 

       kz
dt

d
jy

dt

d
ix

dt

d
kzjyix

dt

d

dt

rd ˆˆˆˆˆˆ 
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dt

kd
zk

dt

dz

dt

jd
yj

dt

dy

dt

id
xi

dt

dx ˆ
ˆ

ˆ
ˆ

ˆ
ˆ   

k
dt

dz
j

dt

dy
i

dt

dx ˆˆˆ                

since 0
ˆ

,0
ˆ

,0
ˆ 


dt

kd

dt

jd

dt

id
 as kji ˆ,ˆ,ˆ  are the constant vectors (a vector is said to be 

constant if both of its magnitude and direction do not change).  

2.1.4  Some Important and Useful Articles 

I. The necessary and sufficient condition for the vector function )(tf


 to be 

constant is .0





dt

fd
 

II. The necessary and sufficient condition for the vector function )(tf


 to have 

constant magnitude is .0. 
dt

fd
f





 

III. The necessary and sufficient condition for the vector function )(tf


 to have 

constant direction is .0







dt

fd
f  

Proof : The proof is left for the reader. 

2.1.5 Velocity and Acceleration 

If the scalar variable t  be the time and r


 be the position vector of a moving particle P 

with respect to the origin O, then r


  is the displacement of the particle in time t . 

Thus, 
t

r





 is the average velocity of the particle during the interval t . If v


 represents 

the velocity vector of the particle at P, then 

 
dt

rd

t

r
ltv
t






 


 0

 

Similarly, if a


 represents the acceleration of the particle at time t , then 

 
2

2

0 dt

rd

dt

rd

dt

d

dt

vd

t

v
lta
t













 




 

2.1.6 Partial Derivatives of Vector Functions 

Let ),,( zyxfr




  i.e. r


 is a function of three variables x , y  and z . 

Then, partial derivative of  r


 w.r.t. the variable x  is defined as 
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x

zyxfzyxxf
lt

x

r

x 




,,,,

0












      provided this limit exists. 

Similarly,  
   

y

zyxfzyyxf
lt

y

r

y 




,,,,

0












 

and  
   

z

zyxfzzyxf
lt

z

r

z 




,,,,

0












  

2.1.7 Integration of Vector Functions 

Integration is just the reverse process of differentiation. Let )(tf


 and )(tF


 be the two 

vector functions such that 

  )()( tftF
dt

d 

  

Then, )(tF


 is called the indefinite integral of  )(tf


 w.r.t. t  and we write it as 

ctFdttf  )()(


, where c  is the integration constant. 

Further for the integration, we use the below mentioned useful results: 

1. To integrate a vector function, integrate its components. 

2.  







crdt

dt

rd
r 2.2







 

3.  














c

dt

rd
dt

dt

rd

dt

rd
2

2

2

.2



 

4.  







 c

dt

rd
rdt

dt

rd
r











2

2

 

5.  






  cradt
dt

rd
a







, where a


 is a constant vector. 

6.   dtrcdtrc


 

2.1.8 Some Important Examples 

Example 1 : If ktjtaitar ˆˆ)sin(ˆ)cos( 


, find 
dt

rd


, 
2

2

dt

rd


 and 
2

2

dt

rd


 . 

Sol. Here ktjtaitar ˆˆ)sin(ˆ)cos( 


 

kjtaita
dt

rd ˆˆ)cos(ˆ)sin( 


 



B.A. (MATHEMATICS) PART-I (SEMESTER-2)  6          PAPER-4 

 

And 0ˆ)sin(ˆ)cos(
2

2

 jtaita
dt

rd


 

aaatatatata
dt

rd
 222222222

2

2

)1(sincos)0()sin()cos(



 

Example 2 : A particle moves along the curve 52,,1 23  tztytx , where t  is 

time. Find the components of its velocity and acceleration at time 1t  in the 

direction .ˆ3ˆˆ kji    

Sol. If r


 is the position vector of any point ),,( zyx  on the given curve, then 

ktjtitkzjyixr ˆ)52(ˆˆ)1(ˆˆˆ 23 


 

kjtit
dt

rd
v ˆ2ˆ2ˆ3 2 





 

and jit
dt

rd
a ˆ2ˆ6

2

2






 

At 1t ,  kjiv ˆ2ˆ2ˆ3 


 and jia ˆ2ˆ6 


 

Let b̂  be the unit vector in the direction .ˆ3ˆˆ kji   

.
11

ˆ3ˆˆ

911

ˆ3ˆˆ

ˆ3ˆˆ

ˆ3ˆˆ
ˆ kjikji

kji

kji
b












   

Now, component of velocity in the direction of bvkji ˆ.ˆ3ˆˆ 

  

11
11

11

11

)3)(2()1)(2()1)(3(

11

ˆ3ˆˆ
).ˆ2ˆ2ˆ3( 












 


kji
kji  

Further, component of acceleration in the direction of bakji ˆ.ˆ3ˆˆ 

   

11

8

11

)3)(0()1)(2()1)(6(

11

ˆ3ˆˆ
).ˆ2ˆ6( 












 


kji
ji  

Example 3 : If j
t

titr ˆ
5

1
2ˆ

2

33 






 


, show that .k̂
dt

rd
r 





 

Sol. Here, j
t

titr ˆ
5

1
2ˆ

2

33 






 


 

j
t

tit
dt

rd ˆ
5

2
6ˆ3

3

22 
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kttji

t
tt

t
tt

kji

dt

rd
r ˆ

5

3
6

5

2
6ˆ)00(ˆ)00(

0
5

2
63

0
5

1
2

ˆˆˆ

55

3

22

2

33 






 








 

.k̂
dt

rd
r 





 

Example 4 : If      kyxjxyeixyxf xy ˆcosˆsinˆ2 242 


, the find 
x

f





, 
y

f





, 
2

2

x

f






, 

2

2

y

f






. Also, show that 
xy

f

yx

f










22

. 

