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2.1.0 Objectives
The prime goal of this section is to study the vector differential and integral
calculus. We often call this study as vector analysis or vector field theory. During the
study in this particular lesson, our main objectives are
e To discuss the limit, continuity and differentiability of vector functions.
e To study the ordinary and partial differentiation of vector functions.
e To study the integration of vector functions.
2.1.1 Introduction to Vector Functions
Before introducing a vector function, we wish to make the readers familiar
with scalar function. A scalar function f(x,y) is a function defined at each point in

a certain domain D . Its value is real and depends only on the point P(x,y) in space,
but not on any particular coordinate system being used. For every point(x,y) € D,
f has a real value and we say that a scalar field f is defined in D.

1
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For example : The distance function in 2- D space which defines the distance

between the points P(x,y) and Fy(x,,y,), given by

SRy = f ) =l =%, )+ (=3,
defines a scalar field, where domain D is the whole of the 2- D space.

Now, we may define the vector function as:

Vector Function : A function j‘ = f(P) = ]”1;+f2j+]‘31€ defined at each point P e D

is called a vector function and we say that a vector function is defined in D. In
cartesian coordinates, we can write

f= K@i+ L)+ fixn )k

If we recall that a curve C in the two dimensional x— y plane van be parameterized
by x=x(t),y = y(t),a <t <b. Then, the position vector of a point P on the curve C
can be written as 7(¢) = x(¢)i + y(t)] .

Therefore, the position vector of a point on a curve defines a vector function and the
vector function may now be defined as

Any vector 7 is said to be a vector function of ¢ if 7 varies continuously with
the variation of scalar variable 7.

It is written as 7 or 7(f) or 7 = f(t)

For example : The position vector 7 of a particle moving along a curved path is a
vector function of time ¢, where ¢ is a scalar.
2.1.2 Limit and Continuity of Vector Functions

Limit : The vector function f(t) has the limit / as t —>a, if ]?(t) is defined in some
neighborhood of a, except possibly at t =a, and

142@)—ﬂ=0 or It f(t)=1
t—a —a
Continuity : A vector function f(t) is said to be continuous at f =a, if
(i) f(t) is defined in some neighborhood of a,
(i) It f(t) exists, and
t—a
) It 7(0)= f(a)

2.1.3 Differentiability of Vector Functions

Let 7 = f(¢) be a vector function of the scalar variable ¢,

LFAF = [+ )
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=& = f(t+8)— f(F)
L _frd)-f@)

ot ot
f(t+0) - f(t _
R/ J( 5) J( ), if it exists, is called the derivative of vector function  with
a—0 A

respect to scalar variable ¢ and the vector function 7 zf(t) is said to be

—

d
differentiable. It is denoted byjr and therefore, we can write
t

i &) [ - f0)
dt a0 o 80 5

2.1.3.1 Some Useful Results Concerning Differentiation

i. i(é+l§):d—a+ﬁ
dt dt dt

ii. i(*.ﬁ)za.@+d—55
dt dt  dt

iii. i(”xE):* db  da_;
dt dt dt

o 4o 9

Al dt(¢a)_¢dt+dta

vi. %(&X(Z;XE)):f{—aX(EXE)+aX(f1—EXE]+aX(5Xd—Ej

where 5,5 ,¢ are differentiable vector functions and ¢ is a differentiable scalar
function of the same variable ¢.

Note: The readers may easily prove the above results.

2.1.3.2 Derivative of a Vector Function in Terms of its Components

Let 7 be a vector function of the scalar variable?. Let 7 =xi +yj+z/€ where the

components X, y,z are functions of ¢ and i, j,k are fixed unit vectors.

L=t g4 k)= 2 od)+ 2 (37) (k)
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dep i dys A dzp _dk

=—i+x—+— —k+z—
dt dt dt dt dt dt
_ dx{+ dy A dz dz ;
dt dt dl‘
since —lza,d] 6 dk =0 as i ,j,/€ are the constant vectors (a vector is said to be

dr o di
constant if both of its magnitude and direction do not change).
2.1.4 Some Important and Useful Articles

I.  The necessary and sufficient condition for the vector function f(t) to be
d -
constant is —f:O.
dt

II. The necessary and sufficient condition for the vector function f(t) to have

—

aﬂ_
t

constant magnitude is f.

III.  The necessary and sufficient condition for the vector function f(t) to have

—

. df -
constant direction is f x = =0.
t

Proof : The proof is left for the reader.

2.1.5 Velocity and Acceleration

If the scalar variable ¢ be the time and 7 be the position vector of a moving particle P
with respect to the origin O, then oF is the displacement of the particle in time ot .

or -
Thus, r is the average velocity of the particle during the interval ot . If v represents

ot
the velocity vector of the particle at P, then
- o _dr
v=1It
30 5; dt

Similarly, if @ represents the acceleration of the particle at time ¢, then

- &7 dv d(d?j d*r
a= It =

a0 & dr de\dt ) di?

2.1.6 Partial Derivatives of Vector Functions
Let 7 = f(x,y,z) i.e. 7 is a function of three variablesx, y and z.

Then, partial derivative of 7 w.r.t. the variable x is defined as
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6}7: It f(x+&,y,2)—f(xa%z)

provided this limit exists.

a Hx—0 5)(?
Similarly, ;: t f(X,y+@/,Z)—f(x,y,Z)
oy -0 &
and 8_}7: It f(X,y,z+5z)—f(x,y,Z)
az -0 52

2.1.7 Integration of Vector Functions
Integration is just the reverse process of differentiation. Let j?(t) and F(t) be the two

vector functions such that

%{F(t)}= 7(0)

Then, F(f) is called the indefinite integral of f(t) w.r.t. t and we write it as
J-f(t)dt = F(t)+ ¢, where c is the integration constant.

