
LESSON NO:

1.1 : Problem Analysis

1.2 : Introduction to C Language and

Program Development

1.3 : Identifiers, Keywords, Data Types

and Type Conversion

1.4 : Performing Input Output Operations

1.5 : Operators and Expressions

1.6 : Conditional Control Statements

1.7 : Iterative Control Statements

1.8 : Arrays

1.9 : Functions

1.10 : Strings

1.11 : Structures

1.12 : Pointers

Note:- The students can download syllabus from

departmental website www.dccpbi.com

B.A. PART-II (SEMESTER-III) PAPER : BAP-201

COMPUTER SCIENCE C PROGRAMMING AND

DATA STRUCTURES

UNIT NO - 1



B.A. PART-II 

SEMESTER-III 

PAPER : BAP-201 

C PROGRAMMING AND  

DATA STRUCTURES 

 

LESSON NO. 1.1 AUTHOR : KANWAL PREET SINGH 

 

PROBLEM ANALYSIS 

1.1.1 Introduction 

1.1.2  Objectives 

1.1.3  Problem Analysis 

1.1.4  Algorithms 

1.1.5  Flow Charts 

1.1.6  Sample Flowcharts 

1.1.7  Summary 

1.1.8  Keywords 

1.1.9  Short Answer Type Questions 

1.1.10  Long Answer Type Questions 

1.1.11  Suggested Readings 

 

1.1.1    Introduction 

A computer is a machine that receives instructions and produces a result after 

performing an appropriate assignment. Since it is a machine, it expects good and 

precise directives in order to do something. The end result depends on various 

factors ranging from the particular capabilities of the machine, the instructions it 

received, and the expected result. As a machine, the computer cannot figure out 

what you want. The computer doesn't think and therefore doesn't make mistakes. 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 2 

Computer programming is the art of writing instructions (programs) that asks the 

computer to do something and give a result. A computer receives instructions in 

many different forms, four of which are particularly important. 

The first set of  instructions is given by the manufacturers of various hardware 

parts such as the microprocessor, the motherboard, the floppy and the CD-ROM 

drives, etc. These parts are usually made by different companies setting different 

and various goals that their particular part can perform. The instructions given to 

the microprocessor, for example, tell it how to perform calculations, at what speed 

and under which circumstances. The instructions given to the motherboard allows 

information to flow from one section of the computer to another.  

Once the instructions given to the hardware parts are known, software engineers 

use that information to give the second set of instructions to the computer. These 

instructions, known as an operating system are usually written by one company. 

These second instructions tell the computer how to coordinate its different 

components so the result will be a combination of different effects. This time, the 

computer is instructed about where the pieces of information it receives are coming 

from, what to do with them and then where to send the result. Some of the 

operating systems in the market are: Microsoft Windows XP, Apple Macintosh, Red 

Hat Linux etc. A particular OS (for example Microsoft Windows XP) depending on a 

particular processor (for example Intel Dual Core) is sometimes referred to as a 

platform. Some of the computer languages running on Microsoft Windows operating 

systems are C,C++, Java and their variants.  

The actual third set of instructions is given to the computer by you, the 

programmer, using one or more of the languages that the operating system you are 

planning to use can understand. Your job is going to consist of writing 

applications. As a programmer, you write statements such as telling the computer, 

actually the operating system, that "If the user clicks this, do the following, but if 

he clicks that, do something else. If the user right clicks, display this; if he double-

clicks that, do that." To write these instructions, called programs, you first learn to 

"speak" one of the languages of the OS. Then, you become more creative. Some of 

the application programs in the market are Microsoft Word, Microsoft Excel, Adobe 

Acrobat,  etc. 

The last instructions are given by whoever uses your program, or your application. 

For example, if you had programmed Microsoft Word, you would have told the 

computer that "If a user clicks the New button on the Standard toolbar, I want you 

to display a new empty document. But if the user clicks File -> New..., I want you 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 3 

to 'call' the New dialog and provide more options to create a new document. If the 

same user right-clicks on any button on any of the toolbars, I want you to show, 

from a popup menu, all the toolbars available so she can choose which one she 

wants. But if she right-clicks on the main document, here is another menu I want 

you to display." 

Your interest here is on the computer languages, since you are going to write 

programs. There are various computer languages, for different reasons, capable of 

doing different things. Fortunately, the computer can distinguish between different 

languages and perform accordingly. These instructions are given by the 

programmer who is using compilers, interpreters, etc, to write programs. Examples 

of those languages are C, C++, Java, etc. 

1.1.2  Objective 

In this lesson, we will discuss how to analyse the problem for which we want to 

write the program. You will also see how to write an algorithm and draw a flowchart 

for a given problem. 