Sol. Here,      kyxjxyeixyxf xy ˆcosˆsinˆ2 242 


 

      kyx
x

jxye
x

ixyx
xx

f xy ˆcosˆsinˆ2 242


















 










 











 

            kyxjxyyeixxy xy ˆcos2ˆcosˆ44 3   

Now,       kyx
y

jxye
y

ixyx
yy

f xy ˆcosˆsinˆ2 242











































 

                  kyxjxxeix xy ˆsinˆsinˆ2 22   

Further,      kyjxyeyixy
x

f

xx

f xy ˆcos2ˆsinˆ124 22

2

2





















, 

    kyxjex
y

f

yy

f xy ˆcosˆ 22

2

2






















 

     kyxjxexyeix
y

f

xyx

f xyxy ˆsin2ˆcosˆ4
2






















 

and      kyxjxexyeix
x

f

yxy

f xyxy ˆsin2ˆcosˆ4
2





















  

                                
xy

f

yx

f












22
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Example 5 : If kxzjxziyzxA ˆˆ2ˆ 232 


 and kxjyizB ˆˆˆ2 2


, then find the value of 

 BA
yx





2

 at the point (1,0,-2). 

Sol. Here, kxzjxziyzxA ˆˆ2ˆ 232 


  and kxjyizB ˆˆˆ2 2


 

   kxjyizkxzjxziyzxBA ˆˆˆ2ˆˆ2ˆ 2232 


 

 kxzzyxjxzyzxixyzzx

xyz

xzxzyzx

kji

ˆ4ˆ)2(ˆ)2(

2

2

ˆˆˆ

42234233

2

232 



  

       kyzxjzxixzBA
y

ˆ2ˆˆ 242 






 

       kxyzjzxizBA
yx

ˆ4ˆ4ˆ 32 


















 

       kxyzjzxizBA
yx

ˆ4ˆ4ˆ 32
2








 

At (1,0,-2),          jikjiBA
yx

ˆ8ˆ4ˆ)2)(0)(1(4ˆ)2()1(4ˆ)2( 32
2



 

 

Example 6 : If  ktjtitr ˆˆˆ5 32 


, then prove that  









2

1

2

2

ˆ15ˆ75ˆ14 kjidt
dt

rd
r





. 

Sol. Here, ktjtitr ˆˆˆ5 32 


 

ktjit
dt

rd ˆ3ˆˆ10 2


 

   ktjitktjtit
dt

rd
r ˆ3ˆˆ10ˆˆˆ5 232 





 

kttjttitt

tt

ttt

kji

ˆ)105(ˆ)1015(ˆ)3(

3110

5

ˆˆˆ

224433

2

32 



  

ktjtit
dt

rd
r ˆ5ˆ5ˆ2 243 





                                                                                   (1) 

Now, L.H.S. =  




 









2

1

2

1

2

2

dt

rd
rdt

dt

rd
r
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 2
1

243 ˆ5ˆ5ˆ2 ktjtit                                          [using (1)] 

      ktjtit ˆ5ˆ5ˆ2
2

1

22

1

42

1

3   

kji ˆ)520(ˆ)580(ˆ)216(   

 









2

1

2

2

ˆ15ˆ75ˆ14 kjidt
dt

rd
r





 

2.1.9 Summary 

 In this lesson, we have studied basically about the limit, continuity and 

differentiability of vector functions. Through the study, we came to know that the 

concepts of limit, continuity and differentiability of calculus can easily be used for 

vector functions. Further, the higher order derivatives and rules of differentiation for 

vector functions have the same form as in the case of real valued functions. 

2.1.10 Self Check Exercise 

1. If kjia ˆˆ)(cosˆ)(sin  


, kjib ˆ3ˆ)(sinˆ)(cos  


 and .ˆ3ˆ3ˆ2 kjic 


 

Find   cba
d

d 








 at .
2


   

2. If jntintr ˆ)(sinˆ)(cos 


, where n  is a constant, show that .k̂n
dt

rd
r 





 

3. If r


 is a unit vector, then prove that .
dt

rd

dt

rd
r





  

4. A particle moves along a curve whose parametric equations are 

tbztayex t 3sin,3cos,  
, where t  is time. Find the components of its 

velocity and acceleration at time 0t . 

5. If kyjxzixyza ˆˆˆ 32 


 and kzxjxyzixb ˆˆˆ 23 


, then sow that 
2

2

2

2

x

B

y

A










 at 

the point (1,1,0) is ĵ36 . 

6. Evaluate   
1

0

322 ˆ)35(ˆ)2(ˆ dtkttjttit  

7. If 0. rdr


, show that r =constant. 

 2.1.11 Suggested Readings 

 

1. RK Jain, SRK Lyenger                             Advanced Engineering Mathematics 

2. JR Sharma             Advanced Calculus 
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2.2.0 Objectives

The prime objective of this lesson is to study the operators such as gradiant,

divergence and curl, on scalar and vector point functions. Further the physical

interpretation of these operators is also elaborated under the same.

2.2.1 Introduction to Point Functions

Point Function : A variable quantity whose value at any point in a region of

space depends upon the position of the point, is called a point function.

Point function are of two types :

(i) Scalar Point Function (ii) Vector Point Function

Def : Scalar Point Function :

A function f (x, y, z) is called a scalar point function if it associates a scalar

with every point in region R of a space. Region R is called scalar field. The temperature

distribution in a heated body, density of a body and potential due to gravity are examples

of scalar point functions.

10
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Def : Vector Point Function :

If a function f (x, y,z)


 defines a vector at every point of the region R of a space

then f (x, y,z)


 is called a vector point function and R is called a vector field.