Further for the integration, we use the below mentioned useful results:
1. To integrate a vector function, integrate its components.

—

2. jzfﬁ dt=F*+c
dt

— 72— -\ 2
o (o ()
dt dt dt

. dF . dar .
4. J- 7 X Jdt=r><—+c

t? dt

- dr - - -
S. J- ax; dt =axr +c,where a is a constant vector.
t

6. J‘cfdt = cJ‘ rdt
2.1.8 Some Important Examples
d’v
d 2
dt

— B . A > d_’ dza
Example 1 : If ¥ =(acost)i +(asint)j+tk, find ?:, dt:

Sol. Here 7 = (acos?)i + (asint) ]+ tk

% = (—asint)i +(acost) ] + k
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2—
And L7 = (cacostyi + (-asinn)+0
2
Cj{t: :\/(—CZCOSZ‘)2 +(—asint)2 +(0)2 :\/612 C052t+azsin2t z\/az(l) _ /_a2 4

Example 2 : A particle moves along the curve x=¢> +1,y=¢>,z=2t+5, where ¢ is
time. Find the components of its velocity and acceleration at time 7#=1 in the
direction 7 + ] + 3k.

Sol. If 7 is the position vector of any point (x,y,z) on the given curve, then
F=xi+y+zk=@E+Di+2]=Qt+5k

.-.9=£=3z22+2zj+21€
dt

dF
dt’
Atr=1, v=3i+2j+2k and G=6i+2]

and a = 6t +2]

Let b be the unit vector in the direction i + j +3k.

[+ j+3k {+j+3k i+]+3k

"'5:\f+j+31€\_¢1+1+9 C

Now, component of velocity in the direction of [+ j +3k=vb

(37423428, i+j+3k)_QM+@QM+@2)3) _ 11 _ T
GBi+2j+ )( Nl m N Vi1

Further, component of acceleration in the direction of [+ j +3k=ab

= (61 +2 }){’c * j’lil3kJ _OO+@M)+O3) _ 8

Jin Jii
Example 3 : If ¥ = t3f+(2t3 —%)] , show that Fx% =f.

- » 1 )
Sol. Here, 7 =i +(2t3 —s—jj

t2

ar _ 3% + (6# + %}j
dt 5¢
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i j k
- di; 3 3 1 ~ A 5 2 5 3 ~
srx—=|t" 2t —— 0/=(0-0)+(0-0)j+| 6 +——6" +— |k
" 52 ()l()](s 5
3’ 6t2+i3 0
5t
Fxﬂzlé
dt
= = =
Example 4 : If f=(2x2y—x4)f+(e"y—ysinx)}+(xzcosyyf, the find Zi, Zl, aa];,
x Oy Ox

27 5= -
2 { Also, show that ﬂ: o f .
» Ox0y  Oyox

Sol. Here, f = (2x2y —x* )f + (e"y — ysin x)} + (x2 cos yy;
% = {%(hzy —x* )}f + {%(e*y — ysin x)}j + {%(xz cos y)}lé
- (4xy —4x° )f + (yexy — ycos x)j +(2xcos y)k

Now, o = {i (2x2y —x* )}f + {%(exy — ysin x)}j + {%(xz cos y)}lg

= (2x2 )zA + (xexy —sin x)j + (— x*sin y)lg

Iy

Further, 6;? = a—i(%) = (4y —12x? ); + (yze"“" + ysin x)j +(2cos y)k,
S L2 T et o

sxaf; _ a_i(%} (4 + (e +e” —cosx)j+ (- 2vsin )i

and s;g; = %(%) =(4x)i + (xyexy +e” —cos x)j +(~2xsin y)l€

Lo o)
" oxdy  dyox



B.A. (MATHEMATICS) PART-I (SEMESTER-2) 8 PAPER-4

Example 5 : If A= x*yzi —2xz2° ] + xz*k and B= 2zf+yj—x21€ , then find the value of
o° (=~ =

(A X B) at the point (1,0,-2).
Ox0Oy

Sol. Here, A= x’yzi —2x2° ] + xz’k and B=2zi+ i —x%k

S AxB= xzyzf—2xz3}+xzzl€)>< (2zf+yj —leg)

Sy N ~

i Jj k

=x’yz —2xz° xz’|=(2x'Z2 - xyzz)f —(—x*yz - 2xz3)j + (xzyzz + 4xz4)/\t

2z v -x°
ai(;l X E)z (— xzz)f + (x4z)}' + (2x2yz)l;

v
a_ax{% (;1 X E)} = (— z’ ); + (4x3z)j + (4xyz)/€
= Gx;y (;1 X E’): (— z° )A + (4x3z)} + (4xyz)/€

2

At (1,0,-2), aiay (4% B)=(- (=202} +(40)* (-2))j + (4(0)O0)(-2) e = —4i -8

2 —
a’r

2

2
Example 6 : If 7 =5t% +{ —t’k , then prove that I(?x jdt =—14i +75] -15k .
1

Sol. Here, ¥ = 5t2f+ﬁ—t31€

LA 104 + | -3tk
dt

S x% = (Stzf +1 - t3l€)x (IOtf + - 3t21€)
1
ik
=152 ¢ —£|=(30+0) = (=15 +106%) [+ (562 - 1062k
106 1 -3¢

—

i 267 + 564 - 56%k (1)
dt

2 2— -2
Now, L.H.S. = I(Fx d ;]dt:{de—r}
1 dt dt |,
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= [—2t3f+5z4j—5rzl€f [using (1)]
—[aefis[set b i+ stk
=(=16+2)i +(80—5)j +(-20+5)k

o d¥ s mn L on
.._j(rx — jdt:—14i+75j—15k
1
2.1.9 Summary

In this lesson, we have studied basically about the limit, continuity and
differentiability of vector functions. Through the study, we came to know that the
concepts of limit, continuity and differentiability of calculus can easily be used for
vector functions. Further, the higher order derivatives and rules of differentiation for
vector functions have the same form as in the case of real valued functions.
2.1.10Self Check Exercise

1. If d=(sin@)i+(cosO)j+6k , b=(cosO)i—(sind)j—3k and &=2i+3]-3k.

Find %{éx(l;xé)} at 6’:%.