1.1.3   Problem Analysis 

A computer can be used to solve a problem by following a set of stored instructions 

called the program. The problem solving process needs initial data, the operations 

that are to be performed and results in the form of output. The following steps are 

required for problem solving: 

Define the problem: 

The first step is to give a clear concise problem statement. The problem definition 

should clearly specify the desired input and output. This step demands that user 

should have full knowledge of the background of the problem. A stated goal will 

help in the organization of the remaining steps. 

Examples of simple problems can be: 

 To find average of two numbers. 

 To determine a student’s final grade and indicate whether it is passing  

or  failing. The final grade is calculated as the average of four marks. 

Develop an Algorithm: 

The next step is to devise and describe a precise plan of what you want the 

computer to do. This plan, expressed as a sequence of steps to be taken or 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 4 

operations to be performed is called an algorithm. The algorithm works by 

breaking the process into a number of steps which are smaller and simpler than 

the entire process. Further the sub-algorithms can themselves be broken into a 

number of steps. 

Write a code based on the algorithm using a programming language: 

The computer cannot understand the above written algorithm. It must be written in 

a programming language which can be understood by the computer. Once the 

program is ready, it can be translated into machine code using a compiler or 

interpreter. When the machine code version of the program is ready, it can be 

executed on a computer. 

Testing the Program: 

If the program compiles correctly, use a simple set of test values to verify that the 

result is what you expected. If the results seem valid, test the program with a 

variety of real data sets. The mistakes if encountered in a program are called bugs 

and debugging the code may take longer than writing the code. 

1.1.4   Algorithms 

An algorithm is a detailed sequence of simple steps that are needed to 

solve a problem. It is an effective procedure for solving a problem in a finite 

number of steps. It is effective, which means that an answer is found and it 

finishes, that is it has a finite number of steps. A well-designed algorithm will 

always provide an answer, it may not be the answer you want but there will be an 

answer. A well-designed algorithm is also guaranteed to terminate.  

The computers lack intuition or common sense to realize the full procedure for 

solving a problem. Therefore the programmer must describe the step by step 

procedure for solving a problem to the computer minutely. This sequence of steps 

written in a simple language, form an algorithm. The characteristics of a good 

algorithm are: 

 An algorithm should have zero or more input. 

 An algorithm should exhibit at least one output. 

 An algorithm should be finite. 

 Each instruction in an algorithm should be defined clearly. 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 5 

 Each instruction used in an algorithm should be basic and easy to 

 perform. 

Following are some simple examples of algorithms: 

Problem1: Write an algorithm to find the average of two numbers. 

Algo 1: 

1. Input the first value in x. 

2. Input the second value in y. 

3. Add the two numbers and put result in sum. 

4. Divide sum by 2 and put the result in average. 

5. Output value of average. 

This is simple problem. So we write the complete algorithm in one go. But the 

problems may be complex also. In that case, we will first write an initial algorithm 

and then we refine that algorithm further. The second algorithm is a bit more 

complex and we use three stages to write the final algorithm. 

Problem2: Write an algorithm for withdrawing money for a bank ATM. 

Algo 2: 

Stage1: 

1. Display a message asking how much money is to be withdrawn 

2. Input the withdrawal amount 

3. Deduct the withdrawal amount from the balance 

4. Give withdrawal amount of cash 

5. Stop 

Stage2: 

1. Display a message asking how much money is to be withdrawn 

2. Input the withdrawal amount 

3. If the withdrawal amount is greater than the balance then 

     Print "Insufficient funds." 

  Otherwise 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 6 

      Deduct the withdrawal amount from the balance 

4. Give withdrawal amount of cash 

5. Endif 

6. Stop 

Stage3: 

1. Repeat 

2. Display a message asking how much money is to be withdrawn 

3. Input the withdrawal amount 

4. If the withdrawal amount is greater than the balance then 

     Output "Insufficient funds." 

  Otherwise 

     Deduct the withdrawal amount from the balance 

5. Give withdrawal amount of cash 

6. Endif 

7. End Repeat 

8.  Stop 

Different ways of stating algorithms 

One way of stating an algorithm has already been shown above. Let us call this the 

Step-Form. There can be three different ways of stating algorithms: 

1. Step-Form  

2. Pseudocode  

3. Flowchart  

The first two are written forms. The above algorithms are in Step-Form and as you 

saw with the Step-Form (SF) the written form is just normal language. A problem 

with human language is that it can seem to be imprecise. In terms of meaning, 

what I write may not be the same as what you read. Pseudocode is also human 

language but tends toward more precision by using a limited vocabulary. The last 

one is graphically-oriented, that is it uses symbols and language to represent 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 7 

sequence, decision and repetition. We will be discussing only the Step-Form and 

the Flow Charts here. 