Def : Level Surface :

Let V (x, y, z) be a scalar point function over a certain region. All those points

which satisfy an equation of the type V(x, y, z) = c constitute a family of surfaces in

three dimensional space. The surfaces of this family are called level surfaces. The

value of the function at every point of a level surface is the same.

2.2.2 Gradient of a Scalar Point Function and its Physical Interpretation

Consider the level surfaces of the function through P, P' with values, V, V + V

respectively. Let Q be the point at which the second surface is cut by the normal at P

to the first, and let n be the length PQ. Then the limiting value of 
V

n




as n 0 is the

directional derivative of V in the direction normal to the level surface at P, and is

written as 
V

n




. If then n̂  is the unit vector normal to the level surface at P and

having the sense from P to Q, then the vector 
V

n




n̂  is called the gradient of the

function V and is denoted by grad V or V.
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In rectangular coordinates, 
V V Vˆ ˆ ˆ ˆ ˆ ˆV i j k i j k V
x y z x y z

      
             

Note : (i) ˆ ˆ ˆV i j k
x y z

  
  

  
 is a vector operator, Its operation on a scalar

function is a vector.

(ii) can be operated on a scalar point function only and not on a vector

point function.

2.2.3 Some Important and Useful Articles

Art 1 : Prove that grad V is a vector normal to the surface V(x, y, z) = c, where c is

constant.

Proof : The equation of level surface is V(x, y, z) = c

Let r
  be the position vector of any point P (x, y, z) on given surface.

 ˆ ˆ ˆr x i yj zk  


Again let r dr
 

 be the position vector of any neighbouring point

Q (x + dx, y + dy, z + dz) on given surface.

 ˆ ˆ ˆr dr (x dx) i (y dy) j (z dz) k      
 

 ˆ ˆ ˆPQ r dr r dr dr (dx) i (dy) j (dz) k       
     

As Q P, the line PQ becomes tangent at P to the level surface.

 ˆ ˆ ˆdr (dx)i (dy) j (dz) k  


lies in the tangent plane to the surface at P.

   V V Vˆ ˆ ˆ ˆ ˆ ˆdr. V (dx)i (dy)j (dz)k . i j k
x y z

   
         



V V V
dx dy dz dV

x y z

  
   
  

= 0 as V is constant.

 V  is perpendicular to dr


But dr


 lies in the tangent plane to the surface at P

 V  is normal to the surface at P.
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Art 2 : Show that dV dr . V 


Proof :Let ˆ ˆ ˆr xi yj zk  


   V V V V V Vˆ ˆ ˆ ˆ ˆ ˆdr. V dxi dyj dzk . i j k dx dy dz
x y z x y z

      
               



 dr . V dV 


.

Art 3 : If u and v are two scalar point functions, then

(i)  (u+v) =  u +  v (ii)  (uv) = u v + u v

(iii) 
2

u v u u u

v u

     
 

Proof : (i) L.H.S. =  (u + v) = ˆ ˆ ˆi (u v) j (u v) k (u v)
x y z

  
    

  

u v u v u vˆ ˆ ˆi j k
x x y y z z

                           

u u u u u uˆ ˆ ˆ ˆ ˆ ˆi j k i j k
x y z x y z

        
                

u v R.H.S.    

(ii) L.H.S. = ˆ ˆ ˆ(uv) i (uv) j (uv) k (uv)
x y z

  
   

  

v u v u v uˆ ˆ ˆi u v j u v k u v
x x y y z z

                           

v v v u u uˆ ˆ ˆ ˆ ˆ ˆu i j k v i j k u v u u
x y z x y z

        
                    

= R.H.S.

(iii) L.H.S. = 
u u u uˆ ˆi j k
v x v y v z v
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2 2 2

u vu v u vv uv u v u
y yx x z zˆ ˆ ˆi j k

v v v

                       
            

2 2

u u u v u vˆ ˆ ˆ ˆ ˆ ˆv i j k u i j k
x y z x y z v u u v

v v

        
                   

= R.H.S.

2.2.4 Extreme Value and its Evaluation

A maximum or a minimum value of a function is called an extreme value.

Saddle Point. If a function f has neither max. nor minimum at a joint (x
1
, y

1
), then

function is said to have a saddle point at (x
1
, y

1
)

Lagrange Multiplier

In this method, we want to find the points (x, y) that give the extrema (maximum

or minimum value) of a function f(x, y) subject to the constraint g(x, y) = d, where d is

a constant. This will occur only when the gradients f and g (directional derivatives)

are orthogonal to the given curve [surface] g(x, y) = d. Thus f and g are parallel; and

hence there must be a constant such f = g. Here is called a Lagrange multiplier.

The condition f = g together with the original constraint yield three equations in

the unknowns x, y and  :

f
x 
(x, y) = g

x 
(x, y), f

y
(x, y) = g

y 
(x, y), g(x, y) = d

Solutions of the system for x and y give the coordinates for the extrema of

f(x, y) subject to the constraint g(x, y) = d.

2.2.5 Divergence of a Vector Point Function

Let F


 be any differentiable vector function. Then divergence of F


, written as

div F


, is defined as

F F Fˆ ˆ ˆ ˆ ˆ ˆdiv F . F i j k . F i . j . k .
x y z x y z

      
              

  
  

Note 1. Divergence is always of a vector point function and . F


is a scalar point

function.

2. Let 
1 2 3

ˆ ˆ ˆF F i F j F k  
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Now div 
F F Fˆ ˆ ˆF . F i . j , k .
x y z

  
    

  

  
 

2 2 23 3 31 1 1F F FF F FF F Fˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi . i j k j . i j k k . i j k
x x x y y y z z z

          
                        


2 31 F FF

div F
x y z

 
  

  



3. A vector F


 is said to be solenoidal iff div F


 = 0.