- A . A . _ dr r
2. If ¥ =(cosnt)i +(sinnt)j, where n is a constant, show that r x = = nk.
t

dr

7 x—

dar
di

4. A particle moves along a curve whose parametric equations are

3. If 7 is a unit vector, then prove that

x=e',y=acos3t,z=bsin3t , where ¢ is time. Find the components of its

velocity and acceleration at time #=0.

- 2 2% 37 7 32 N 2 7 62;1 azé
5. f a=xyzi+xz"j—y’k and b=x"i —xyzji —x"zk , then sow that & X P at
X
the point (1,1,0) is —36 .

1

6. Evaluate j {tf +(12=20) ]+ (5¢° +3t3)k}dt
0

7. If 7.dr =0, show that r =constant.

2.1.11 Suggested Readings

1. RK Jain, SRK Lyenger Advanced Engineering Mathematics

2. JR Sharma Advanced Calculus
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2.2.0 Objectives

The prime objective of this lesson is to study the operators such as gradiant,
divergence and curl, on scalar and vector point functions. Further the physical
interpretation of these operators is also elaborated under the same.

2.2.1 Introduction to Point Functions

Point Function : A variable quantity whose value at any point in a region of
space depends upon the position of the point, is called a point function.

Point function are of two types :

(i) Scalar Point Function (ii) Vector Point Function
Def : Scalar Point Function :

A function f (x, y, z) is called a scalar point function if it associates a scalar
with every point in region R of a space. Region R is called scalar field. The temperature
distribution in a heated body, density of a body and potential due to gravity are examples
of scalar point functions.

10
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Def : Vector Point Function :

If a function f (x,y,z) defines a vector at every point of the region R of a space

then f (x,y,z) is called a vector point function and R is called a vector field.

Def : Level Surface :

Let V (x, y, z) be a scalar point function over a certain region. All those points
which satisfy an equation of the type V(x, y, z) = c constitute a family of surfaces in
three dimensional space. The surfaces of this family are called level surfaces. The
value of the function at every point of a level surface is the same.

> 5

on

° 4

2.2.2 Gradient of a Scalar Point Function and its Physical Interpretation
Consider the level surfaces of the function through P, P' with values, V, V + §V
respectively. Let Q be the point at which the second surface is cut by the normal at P

oV
to the first, and let dn be the length PQ. Then the limiting value of 5o 28 dn — O is the

directional derivative of V in the direction normal to the level surface at P, and is

I\
written as 6_n If then A is the unit vector normal to the level surface at P and

oV
having the sense from P to Q, then the vector 5o n is called the gradient of the

function V and is denoted by grad V or AV.
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In rectangular coordinates, AV = N i+ XN j+ a—vl:: =i o +j 9 +k 9 \Y%
ox 0z 19):4 oy 0z

< - . a
Note : (i) V= 1&+J%+k£ is a vector operator, Its operation on a scalar

function is a vector.
(ii) A can be operated on a scalar point function only and not on a vector
point function.
2.2.3 Some Important and Useful Articles
Art 1 : Prove that grad V is a vector normal to the surface V(x, y, z) = ¢, where c is
constant.
Proof : The equation of level surface is V(x, y, z) = ¢
Let ¢ be the position vector of any point P (%, y, z) on given surface.

r=xi+yj+zk

Again let ¥+ dr be the position vector of any neighbouring point
Q (x + dx, y + dy, z + dz) on given surface.
F+df=(x+dx)i+(y+dy)j+(z+dz)k
PQ=7+df -t =df = drf = (dx) i+ (dy) j + (dz) k

As Q — P, the line PQ becomes tangent at P to the level surface.
df = (dx)i + (dy) j+ (dz) k

lies in the tangent plane to the surface at P.

dEVV = {(dx)i + (dy)j + (dz)k} [%i i %j ’ %ij
zZ

:ﬂdx+ﬂdy+ﬂdz =dVv
0x 0z

= 0 as V is constant.
VV is perpendicular to dr
But dr lies in the tangent plane to the surface at P

VV is normal to the surface at P.
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Art 2 : Show that dV =dr.VV

Proof :Let T =xi+yj+zk

dEVV = (dxi +dyj+ dzl%) . [%’i LV NV 12} v v v

—j+—k|=—dx+—dy+—dz
oy 0z ox oy 0z
dr.vvV=dVv.
Art 3 : If u and v are two scalar point functions, then
(i) Vu+tv)=vu+ vv (i) V(uv) =uvv+uvv
(iii) v (Ej _vu —2uVu
v u

: 0 - 0 - 0
:(i)) L.H.S. = +v)=i—U+Vv)+j—U+Vv)+k—(u+
Proof :(i) LH.S.= v(u+v)=1 p. (W+v)+j—u+v) P (u+v)

:[au av) s(ou  ov A(Gu avj
=il —+—|+]j|—+—|+k|—+—
0xX 0% oy Oy 0z 0z

- o0u -~ou ~ ou .o0u -~ou -~ ou
=li—+j—+k—|+|i—+j—+k—
( ox "oy azj ( 0x "oy az]

=Vu+Vv=RHS.