1.1.5   Flow Charts 

A flowchart is a graphical representation of an algorithm. A flowchart illustrates the 

steps in a process. By visualizing the process, a flowchart can quickly help identify 

bottlenecks or inefficiencies where the process can be streamlined or improved. A 

flowchart is a diagrammatic representation that illustrates the sequence of 

operations to be performed to get the solution of a problem. Flowcharts are 

generally drawn in the early stages of formulating computer solutions. Flowcharts 

facilitate communication between programmers and business people. These 

flowcharts play a vital role in the programming of a problem and are quite helpful 

in understanding the logic of complicated and lengthy problems. Once the 

flowchart is drawn, it becomes easy to write the program in any high level 

language. Often we see how flowcharts are helpful in explaining the program to 

others. Hence, it is correct to say that a flowchart is a must for the better 

documentation of a complex program. A flowchart can be compared to the 

blueprint of a building. As we know a designer draws a blueprint before starting 

construction on a building. Similarly, a programmer prefers to draw a flowchart 

prior to writing a computer program. As in the case of the drawing of a blueprint, 

the flowchart is drawn according to defined rules and using standard flowchart 

symbols prescribed by the American National Standard Institute (ANSI). 

Flowchart Symbols 

Flowcharts are usually drawn using some standard symbols; however, some special 

symbols can also be developed when required. Some standard symbols, which are 

frequently required for making flowcharts are shown below: 

 

 

                                                 

 

                                     Connector   Flow Lines 

  

 

Terminal Process Input/Output 

Decision 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 8 

1. Terminal: The terminal symbol is used to begin and end each flow chart. 

The starting terminator has the word start while the ending terminator 

usually has the word stop. 

2. Process: A processing symbol is used to represent arithmetic and data 

movement instructions. Hence, all the arithmetic processes of addition, 

subtraction, multiplication and division are shown by this symbol. Any type 

of assignment is also done in this box. 

3. Input/Output: This box shows interaction with an outside entity. This may 

represent data being input into the algorithm or information being displayed 

to an outside entity. 

4. Decision or Condition: This box is used to indicate a point at which 

decision has to be made, and a branch to one of the two or more alternative 

points is possible. The following figure shows the decision box with three 

alternative paths:  

 

 Depending on the condition one of the three paths will be followed i.e if the 

value generated by decision box is less than 0, the left path will be followed, 

if the value generated by decision box is greater than 0, the right path will be 

followed and  if the value generated by decision box is equal to 0, the down 

path will be followed. 

5. Connectors: A connector is used as a link between parts of a flowchart if a 

flowchart is large and cannot fit in a single page. We can also use it to 

represent a point at which the flowchart connects with another process. The 

name or reference for the other process should appear within the symbol. 

6. Flow Lines: Flow lines with arrow heads are used to indicate the flow of 

operation, that is, the exact sequence in which the instructions are to be 

executed. The normal flow of flowchart is from top to bottom and from left to 

right. 

 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 9 

Guidelines for Drawing a Flowchart 

The following are some guidelines in flowcharting:  

a. In drawing a proper flowchart, all necessary requirements should be listed 

out in logical order.  

b. The flowchart should be clear, neat and easy to follow. There should not be 

any room for ambiguity in understanding the flowchart.  

c. The usual direction of the flow of a procedure or system is from left to right 

or top to bottom.  

d. Only one flow line should come out from a process symbol.  

  or        

e. Only one flow line should enter a decision symbol, but two or more flow 

lines, one for each possible answer, should leave the decision symbol.  

               

f. Only one flow line is used in conjunction with terminal symbol.  

 

 

 

 

If the flowchart becomes complex, it is better to use connector symbols to reduce 

the number of flow lines. Avoid the intersection of flow lines if you want to make it 

more effective and better way of communication.  

h. Ensure that the flowchart has a logical start and finish.  

i. It is useful to test the validity of the flowchart by passing through it with a 

simple test data.  



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 10

1.1.6   Sample Flowcharts 

Example 1: Draw a flowchart to find the average of two numbers. 