2.2.5.1 Physical Interpretation

Draw a small parallelopiped with edges x, y, z parallel to the axes in the

mass of fluid, with one of the corners at P(x, y, z). Let x y z
ˆ ˆ ˆv u i v j v k  


 be the velocity

of fluid at P

Z

X

YO

P
P'

B

C

A C'

B'

A'

vy

Amount of fluid entering the face PB' in unit time = v
y
z x.

Amount of fluid leaving the face P'B in unit time = v
y+y 

z x 
y

y

v
v y z x

y

 
     

 

nearly.
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 of Taylor 's Theorem

 net loss of amount of fluid due to flow across these two faces per unit volume

yv
x y x

y


   



 total loss of amount of fluid due to flow along all the faces per unit volume

yx z
vv v

x y x
x y z

  
      

   

 rate of loss of fluid per unit volume 
yx z

vv v
div v

x y z

 
   

  



 div v


 is the rate at which fluid is issuing at a point per unit volume.

2.2.6 Curl of a Vector Point Function

Let F


 be any differentiable vector function. Then curl F


 is defined as

F F Fˆ ˆ ˆ ˆ ˆ ˆcurl F F i j k F i j k
x y z x y z

      
                   

  
  

Note 1. Curl F


 is also known as rotational F


 or rot F


.

2. Curl is always of vector point function and F 


 is a vector.

3. Let 
1 2 3
ˆ ˆ ˆF F i F j F k  



 F F Fˆ ˆ ˆcurl F F i j k
x y z

  
        

  

  
 

2 2 23 3 31 1 1F F FF F FF F Fˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi i j k j i j k k i j k
x x x y y y z z z

          
                           

2 23 31 1F FF FF Fˆ ˆ ˆ ˆ ˆ ˆk j k i j i
x x y y z z

       
                   

2 23 31 1

1 2 3

ˆ ˆ ˆi j k

F FF FF Fˆ ˆi j k
y z z x x y x y z

F F F
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4. A vector F


 is said to be irrotational vector iff curl F 0


.

2.2.6.1 Physical Interpretation

If v


 is the velocity of a particle of a rigid body whose angular velocity is A


,

then curl v 2A


.

Proof :Let ˆ ˆ ˆr xi yj zk  


 be the position vector of the particle whose velocity is v


 v A r 
 

 curl    ˆv curl A r i A r
x


     



  

r
î A

x

      




A is a constant vector  




     ˆ ˆ ˆ ˆ ˆ ˆi A i i . i A i . A i 3 A A         
    

 curl v 2A


.

2.2.7 The Laplacian Operator and Harmonic Function

Laplacian Operator : The operator 2 i.e., .   is defined as 
2 2 2

2

2 2 2x y z

  
   

  
 and is

called be Laplacian operator.

Note : 1. 2 is a scalar operator where as  is a vector operator.

2. If F is a scalar point function, then 
2 2 2

2

2 2 2

F F F
F

x y z

  
   

  
and if F



 is a vector

point function, then 
2 2 2

2

2 2 2

F F F
F

x y z

  
   

  

  


.

3. 2 F=0 is called Laplacian equation.

Harmonic Function : A function satisfying Laplace's equation is Harmonic Function.
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2.2.8 Some Important Examples

Example 1 : Prove that 
5 3

1 3a.r b.r a.b
a.v b.

r r r

    
 

    


 where a


 and b


 are constants.

Proof :Consider 11
(r )

x

    
 

  3 n n 2( 1) r r r nr r    
 


 3

1 b .r
b .

r r

    
 

 


    3

3 3

1 b . r 1
b . b.r b . r r

r r r

                     

 
   

5

3

1
b b . r ( 3) r r

r

      

   


3 5

1 1 3
b . b b . r r

r r r

      
 

    

 3 5

1 1 3
a . b . a . b a . r b .r

r r r

      
 

      

5 3

3a . r b.r a.b

r r
 

    

.

Example 2 : Minimise the function f(x, y) = x2 + 2y2 subject to the constaint

g(x,y) = 2x + y = 9.

Proof :Given : f(x, y) = x2 + 2y2, g(x, y) = 2x + y – 9 = 0

Now, using the condition that f g    and the constaint, we get

2 2ˆ ˆ ˆ ˆ ˆ ˆi j k (x 2y ) i j k (2x y 9)
x y z x y z

        
                   

or  ˆ ˆ ˆ ˆ2xi 4yj (2i j)   

2x = 2 i.e. x =  ... (1)

4y =  ... (2)

and 2x + y = 9 ... (3)
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Eliminating from (1) and (2), we get

x = 4y

From (3) and (4), we get

8y + y = 9 or 9y = 9 y = 1

 From (4), x = 4

 f (4, 1) = 16 + 2 = 18

Hence, 18 is the minimum value of f.

Example 3 :  Determine the constant 'a'  so that the vector

ˆ ˆ ˆF (x 3y) i (y 2z) j (x az) k     


 is solenodial.

Sol. ˆ ˆ ˆF (x 3y) i (y 2z) j (x az) k     


 div F . F 
 

  ˆ ˆ ˆ ˆ ˆ ˆi j k . x 3y i y 2zj (x az) k
x y z

   
           

(x 3y) (y 2z) (x az)
x y z

  
     
  

= 1 + 1 + a = a + z

Now, since div. F


is solenoidal

 div F


 = 0 a + 2 = 0

a = –2.

Example 4 : Show that the vector ˆ ˆ ˆ(sin y z)i (x cos y z)j (x y)k     is irrotational.