(ii) L.H.S. = V(uv):ia%(uv)+j%(uv)+f<a%(uv)

:( ov auj <. ov ou A[ ov 8uj
=ilu—+v— |+jlu—+v—|+k|lu—+v—
[):4 ox oy oy 0z 0z

=u I@+3@+f<@ +v i@+3@+l§a—u =uVv+uVu
ox 0y 0z ox "oy 0z

(i) L.H.S. = V(Ej:ii[3j+ji(2j+ki[2j
v ox\ v oy \ v 0z \ v

PAPER-4
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;0u -0u -o0u s 0v s0u 0V
vii—+j—+k—|-u|li—+j—+k—
ox "oy 0z ox "oy 0z) vvVu-uVv

v? v?

=R.H.S.
2.2.4 Extreme Value and its Evaluation

A maximum or a minimum value of a function is called an extreme value.
Saddle Point. If a function f has neither max. nor minimum at a joint (x,, y,), then
function is said to have a saddle point at (x,, y,)
Lagrange Multiplier

In this method, we want to find the points (%, y) that give the extrema (maximum
or minimum value) of a function f(x, y) subject to the constraint g(x, y) = d, where d is
a constant. This will occur only when the gradients Af and Ag (directional derivatives)
are orthogonal to the given curve [surface] g(x, y) = d. Thus Af and Ag are parallel; and
hence there must be a constant A such Af = A Ag. Here A is called a Lagrange multiplier.
The condition Af = AAg together with the original constraint yield three equations in
the unknowns x, y and A :

f(x,y)=2g (%), f(x,¥)=2g (x,), gx,y) =d

Solutions of the system for x and y give the coordinates for the extrema of
f(x, y) subject to the constraint g(x, y) = d.
2.2.5 Divergence of a Vector Point Function

Let F be any differentiable vector function. Then divergence of F, written as

div F, is defined as

divi-v.F=|i2+] o k2] fo1. L E K
19): oy 0z 18): oy 0z
Note 1. Divergence is always of a vector point function and V.Fis a scalar point

function.

2. Let F=F, i+F,j+Fk
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Nowdiv F=v.F=i. 21} & i &
ox oy 0z
(g Ty By (B Ty, Top g (T, To g, Tog
0x 0x 0x oy oy oy oz 0z 0z
divi-2, % O
ox oy 0z
3. A vector | is said to be solenoidal iff div § = 0.

2.2.5.1 Physical Interpretation

Draw a small parallelopiped with edges 6x, dy, 6z parallel to the axes in the

mass of fluid, with one of the corners at P(x, y, z). Let v = uxi + vyj + VZIE be the velocity

of fluid at P

>N
@)

—> Vyfsy

Yy S ox

X

Amount of fluid entering the face PB' in unit time = v, 8z 8x.

ov
Amount of fluid leaving the face P'B in unit time = V.5, 02 0X = (Vy + ayy 6yj 0z dx

nearly.
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[~ of Taylor's Theorem|]

net loss of amount of fluid due to flow across these two faces per unit volume
aVy
= —0x Jy ox
ay

total loss of amount of fluid due to flow along all the faces per unit volume

ov
= %+—y+% 8x 8y 6x
0x oy 0z

ov
+— +%:divx7

E 0z

rate of loss of fluid per unit volume = g"

. div v is the rate at which fluid is issuing at a point per unit volume.
2.2.6 Curl of a Vector Point Function

Let f be any differentiable vector function. Then curl f is defined as
curl F =V xF = ii+:ii+f<i xﬁ‘zix@+jx@+1}x@
0x "oy 0z 0x oy 0z

Note 1. Curl f is also known as rotational | or rot f.

2. Curl is always of vector point function and v xF is a vector.

3. Let F=Fi+F,j+Fk

CurIF‘:VxF‘:ixa—F+3x—+kx—
ox

zix(@a@p_@“ﬁ}jx Frg, oy oy +1‘<X(@i+@3+%f{j
ox ox oy oy oy 0z 0z 0z

S L v U L L S D L B L B
ox 0x oy oy 0z 0z

i ] k

(3 OFy); (3R _OR), (OF, OF g |0 2 o
oy 0z 0z 0x ! 0x 0y 0X 0y 0z
FS
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4. A vector f is said to be irrotational vector iff curl F=(.
2.2.6.1 Physical Interpretation

If v is the velocity of a particle of a rigid body whose angular velocity is §,
then curl v=2A .

Proof :Let F=xi+ yj’ +zk be the position vector of the particle whose velocity is
V=AxT

. curl V:curl(Axf):Eix%(Axf)

s (- or -
=3ix (A X a_xj [ A is a constant vector]

:zix(Axi)zz(i.i)A—z(i.A)izsA—A
curl v=2A.

2.2.7 The Laplacian Operator and Harmonic Function

2 2 2
0 +8_+6_ and is

8}(2 ay2 aZQ

Laplacian Operator : The operator V2 ie., V.V is defined as V> =

called be Laplacian operator.

Note : 1. y2is a scalar operator where as V is a vector operator.

o°F 0°F O°F
2 + 2 + 2
0x® 0oy 0z

2. If F is a scalar point function, then V?F = and if F is a vector

o°F 0°F O°F
— + +

point function, then V?F = .
ox* oy 0z’

3. v2 F=0 is called Laplacian equation.

Harmonic Function : A function satisfying Laplace's equation is Harmonic Function.
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2.2.8 Some Important Examples

Example 1 : Prove that é,v(B,Vl

j_ 3afbf ab
r

—-—~ where 3 and b are constants.