We have already written the algorithm for this problem. The flowchart is as follows: 

                                                                           

 

    

 

 

 

 

 

 

 

 

 

 

 

 

Decisions (Switching logic) 

Switching logic consists of two components - a condition and a goto command 

depending on the result of the condition test. The computer can determine the truth 

value of a statement involving one of six mathematical relations symbolized in the 

table below: 

 

 

                               

Input x 

Input y 

Sum = x + y 

Average = sum/2 

Output 

Average 

Start 

Stop 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 11

Symbol Meaning 

= = Equals 

!= Not Equal 

< Less Than 

<= Less Than Equal to 

> Greater Than 

>= Greater Than Equal to 

 

In practice, the computer is presented not with a true/false statement, but with a 

question having a "Yes" or "No" answer, for example if A = 10, B = 20, K = 5 and 

SALES = 10000, then: 

 

Condition (Question)             "Answer" 

      

     Is A == B?                                 No 

     Is B > A?                                  Yes 

     Is K <= 25?                               Yes 

           Is SALES >= Rs.5000.00?              Yes 

 

With each question, the computer can be programmed to take a different course of 

action depending on the answer. A step in an algorithm that leads to more 

than one possible continuation is called a decision. In flowcharting, the 

diamond-shaped symbol is used to indicate a decision. The question is placed 

inside the symbol and each alternative answer to the question is used to label the 

exit arrow which leads to the appropriate next step of the algorithm. The decision 

symbol is the only symbol that may have more than one exit. 

 

 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 12

Example 2: Draw a flowchart to find the larger of two numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loops 

 Most programs involve repeating a series of instructions over and over until 

some event occurs. This process of repeating a certain part of the program again 

and again until some condition is satisfied is called looping. For example, if we wish 

to read ten numbers and compute the average, we need a loop to count the number 

of numbers we have read. Consider the following figure: 

 

Yes/True No/False 

Start 

Enter value of 

A and B 

Is A>B 

A is largest B is largest 

Stop 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 13

 This figure shows how we can implement loops in a flowchart. Note that the 

sequence is followed by a decision box and one branch of the decision box leads to 

the top of the sequence.  

So, till the condition stated in decision box remains false, the control will be shifted 

to the top of the sequence and the sequence will be executed again and again. 

Example 3: Write an algorithm and draw a flowchart to input ten numbers and 

find their average. 

Algo 3: 

1. Set count=0. 

2. Input a number 

3. Increment count by one. 

4. If count<10 

   Goto  step 2 

Else 

   Goto step 5 

5. Add the ten numbers and put the answer in sum. 

6. Divide sum by ten and put the result in average. 

7. Output Average. 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 14

In the above algorithm, we set value of count to zero. Every time you input a 

number, the value of count is incremented by one. Step 4 checks whether the value 

of count is less than 10 or not. If count<10, then the control moves back to step 2 

and when the value of count becomes 10, the control moves to step 5. Therefore, 

the steps 2 through 4 are repeated until value of count becomes 10. In this way, we 

can implement a loop. 

The flowchart of the above algorithm is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Set count=0 

Set sum=0 

Input number n 

count = count +1 

sum = sum + n 

Is count<10? 

average =  sum/10 

Output average 

Stop 

Yes 

No 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 15

1.1.7   Summary: 

A computer is a machine that receives instructions and produces a result after 

following those instructions. A computer can be used to solve a problem by 

following a set of stored instructions called the program. The problem solving 

process consists of defining the problem, developing an appropriate algorithm, 

writing a code based on the algorithm using a programming language and then 

testing the program. An algorithm is a detailed sequence of simple steps that are 

needed to solve a problem. There can be different ways of stating algorithms. One 

way of representing an algorithm is a flowchart. A flowchart is a diagrammatic 

representation of an algorithm that illustrates the sequence of operations to be 

performed to get the solution of a problem. 

1.1.8   Keywords: 

Computer:   A computer is an electronic device that takes input from the user, 

stores, processes data and generates an output after processing the instructions 

given to it by the user. 

Program:  Set of instructions given to the computer to solve a particular problem 

in a language that is understood by the computer.  

Algorithm:  An algorithm is a detailed sequence of simple steps that are needed to 

solve a problem. 

Flowchart:  A flowchart is a diagrammatic representation of an algorithm that 

illustrates the sequence of operations to be performed to get the solution of a 

problem. 

1.1.9   Short Answer Type Questions: 

1. What is a computer? 

2. Define an algorithm. What are the different ways of stating an algorithm? 

3. What is a flowchart? Name some important symbols used in a flowchart. 

1.1.10   Long Answer Type Questions: 

1.  Explain the problem solving process in detail. 

2. Explain the guide lines for drawing a flowchart. Also explain how you can 

implement different programming strategies (simple sequence, decision 

making and looping) in a flowchart. 