Proof :Here, ˆ ˆ ˆF (sin y z) i (x cos y z) j (x y)k     




ˆ ˆ ˆi j k

curl F
x y z

sin y z x cos y z x y

  


  

  



  ˆ(x y) x cos y z i (x y) (sin y z)
y z x z
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ˆ ˆj (x cos y z) (sin y z) k
x y

  
      

ˆ ˆ ˆ( 1 1) i (1 1) j (cos y cos y) k      

O O O O   
   

 F


 is irrotational.

Example 5 : Prove that div 
2

r̂
r

 .

Sol. L.H.S. =  1r
ˆdiv r div . r r

r

    
 




 1 1r . r r div r div (uv) u . v u div v      
    



 3 1( 1) r r . r r (3) div r 3   
  



1 3 2

r r r
   

= R.H.S.

2.2.9 Some Useful Formuale

1.  div u v div u div v  
  

2.  curl u v curl u curl v  
  

3.  div uv u.v u div v  
   

4.  curl uv u v u curl v   
  

5.  div u v v . curl u u . curl v  
    

6.  curl u v v . u u . v udiv v v div u      
        

7.  grad u.v v . u u . v v curl u u curl v       
        

8. 2div grad (v) v 

9. curl grad v o


10. div curl v o
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11. 2grad div v curl curl v v  
  

12. 2curl curl v grad div v v  
  

.

2.2.10Self Check Exercise

1. Find div f


and curl F


 where 2 2 2ˆ ˆf xy i 2x yz j 3yz k  
 

2. Prove that curl f O
 

 where ˆ ˆ ˆf zi xj yk  


.

3. Show that the vector 
2 2

yi xj
F

x y

 




 


 is irrotational.

4. Prove that div 
2

2

f(r) 1 d
r r f(r)

r drr

       


.

5. Find the value of r
. ,

r

   
 



 where r
  and r have their usual meanings.

Hence prove that 
3

r 2
. r

r r

       
  


 .

2.2.11Suggested Readings

R. K. Jain, SRK Lyengar : Advanced Engineering Mathematics

(Narosa Publications)
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(SEMESTER-2) ANALYSIS-II

LESSON NO. 2.3 Author : Dr. Chanchal

THEOREMS OF GAUSS, GREEN AND STOKES

Structure :

2.3.0 Objectives

2.3.1 Introduction

2.3.2 Gauss's Divergence Theorem

2.3.3 Green's Theorem

2.3.4 Stoke's Theorem

2.3.5 Some Important Examples

2.3.6 Self Check Exercise

2.3.7 Suggested Readings

2.3.0 Objectives

The prime goal of this lesson is to study the proof and applications of Gauss

divergence theorem, Green's theorem and stoke's theorem.

2.3.1 Introduction

As we have already studied about the double and triple integrals in lesson no.

4 and 5. So, now we can easily understand the basic concepts of line, surface and

volume integrals, which are summarized below :

I. Tangential Line Integral :

The tangential line integral of a vector function F


 along a curve C from A to B

is the definite integral of the scalar resolute of F


 in the direction of the tangent to

the curve measured from a fixed point in the sense A to B, and the limits of integration

being the values of s corresponding to the points A and B.

If t̂  is the unit tangent at the point P and F


 is the value of the function here,

then tangential line integral

22
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B B B

A A A

drˆF. t ds F . ds F . dr
ds

    


   

   
B

1 2 3

A

ˆ ˆ ˆ ˆ ˆ ˆF i F j F k . dxi dyj dzk    

 
B

1 2 3

A

F dx F dy F dz   .

II. Surface Integral :

Any integral which is to be evaluated over a surface over a surface is called a

surface integral.

Pk

S

Let f (x, y, z) be a single valued function defined over a surface S of finite area.

Subdivide the area S into n elements of areas S
1
, S

2
,...., S

n
. In each part S, we

choose an arbitrary point P
k 
(x

k 
y

k
, z

k
). Form the sum  

n

k k

k 1

f P S


 . Take the limit of

this sum as n   in such a way that the largest of the areas S
k 
approaches zero.

This limit if it exists, is called the surface integral of f(x, y, z) over S and is denoted by

S S

f(x, y,z) dS or f dS  .

Remarks :

1. For any continuous vector point function F (x, y,z)


 defined at any point

P of surface S, the flux of F


 over S is given by 
S

ˆF.n dS F . dS 
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where ˆF . n


 is the normal component of F


 at P with n̂  being the unit

vector in the direction of outward normal to the surface S at P.

2. If n̂  makes angles , , with the co-ordinate axes and 
1 2 3
ˆ ˆ ˆF . F i F j F k, 



then 1 2 3

S S

ˆF . n dS (F cos F cos F cos ) dS      


1 2 3F dydz F dzdx F dxdy  
wher dydz, dzdx, dxdy  are the orthozonal projections of S on the co-

ordinate planes.

3. A vector point function is said to be solenoidal in a region if its flux

across every closed surface in the region is zero.

III. Volume Integral :

Let V be the volume bounded by the surface S. Let f(x, y, z) be a single valued

function of position defined over V. Subdivide the volume V into n elements of volumes

V
1
, V

2 
,...., V

n
. In each part V

k
, choose an arbitrary point P

k
(x

k
, y

k
, z

k
). Form the sum

 
n

k k

k 1

f P V


 . Take the limit of the sum in such a ways that the largest of the volumes

kV 0  . This limit, if it exists, is called the volume integral of f over V and is denoted

by 
V V

f dV or f dV  .

If we divide the volume V into small cuboids by drawing lines parallel to the

three co-ordinate axis, then

dV = dx dy dz and

 volume integral 
V

f dx dy dz  .

If F


 is a vector point function, then volume integral 
V

F dV 


Let 
1 2 3
ˆ ˆ ˆF F i F j F k,  


 then

volume integral 1 2 3

V V V

F dx dy dz F dx dy dz F dx dy dz     .