Proof : Consider v (lj =v() =(-1) r°f { vr® = nr“’QF}
X

Example 2 : Minimise the function f(x, y) = x?>+ 2y? subject to the constaint
gxy) =2x+y=9.
Proof : Given : f(x, y) = x2+ 2y%, g(x,y) =2x+y-9=0

Now, using the condition that Vf =AVg and the constaint, we get

ii+]i+l:;i (x> +2y%) =2 ii+]i+1§i 2x+y-9)
0x "0y 0z 0x oy 0z
or  (2xi+4yj)=1(i+])
2x=2)ie.x=A ... (1)
4y = A .. (2

and 2x+y=9 ... (3)
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Eliminating A from (1) and (2), we get
X =4y

From (3) and (4), we get
8y+y=90r9y=9=y=1
From (4), x =4
f(4,1)=16+2=18

Hence, 18 is the minimum value of f.

(]

Example 3 : Determine the constant 'a' so that the vector
F = (x+3y)i+(y - 22) j+ (x+az)k is solenodial.
Sol. F=(x+3y)i+(y-22)j+(x+az)k

divF=V.F

:[ia%+3%+f{@%].((x+3y)i+y—22]+(x+az)f<)

:%(X+3y)+%(y—22)+a%(x+az)
=l+1l+a=a+z

Now, since div. Fis solenoidal
divgp=0=a+2=0

= a=-2.

Example 4 : Show that the vector (siny + z)i + (xcosy — z)j + (x — y)k is irrotational.

Proof :Here, F =(siny+z)i+(xcosy—2z)j+(x-y)k

k
d

|Q) b=e)
|Q) —_ )

curl F = -~
0x oy 0z

siny+z Xcosy—-z X-Yy

0 0 2 0 o, .
:{g(x—y)—a(xcosy—z)} 1—[&(X—y)—£(s1ny+z)}
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i+ i(xcos —z)—i(sin + z) k
It > y o y

=(—1+1)i—(l—l)j’+(cosy—cosy)l§
~3-0+0-0

F is irrotational.

. 2
Example 5 : Prove that div I = P

Sol. L.H.S. = divi=div (EJ:V.(r‘lf)
r

=Vr L f+r'dive{div(u?y)=Vu.v+udiv v}

)r°r.F+r'(3) {divi=3}

1 3 2
=—— 4 — = —
r r r
= R.H.S.
2.2.9 Some Useful Formuale
1. div (G +V)=divu+div v
2. curl (4 +V) =curl i+ curl v
3. div(@¥)=Vuy+udive
4, curl (uv) = Vuxv+ucurl ¥
5. div(Gxv)=v.curlu-u.curl v
6. Curl(ﬁXV)ZV.Vﬁ—ﬁ.V\7+ﬁdiV§'I—VdiVﬁ
7. grad (4v)=v.Va+u.Vv+Vxcurlu+uxcurl v
8. div grad (v) = V?v
9. curl grad v=0

10. divcurlv=o0

PAPER-4
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11.  grad div v = curl curl v + V*%
12. curl curl ¥ = grad div v - V*v.
2.2.10Self Check Exercise
1. Find div § and curl g where f =xy? i + 2x%yz j- 3yz’k
2. Prove that curl f = where f=zi+xj+yk.
3. Show that the vector F = Y- % is irrotational.
x* +y?
4, Prove that div {@ f} = iz d [rzf(r)J )
r r* dr
5. Find the value of V(ij’ where ¢ and r have their usual meanings.
r
Hence prove that v |v . (i] :__2 T.
r r’
2.2.11Suggested Readings
R. K. Jain, SRK Lyengar : Advanced Engineering Mathematics

(Narosa Publications)
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LESSON NO. 2.3 Author : Dr. Chanchal

THEOREMS OF GAUSS, GREEN AND STOKES

Structure :
2.3.0 Objectives
2.3.1 Introduction
2.3.2 Gauss's Divergence Theorem
2.3.3 Green's Theorem
2.3.4 Stoke's Theorem
2.3.5 Some Important Examples
2.3.6 Self Check Exercise
2.3.7 Suggested Readings

2.3.0 Objectives

The prime goal of this lesson is to study the proof and applications of Gauss
divergence theorem, Green's theorem and stoke's theorem.
2.3.1 Introduction

As we have already studied about the double and triple integrals in lesson no.
4 and 5. So, now we can easily understand the basic concepts of line, surface and
volume integrals, which are summarized below :
I. Tangential Line Integral :

The tangential line integral of a vector function F along a curve C from A to B
is the definite integral of the scalar resolute of F in the direction of the tangent to

the curve measured from a fixed point in the sense A to B, and the limits of integration
being the values of s corresponding to the points A and B.

If t is the unit tangent at the point P and § is the value of the function here,
then tangential line integral

—+)

22
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B B
j =IF df
A A

a1}

Il
> ey 0
e
4—P>
Q-|Q-

> ey 0

(Fli + F2} + FSR) . (dxi + dyj' + dzlA{)

= | (F,dx + F,dy +F,dz).

>’—.U:l

II. Surface Integral :
Any integral which is to be evaluated over a surface over a surface is called a
surface integral.

Let f (x, y, z) be a single valued function defined over a surface S of finite area.
Subdivide the area S into n elements of areas 8S, 3S,,...., 8S . In each part 3S, we

choose an arbitrary point P, (x, y,, z,). Form the sum Zf 53 . Take the limit of
k=1

this sum as n — o in such a way that the largest of the areas §S,_approaches zero.
This limit if it exists, is called the surface integral of f(x, y, z) over S and is denoted by

[[f(x,y,z)dSor [fdsS.
S S

Remarks :

1. For any continuous vector point function F (x,y,z) defined at any point

P of surface S, the flux of F over S is given by jﬁ.ﬁ dsS= HI:‘ .ds
S
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where F.n is the normal component of F at P with A being the unit

vector in the direction of outward normal to the surface S at P.