2.3.2 Gauss's Divergence Theorem

Statement : If F


 is a continuously differentiable vector point function and S is a

closed surface enclosing a region V. Then 
S V

ˆF . n dS div F dv 
 

where n̂  is the unit

outward drawn normal vector.

OR
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The normal surface integral of F


 over the boundary of a closed region is equal

to the space integral of divergence of F


 taken throughout the enclosed space.

Proof :Take rectangular axes parallel to the unit vector ˆ ˆ ˆi . j . k  and let ˆ ˆ ˆF Ui Vj Wk  


where U, V, W are components of F


 along the axes. Now we have to prove that

 
S

U V Wˆ ˆ ˆ ˆUi Vj Wk . n dS dx dy dz
x y z

   
        

 

where dx dy dz is the volume element dv. For fixed values of y, z take the rectangular

prism parallel to x-axis bounded by the planes y, y + dy, z, z + dz, the area of its normal

section being dy dz. Such a prism cuts the boundary an even number of times at

points P
1
, P

2
,........., P

2n
, since the boundary surface is closed. If a point moves along

the prism in the direction of x-increasing, it enters the region at P
1
, P

3
,....., P

2n–1 
and

leaves it at the points P
2
, P

4
,...., P

2n
.

Let  1 2 3 2n 1 2n

U
I dx dy dz U U U ... U U dy dz

x



       

 
where U

r
 is the value of U at the point P

r

Let dS, be the area of the element of the boundary intercepted by the prism at

the point P
r
.

Now dy dz is the area of projection of this element on the yz-plane, we have

dy dz = 
r r

ˆ ˆi.n dS if r is odd

r r
ˆ ˆi.n dS if r is even

because the angle which the vector rn̂  makes with î  is acute or obtuse according as

r is even or odd.

 1 1 1 2 2 2 2n 2n 2n
ˆ ˆ ˆ ˆI i . U n dS U n dS ... U n dS   
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V S

U ˆ ˆdv Ui . n dS
x




 

Similarly, 
V S

V ˆ ˆdv Vj . n dS
y




 

and
V S

W ˆ ˆdv W k . n dS
z




 

Adding  
V S

U V W ˆ ˆ ˆ ˆdv U i V j Wk . n dS
x y z

   
        

 


V

ˆdiv F dV F . n dS 
 

If
1 2 3
ˆ ˆ ˆF F i F j F k  


 and

be the angles which outward drawn unit normal n̂  makes with positive

directions of axes.

Then, Divergence Theorem can be written as

 2 31
1 2 3

F FF
dx dy dz F cos F cos F cos dS

x y z

  
           

 

or  2 31
1 2 3

F FF
dx dy dz F dydz F dzdx F dxdy

x y z

  
        

  .

2.3.3 Green's Theorem

Firstly, we prove the Green's theorem in space.

Statement : If U and V are two continuously differentiable scalar point functions

within a region bounded by a closed surface S such that  U and  V are also

continuously differentiable. Then    2 2 ˆV V U dv U V V U . n dS       U

Proof :By Gauss's Theorem

ˆF . n dS div F dv 
 

Let F U V 


Then   2div F div U V V. V U . V U. V U V            


 2ˆU V.n dS U . V dv U V dv        ... (1)

Similarly 
2ˆV U.n dS U . U dv U dv        ... (2)

Subtracting (2) from (1)
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   2 2ˆU V V U . n dS U V V U dv       
    2 2 ˆU V V U dv U V V U . n dS        .

Now, we prove the Green's theorem in plane.

Statement : Let R be a closed bounded region in the xy-plane whose boundary C

consists of finitrely many smooth curves. Let M and N be continuous functions of x

and y having continuous partial derivatives 
M N

and in R
y x

 
 

. Then

 
R C

N M
dx dy M dx N dy

x y

  
     

 �

the line integral being taken along the entire boundary C of R such that R is

on the left as one advances in the direction of integration.

Proof :First of all, we prove the theorem for a special region R bounded by a closed

curve C and having the property that any straight line parallel to any one of the

coordinate axes and intersecting R has only one segment (or a single point) in common

with R. This means that R can be represented in both of the forms

a  x  b, f(x)  y  g(x)

and c  y  d, p (y)  x  q (y)

Y

y = d
F C

A B

y = c E

x = a x = b

XO

In the figure, the equations of the curves AEB and BFA are y = f(x) and y = g(x)

respectively. Similarly the equations of the curves FAE and EBF are x = p(y) and

x =q(y) respectively.

 
y g(x )b b

y g(x)

y f (x )
R x a y f (x ) x a

M M
Now dx dy dy dx M(x, y) dx

y y





  

  
  

   
   

 
b

x a

M{x,g(x)} M{x, f(x)} dx
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b a

a b

M x, f(x) dx M x,g (x) dx   

C

M (x, y) dx  �

[Since y = f (x) is the curve AEB and y = g(x) is the curve BFA]

If portions of C are segments parallel to y-axis such as GH and PQ in the figure,

then result proved above is not affected. The line integral M dx over GH is zero as on

GH, x = constant

 dx = 0.

Y

O X

H

P

C

G
Q

Similarly the line integral over PQ is zero. The equations of QG and HP are

y=f(x) and y = g(x) respectively. Hence we have

R C

M
dx dy M (x, y) dx

y


 

 �

 
q(y )d d

q(y )

x p(y )
R y c x p(y ) y c

N N
Again dx dy dx dy N (x, y) dy

x x 
  

  
  

   
   

 
d

y c

N {q(y), y } N {p(y), y} dy


 

   
d c

y c d C

N {q(y), y} dy N {p(y), y } dy N (x, y) dy


    �


R C

N
dx dy N (x, y) dy

x




 � ... (2)

Adding (1) and (2), we get,
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R C

N M
dx dy M dx N dy

x y

  
     

 � .

Note : Vector form of Green's Theorem in a Plane

Let ˆ ˆF M i N j 


Now ˆ ˆr xi yj 


  ˆ ˆdr (dx) i dy j 


    ˆ ˆ ˆ ˆM dx N dy Mi Nj i dx j dy F . d r    
 

Also

ˆ ˆ ˆi j k

N M N Mˆ ˆ ˆcurlF i j k
x y z z z x y

M N O

       
             




N MˆcurlF.k
x y

 
 

 



 Green's theorem in plane can be written as 
R C

ˆcurl F . k dR F . dr 
  

�

where Dr = dx dy and k̂  is a unit vector perpendicular to the xy-plane.

2.3.4 Stoke's Theorem

If F


 is any continuously differentiable vector point function and S is the surface

bounded by a curve C, then

C S

F . dr curl F . n dS 
  

�

where unit normal vector n


 at any point of S is drawn in the sense in which a

right handed screw would move when rotated in the sense of description of C.

Proof :Let S be a surface which is such that its projections on the x y, y z and z x

planes are regions bounded by simple closed curves. Suppose S can be represented

simultaneously in z = f (x, y), y = g(x, z), x = h (z, y) where f, g, h are continuous

functions and have continuous first derivaties.
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Consider the integral  1 1 2 3

S

ˆ ˆ ˆ ˆF i . n dS where F F i F j F k      


  1 1
1

1

ˆ ˆ ˆi j j

F Fˆ ˆNow F i j k
x y z z y

F 0 0

   
    

    



   1 1 1 1
1

F F F Fˆ ˆ ˆF i . n j . n k . n cos cos
z y z y

                

  

where are the angles which outward drawn n


 makes with the positive

direction of x, y, z axes.

   1 1
1

S S

F FˆF i . n dS cos cos dS
z y

             
 



We shall prove that

1 1
1

S C

F F
cos cos dS F dx

z y

  
      

 �

Let R be the orthogonal projection of S on the xy-plane and let  be its boundary

which is oriented as shown in the figure. Using the representation z = f(x, y) of S,

 1 1

C

F (x, y,z) dx F x,y f(x, y) dx


 � �
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 1F [x, y, f(x, y)] dx 0 dy


 �

1

R

F
dx dy

y


 

 [  of Green's Theorem in plane]

But        1 1 1

f
F [x, y, f(x, y) F (x, y,z) F (x, y,z) z f (x, y)

y y z y

   
  

   


 1 1
1

C R

F F f
F (x, y,z) dx dx dy

y z y

   
      

 � ... (2)

Now the equation z = f(x, y) of the surface S can be written as

(x, y, z) = z – f (x, y) = 0

 f fˆ ˆ ˆgrad i j k
x y

 
   

 

Let |  | = a

Since grad is normal to S and n,


 grad both are in positive direction of z-axis.


grad

n
a






or     1 f 1 f 1ˆ ˆ ˆ ˆ ˆ ˆcos i cos j (cos ) k i j j
a x a y a

 
        

 


1 f 1 f 1

cos , cos , cos
a x a y a

 
       

 

Now 
1

dS dx dy a dx dy
cos

 


 1 1 1 1

S R

F F F F1 f 1
cos cos dS . . . a dx dy

z y z a y y a

       
                 

 

1 1

R

F F f
dx dy

y z y

   
      



1

C

F (x, y, z) dx �  of (2)


1 1

1

S C

F F
cos cos dS F (x, y,z) dx

z y

  
      

 �
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  1 1

C S

ˆF dx F i . n dS     


� ... (3)

Similarly, we have,

 2 2

C S

ˆF dy F j . n dS     


� ... (4)

and  3 3

C S

ˆF dz F k . n dS     


� ... (5)

Adding (3), (4), (5), we get,

   1 2 3 1 2 3

C S

ˆ ˆ ˆF dx F dy F dz F i F j F k . n dS         


�

  
C S C s

F . dr F . n dS or F . d r curl F . n dS      
      

� �

If the surface S does not satisfy the restrictions imposed, even then the Stoke's

Theorem will be true provided S can be divided into surface S
1
, S

2
,...., S

p 
with

boundaries C
1
, C

2
,...., C

P 
which do satisfy restrictions. Stoke's Theorem holds for each

such surface. The sum of the surface integrals over S
1
, S

2
,...., S

P 
will give us surface

integral over S while the sum of the integrals over C
1
, C

2
,..., C

P 
will give us line

integral over C.

2.3.5 Some Important Examples

Example 1 : Find the work done when a force 2 2 ˆ ˆF (x y x) i (2xy y) j    


 moves a

particle in xy-plane from (0, 0) to (1, 1) along the parabola y2 = x.

Sol. Let C denote the arc of the parabola y2 = x from the point (0, 0) to the point

(1, 1). The parametric equations of the parabola y2 = x can be taken as x = t2, y = t. At

the point (0, 0), t = 0 and at the point (1, 1), t = 1.