2. If i makes angles a, B, y with the co-ordinate axes and F.Fi+F,j+F,k,

then JJF‘.ﬁdSz”(Fl cosa +F, cosPB +F, cosB)dS
S S

= ” F,dydz + F,dzdx + F,dxdy

wher dydz, dzdx, dxdy are the orthozonal projections of S on the co-
ordinate planes.

3. A vector point function is said to be solenoidal in a region if its flux
across every closed surface in the region is zero.
III. Volume Integral :

Let V be the volume bounded by the surface S. Let f(x, y, z) be a single valued
function of position defined over V. Subdivide the volume V into n elements of volumes
8V, 8V,,...., 8V . In each part 8V , choose an arbitrary point P (x,, y,, z,). Form the sum

Zf(Pk) 8V, . Take the limit of the sum in such a ways that the largest of the volumes
k=1

38V, — 0. This limit, if it exists, is called the volume integral of f over V and is denoted
by I”deorIde.
\% \%

If we divide the volume V into small cuboids by drawing lines parallel to the
three co-ordinate axis, then

dV = dx dy dz and
volume integral = j_”f dx dy dz .
\%

If F is a vector point function, then volume integral = H Fdv
\'%

Let F=Fi+F, j+Fk, then
volume integral = HI Fdx dy dz + IH F, dxdy dz + m F, dxdy dz .
\Y% \Y% v

2.3.2 Gauss's Divergence Theorem

Statement : If F is a continuously differentiable vector point function and S is a

closed surface enclosing a region V. Then IF.ﬁdS:Ididev where n is the unit
S A%

outward drawn normal vector.
OR
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The normal surface integral of F over the boundary of a closed region is equal

to the space integral of divergence of F taken throughout the enclosed space.
Proof : Take rectangular axes parallel to the unit vector i . j .k andlet F=Ui+ V:i + Wk

where U, V, W are components of F along the axes. Now we have to prove that

I(Ui+Vj'+Wf<).ﬁdSz”f{ﬁ+ﬂ+ﬂ] dx dy dz

5 ox 0Oy Oz

where dx dy dz is the volume element dv. For fixed values of y, z take the rectangular
prism parallel to x-axis bounded by the planes y, y + dy, z, z + dz, the area of its normal
section being dy dz. Such a prism cuts the boundary an even number of times at
points P, P,,......... , P, since the boundary surface is closed. If a point moves along
the prism in the direction of x-increasing, it enters the region at P, P,,..... , P, and
leaves it at the points P,, P,,...., P

2

2n°

Let I:J‘”% dx dy dz = ”(—U1 +U,-U; +...-U,, , +U, )dy dz

where U_is the value of U at the point P,

Let dS, be the area of the element of the boundary intercepted by the prism at
the point P_.

Now dy dz is the area of projection of this element on the yz-plane, we have

dydz = -in, dS, if r is odd
=1in, dS, if r is even
because the angle which the vector n, makes with j is acute or obtuse according as
r is even or odd.

I=[i.(UA,dS, +U,h, dS, +...+U,,A,dS,,)
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ig—gdv=£Ui.ﬁdS

<

Similarly, [Ndv = [Vi
imilarly ;[ay .S[

and j—dv jwk .AdS

[(Ui+Vj+wk).ads

S

U, ov awj dv

Adding J( 6y 5
Z

. jdivﬁdV:jF.ﬁds

\Y%
If F=Fi+F,j+Fk and

a, B, y be the angles which outward drawn unit normal 3 makes with positive

directions of axes.
Then, Divergence Theorem can be written as

6F2 L) dx dy dz = ||(F, cos a + F, cos B + F, cos y) dS
me % ( )

OF, 0OF, oF
oo Il {a_xl e a—;j dx dy dz = [[(F,dydz + F, dzdx + Fydxdy)-

2.3.3 Green's Theorem
Firstly, we prove the Green's theorem in space.
Statement : If U and V are two continuously differentiable scalar point functions

within a region bounded by a closed surface S such that vU and vV are also
continuously differentiable. Then I(UV2V - VVQU) dv = I(U VV -VVU).nds
Proof : By Gauss's Theorem
[F.AdS=[divFdv
Let F=UAV
Then divF =div(UVV)=VV.VV +UV.VV = VU.VV + UV?*V

[uvviads=[VU.VVdv+[UV?Vdv (1)

Similarly [VVUAdS=[VU.VUdv+[VV°Udv .. (2)
Subtracting (2) from (1)
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[(UVV-VVU).adS = [(UV?V - VV’U)dv

= [(UV?V -VVv?U)dv = [(UVV-VVU).AdS.

Now, we prove the Green's theorem in plane.
Statement : Let R be a closed bounded region in the xy-plane whose boundary C
consists of finitrely many smooth curves. Let M and N be continuous functions of x

and y having continuous partial derivatives M and % inR . Then

H[%—%&j dx dy=[Jj(de+Ndy)
R C

the line integral being taken along the entire boundary C of R such that R is
on the left as one advances in the direction of integration.
Proof : First of all, we prove the theorem for a special region R bounded by a closed
curve C and having the property that any straight line parallel to any one of the
coordinate axes and intersecting R has only one segment (or a single point) in common
with R. This means that R can be represented in both of the forms

as<x<b, f(x)<y<gx)
and c<y<d,p(y)<x<q(y)

>
w

Wiy

"
]
o
bl
I
o

In the figure, the equations of the curves AEB and BFA are y = f(x) and y = g(x)
respectively. Similarly the equations of the curves FAE and EBF are x = p(y) and
x =q(y) respectively.