Now 2 2 ˆ ˆ ˆ ˆF (x y x) i (2xy y) j, dr (dx) i (dy) j      
 

 2 2

C C

work done F . dr (x y x) dx (2xy y) dy        
 

 2 2

0

dx dy
x y x (2xy y) dt

dt dt

       

       
1

4 2 2 3

0

t t t 2t 2t t 1 dt      

 
11 6 4 2

5 3

0 0

2t 2t t
2t 2t t dt

6 4 2

 
      

 


1 1 1 2
(0 0 0)

3 2 2 3

           
  

.
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Example 2 : Verify Gauss Divergence Theorem for the vector ˆ ˆ ˆA xi yj zk  


over the

region bounded by x2 + y2 + z2 = a2

Sol. Let S denote the entire surface of the sphere x2 + y + z2 = a2 and V be the

volume of the sphre

We have to prove

S V

A . n ds . A dV  
 

... (1)

R.H.S. of (1) = 
V

A dV


 
V

ˆ ˆ ˆ ˆ ˆ ˆi j k . xi yj zk dV
x y z

   
        


V

(x) (y) (z) dV
x y z

   
      


V V V

(1 1 1) dV 3dV 3 dV 3          (volume of sphere with radius a)

3 34
3. a 4 a

3
   

For the surface S, let (x, y, z) = x2 + y2 + z2 – a2 = 0

 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆi j k (x y z a ) 2xi 2yj 2zk
x y z

   
             


2 2 2

ˆ ˆ ˆ2 (xi yj zk)
n unit normal to S

| | 4x 4y 4z

  
  

  



2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ2 (xi yj zk) xi yj zk

a2 x y z

   
 

 
2 2 2 2x y z a    

L.H.S. of (1)  
S S

ˆ ˆ ˆxi yj zkˆ ˆ ˆA . n dS xi yj zk . dS
a

  
     

 
 

 

2 2 2 2

S S

1 1
(x y z ) dS a dS

a a
     2 2 2 2x y z a    

2

S

a
dS a

a
    (surface areaof the sphere with radius a)

= a × 4a2 = 4a3

 L.H.S. of(1) = R.H.S. of (1)
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Hence Gauss divergence Theorem is verified.

Example 3 : Verify Green's Theorem in the plane for  2 3 2

C

(x xy ) dx y 2xy dy    �

where C is the square with vertices (0, 0), (2, 0), (2, 2), (0, 2).

Sol. By Green's Theorem in plane,  
R C

N M
dx dy M dx N dy

x y

  
     

 �

We have to verity this result.

Now M = x2 – xy3, N = y2 – 2xy

 2M N
3xy , 2y

y x

 
   

 

Curve C is the square shown in the figure.

Y

X
O(0, 0) A(2,0)

C(0, 2) B(2, 2)

2 2
2

R y 0 x 0

N M
dx dy ( 2y 3xy ) dx dy

x y  

  
      

  

 
22 22

2 2

y 0 0x 0

3x
2xy y dy 4y 6y dy

2 

 
      

 
 

 
2

2 3

0
2y 2y 8 16 0 8         

Now along OA, y = 0 dy = 0, x varies from 0 to 2

along AB, x = 2 dx = 0, y varies from 0 to 2

along BC, y = 2 dy = 0, x varies from 2 to 0

along CO, x = 0, dx = 0, y varies from 2 to 0

      
C OA AB

M dx N dy M dx N dy M dx N dy      �

   
BC CO

M dx N dy M dx N dy    
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2 2 0 0

2 2 2 2

0 0 2 2

x dx y 4y dy (x 8x) dx y dy        

2 2 0 0
3 3 3 3

2 2

0 0 2 2

x y x y
2y 4x

3 3 3 3

       
            

       

8 8 8 8
0 8 (0 0) 16 0

3 3 3 3

                       
       

8 8 8 8
8 16 8

3 3 3 3
      

Hence Green's theorem is verified.

Example 4 : Verify Stoke's Theorem for ˆ ˆ ˆF yi zj xk  


 where S is the upper half

surface of the sphere x2 + y2 + z2 = 1 and C its boundary.

Sol. The boundary C of S is a circle in the xy-plane having radius as unity and

centre at origin. Therefore, the equations of curve C are x2 + y2 = 1, z = 0. The

parametric equations of C are x = cos t, y = sin t, z = 0, 0  t  2.

Now 
C C

ˆ ˆ ˆ ˆ ˆ ˆF . dr (yi zj xk) . {(dx)i (dy)j (dz) k}     
 

� �

C C

(y dx z dy x dz) y dx    � �  z 0 on C, dz 0 

 
22 2 2

2

00 0 0

dx 1 1 sin 2t
sin t dt sin t dt 1 cos 2t dt t

dt 2 2 2

  
             

 1 1 1 1
2 sin 4 0 sin0 (2 0) (0 0)

2 2 2 2

                      
    


C

F . dr  
 

� ... (1)

ˆ ˆ ˆi j k

ˆ ˆ ˆNow curl F i j k
x y z

y z x

  
    

  



Let S
1 
be the plane region bounded by the circle C

  
S S S1 1

ˆ ˆ ˆ ˆcurl F . n dS curl F . k dS i j k . k dS      
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1

S1

( 1) dS S (area of circle of radius 1)     

2(1)   


S

curl F . n dS  
 

From (1) and (2), the theorem is verified.

2.3.6 Self Check Exercise

1. If 2 2F (3x 6y) i 14yz j 20xz k,   
  

 then evaluate 
C

F . d r
 

� from (0, 0, 0) to

(1, 1, 1) along the path x = t, y = t2, z = t3.

2. Evaluate 2 2 2

S

(ax by cz ) dS   over the sphere x2 + y2 + z2 = 1.

3. Verify Green's Theorem in the plane for 2 2

C

(3x 8y ) dx (4y 6xy) dy    �

where C is the rectangle with vertices (0, 0),  , 0 . , and 0,
2 2

        
   

.

4. Verify Stoke's Theorem for a vector field defined by 2 2F (x y ) i 2xy j  
 

in the rectangular region in the xy-plane bounded by the lines x = 0,

x = a, y = 0, y = b.

2.3.7 Suggested Readings

R. K. Jain, SRK Lyengar : Advanced Engineering Mathematics

(Naresa Publications)

Department of Distance Education, Punjabi University, Patiala.