Now H% dx dy = 'T {Y_Jg‘(}()%dy} dx = T [M(x,y)]y=g(x) dx

y=f(x)
y=f(x)

X=a X=a

= [ [Mix,g(x)} - M{x, f(x)}] dx

X=a
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a

= —TM[X, f(x)] dx - [M [x, g (x)] dx

b
= —[[]M (x,y)dx
C
[Since y = f (x) is the curve AEB and y = g(x) is the curve BFA]
If portions of C are segments parallel to y-axis such as GH and PQ in the figure,

then result proved above is not affected. The line integral IM dx over GH is zero as on

GH, x = constant
= dx = 0.

>

Similarly the line integral over PQ is zero. The equations of QG and HP are
y=f(x) and y = g(x) respectively. Hence we have

—ﬂ dxdy = [ﬁM X, y)dx

Again H—dx dy = T { Qj.Y) Z—de} dy = .[ [N (x y)]qm

x=p(y)
y=c| x=p(y) y=¢
d

= [ [N{aly), y} - N {p(y), y}] dy

y=c

= [ [N{a), y}]dy+f N {p(y), y}] dy = [[|N (x, y) dy

y=¢

g%dx dy:[l.]N(x, y)dy (2

Adding (1) and (2), we get,
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g(%—%}dx dy:UC‘](M dx +Ndy).

Note : Vector form of Green's Theorem in a Plane
Let 1_'—:‘ =M 1 +N 3
Now Tt = xi + yj

= df = (dx) i+ (dy) j

M dx +Ndy = (Mi+Nj) (idx+jdy)=F.d ¥

i j k
= o0 o0 0 ON: oM~ (ON OM) -
Also curlF=|— — —|=——i+—j+|—-—1k
0x 0y Oz 0z 0z 0x 0Oy
M N O
curlﬁ‘.kzﬂ—@
ox 0y

Green's theorem in plane can be written as ”CUTI F.kdR= [ﬁﬁ .dr
R C

where Dr = dx dy and [ is a unit vector perpendicular to the xy-plane.
2.3.4 Stoke's Theorem

If F is any continuously differentiable vector point function and S is the surface
bounded by a curve C, then

gjﬁ.dfzjcurlﬁ.ﬁds
C S

where unit normal vector n at any point of S is drawn in the sense in which a
right handed screw would move when rotated in the sense of description of C.
Proof :Let S be a surface which is such that its projections on the xy, y z and z x
planes are regions bounded by simple closed curves. Suppose S can be represented

simultaneously in z = f (x, y), y = g(x, 2z), x = h (z, y) where f, g, h are continuous
functions and have continuous first derivaties.
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i3]
Nowa(Flf):é % %:%*_%
F,F, 0 0
[Vx(Fli)]ﬁ:%j,ﬁ_@‘ __GF,

OF,
.n=—-cos B——-cosy
y 0z ay

where o, B, y are the angles which outward drawn n makes with the positive
direction of x, y, z axes.

[V (5 1) s = ] S cos p-Tocosy s

We shall prove that

”(aF

oF,
B——Lcosy|dS=[||F, dx
oy ] Dj

Let R be the orthogonal projection of S on the xy-plane and let t be its boundary
which is oriented as shown in the figure. Using the representation z = f(x, y) of S

EﬁF‘l(x,y,Z)dX = D.]F‘l [x,y f(x,y)] dx
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= [[{F. [, £(x, y)] dx + 0 dy}
OF, 4.
- _J.J‘ [+ of Green's Theorem in plane]

But % {F, [x,y, f(x,y)} = % {F, (x,y,2)} + 6% {F(x,y,2)} %f [vz=f(x,y)]

@Fl (x,y,z)dx=—g(%+%%]dxdy ... (2)

Now the equation z = {(x, y) of the surface S can be written as
¢(X,Y, Z) =z—f(X’Y) =
grad¢——fi—a—fj+f<
ox oy
Let |[V$ | = a

Since grad ¢ is normal to S and n, grad ¢ both are in positive direction of z-axis.

P grad ¢
a

1 6f 1 af - 1 “
k=—-2%3_= L5
or (cos oc) i+ (cos [3) j+(cos v) j

1 of 10 1
coso=———,cosf=—-——,cosy=—
a ox a oy a

Now dS = dx dy =a dx dy

cos y

H(— cos f — gcosvjds H[az (—i%)—% ﬂ a dx dy
A5 %i §;Jd d

@Fl X, 5,2 [+ of (2)]

F, oF, j
—Ltcos B——Lcosy |dS=[[F, (x,¥,2z)dx
I [az oy fie
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Similarly, we have,

[CﬁFQdyzg[vX(FQ j)].nds )
and mF3dz:”[V><(F3 f{)]ﬁds ... (5)
Adding (3), (4), (5), we get,

(Fdx + Fydy + Fydz) = | [v x(F, 1+F, j+ FSR)} A dS

S

ot—=h

[IF.df=[[(VxF).0dS or[[F.df=[curlF.adS
C S C s

If the surface S does not satisfy the restrictions imposed, even then the Stoke's
Theorem will be true provided S can be divided into surface S, S,,...., Sp with
boundaries C, C,,...., C,which do satisfy restrictions. Stoke's Theorem holds for each
such surface. The sum of the surface integrals over S|, S,,...., S, will give us surface
integral over S while the sum of the integrals over C, C,,..., C,will give us line
integral over C.
2.3.5 Some Important Examples

Example 1 : Find the work done when a force F=(x*> -y? +x)i—(2xy +y)j moves a

particle in xy-plane from (0, O) to (1, 1) along the parabola y?= x.

Sol. Let C denote the arc of the parabola y?= x from the point (0, 0) to the point
(1, 1). The parametric equations of the parabola y?= x can be taken as x = t2, y = t. At
the point (0, 0), t = 0 and at the point (1, 1), t = 1.

Now F =(x% -y +x)i— (2xy + y) j, df = (dx) i + (dy) ]

work done = JTT .dr = I[(Xz -y? +x)dx - (2xy + ) dy}

C C

:..[[(xg -y? +x)%—(2xy+y)%} dt

- j[(t“ —t 4 £2) (2t) - (26 + t) (1) ] dt
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Example 2 : Verify Gauss Divergence Theorem for the vector A =xi+ y:i +zk over the

region bounded by x2+ y2+ z2= a?
Sol. Let S denote the entire surface of the sphere x2+ y + z2= a%?and V be the
volume of the sphre

We have to prove

ijA.ﬁds=jijv.Adv ()

R.H.S. of (1) = [[[VAQV
:Qj[i%q%n{%].(x1+yj+zf<)dv

- fy[%(XH%(yH%(Z)} av

= IH 1+1+1)dv = ”J. 3dV = BIII dV =3 x (volume of sphere with radius a)
v v v

_3.2 1% —ana®
3

For the surface S, let ¢ (X, y, z) = x2+ y?+ z2— a?=0

n a -~ 6 a 8 2 2 2 2 n i i
Vo=|i—+j—+k—|(xX"+y +2° —a”)=2xi+2yj+2zk

0x oy 0z

Vo 2(xi+yj+zk)

Vo] \/4X2+4y2+4z2

N =unit normal to S =

B 2(xi+yj’+zf<) _xi+yj’+zf<

2 2 2 2
X 37 7z =a
2 )(2 + 372 + Z2 a

L.H.S.of (1) = [[A.fidS= j(xi+yj+zk).£xi+yj+zkjds

S S a

:i!j(x2+y2+zg)d82§”a2ds ['.'x2+y2+z2:a2]
S S

2
= a; ” dS=ax (surface areaof the sphere with radius a)
S

= a x 4ra?= 4na3
L.H.S. of(1) = R.H.S. of (1)
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Hence Gauss divergence Theorem is verified.

Example 3 : Verify Green's Theorem in the plane for [ﬁ[(XQ —Xys)dX+(y2 —2Xy) dy]

C

where C is the square with vertices (0, 0), (2, 0), (2, 2), (0, 2).

ON oM

@jd dy = gj M dx + N dy)

Sol. By Green's Theorem in plane, ”(

We have to verity this result.
Now M = x?- xy®, N = y?— 2xy
oM M _ g2, N oN _ oy

oy ox

Curve C is the square shown in the figure.

NS
c(, 2) B(2, 2)
0(0, 0) A(2,0) > X
N oM i
— —— |dxdy = (2y + 3xy?) dx dy
'g[ ox ay ] y.[O x.:[O

2
2} dyz'z[(—4y+6y2)dy

x=0 0

gl

=[-2y*+2y°] =(-8+16)-0=8

Now along OA,y =0 = dy = 0, x varies from O to 2

along AB, x =2 = dx = 0, y varies from O to 2

along BC, y = 2 = dy = 0, x varies from 2 to O

along CO, x =0, = dx =0, y varies from 2 to O
[ﬁ(MdX+Ndy)= I(de+Ndy)+ I (Mdx +Ndy)
C OA AB

+ [ (Mdx+Ndy)+ [ (Mdx+Ndy)

BC CcOo
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- TXde+ T(y2 - 4y) dy+T(x2 - 8x)dx +Ty2 dy
0 0 2 2

8.8 g 8,16-8_3
3'3 3 3

Hence Green's theorem is verified.

Example 4 : Verify Stoke's Theorem for F =yi+zj+xk where S is the upper half

surface of the sphere x2+ y2+ z2= 1 and C its boundary.
Sol. The boundary C of S is a circle in the xy-plane having radius as unity and

centre at origin. Therefore, the equations of curve C are x>+ y?= 1, z = 0. The
parametric equations of Carex=cost,y=sint,z=0,0<t < 2x.

Now g’]F .dr= gj(yi +zj+ xK).. {(dx)i + (dy)] + (dz) k}

C

:[lj(ydx+zdy+xdz):[£]ydx [-.-z:OonC,dz=O]

x 2z 27 : 2n
= Isint%dt:—jsithdtz—lJ(l—cos 2t)dt=—l[t—S1n2t}
5 dt 5 2 2 2,

= —% Kzn—%sm 4th—(0 —%sinOﬂ = —é[(Qn—O)— (0-0)]=-=

51
o
=i
[
|
3
_

!

Now curl F = =-i-j-k

X OR|o w

i
o 0
>
y z

Let S, be the plane region bounded by the circle C
.Ucurlli‘.ﬁdS:”curll_f‘.l—idS:”(—i—]—f().l::dS
S S S1
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= ” (1) dS = -8, = — (area of circle of radius 1)
S1

=-—n(l) =-n

Icurlﬁ‘.ﬁdS:—n

S
From (1) and (2), the theorem is verified.
2.3.6 Self Check Exercise

1. If F = (3x> + 6y) i - 14yz | + 20xz%k, then evaluate [[|F.d T from (0, 0, 0) to

ot

(1, 1, 1) along the pathx =t,y =t2, z = t3.

2. Evaluate ” (ax® + by” + cz®)dS over the sphere x>+ y?+ z>= 1.
S

3. Verify Green's Theorem in the plane for [ﬁ[(BxQ - 8y?)dx + (4y - 6xy) dy}

C
where C is the rectangle with vertices (0, 0), (=, 0). (n, gj and [0, gj

4. Verify Stoke's Theorem for a vector field defined by F = (x? - y?) i + 2xy j
in the rectangular region in the xy-plane bounded by the lines x = 0O,
x=a,y=0,y=b.
2.3.7 Suggested Readings
R. K. Jain, SRK Lyengar : Advanced Engineering Mathematics
(Naresa Publications)

Department of Distance Education, Punjabi University, Patiala.