B.A. PART-II (SEMESTER-III)   PAPER : BAP-201 16

3. Draw a flow chart for stage 3 algo of problem 2 given in the lesson. 

4. Write an algorithm and draw a flowchart to input numbers of a student in 6 

subjects and to find the total marks obtained and his grade. 

 

1.1.11   Suggested Readings: 

1. Computer Fundamentals                         Pradeep K. Sinha, Preeti Sinha 

2. Windows Based Computer Courses            Gurvinder Singh, Rachhpal Singh 



B.A. PART-II        PAPER : BAP-201

SEMESTER-III            C PROGRAMMING AND DATA STURUCTURES

LESSON NO. 1.2 AUTHOR: DHARAM VEER SHARMA

INTRODUCTION TO C LANGUAGE AND PROGRAM DEVELOPMENT

1.2.1 Introduction

1.2.2 Objectives

1.2.3 Origin of C Language

1.2.4 Types of languages

1.2.5 Features of C Language

1.2.6 Structure of a C Program

1.2.7 Stages in Program Development

1.2.8 Summary

1.2.9 Keywords

1.2.10Short Answer Type Questions

1.2.11Long Answer Type Questions

1.2.12Suggested Readings

1.2.1 Introduction

Computer can understand language of 0s and 1s only, therefore, to interact

with computer we should know the binary language, which is extremely difficult

to learn and implement, because one wrong combination of 0s and 1s can mean

entirely different thing. Human beings, on the other hand can converse in their

own language which is not directly understandable to computers. Therefore,

some inter-mediate or translator is required to facilitate communication between

humans and computers. These translators should be able to convert human

language to computer language and vice-versa. Computer language and human

language are two extremes in the hierarchy of languages. What we speak, at

times, may mean differently for different persons. The same word or sentence

may have different meaning. This is called ambiguity. Ambiguous language

constructs can not be correctly understood by computers. Therefore some

language is required which is unambiguous, close to human language, whose

words or sentences may be translated and represent precisely one meaning.

Such languages are called programming languages. C is one such language,

17



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20118

used extensively by programmers around the globe for writing computer programs,

which are translated to binary language for computer’s understanding and

functioning.

1.2.2   Objectives

In this lesson we shall learn about the origin and features of the C language.

Let us begin with a quick introduction to C. Our aim is to show the essential

elements of the language in real programs, but without getting bogged down

by details, rules and exceptions. At this point, we are not trying to be complete

or even precise (save that the examples are meant to be correct). One needs

to concentrate on the basics: variables and constants, arithmetic, control

flow, functions and the rudiments of input and output for starting to learn

programming in any language. Some topics like pointers, structures, most of

C’s rich set of operators, several control-flow statements and the standard

library have not been touched upon in this lesson to keep the learning of the

balanced in terms of complexity.

1.2.3   Origin of C Language

The C language was developed in 1970s at Bell Laboratories by a system

programmer named Dennis Ritchie. It derives its name from the fact that it is

based on a language B, developed by Ken Thompson, another system programmer

at Bell Laboratories.

C is a general-purpose programming language. It has been closely associated

with the UNIX operating system where it was developed, since both the

system and most of the programs that run on it are written in C. The language,

however, is not tied to any one operating system or machine; and although it

has been called a “system programming language” because it is useful for

writing compilers and operating systems, it has been used equally well to

write major programs in many different domains.

Many of the important ideas of C stem from the language BCPL (Basic

Combined Programming Language), developed by Martin Richards. The

influence of BCPL on C proceeded indirectly through the language B, which

was written by Ken Thompson in 1970 for the first UNIX system on the DEC

PDP-7.

BCPL and B are “typeless” languages, means data type of variable need not

be declared in advance. By contrast, C provides a variety of data types. The

fundamental types are characters, integers and floating point numbers of

several sizes. In addition, there is a hierarchy of derived data types created

with pointers, arrays, structures and unions. Expressions are formed from

operators and operands; any expression, including an assignment or a function



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20119

call, can be a statement. Pointers provide for machine-independent address

arithmetic.

1.2.4   Types of languages

In order to understand the features of C programming language we need to

know the various types of programming languages and their features. The

programming language can be divided into three categories:

i. Low level languages

ii. Middle Level Languages

iii. High level languages

i. Low level languages: These are the languages which are closer to

the machine languages. These languages permit the efficient use of the

machine. But these languages are hardware dependent, means programs

written in one language may not run on other machines. Moreover, learning

these languages is not an easy task. For learning the language programmers

need to possess thorough knowledge of the hardware. These languages include

machine languages and assembly languages, though assembly language is

also referred to as middle level languages in some language literature.

ii. Middle Level Languages: These are the languages which are neither

close to machine language nor near to human understandable languages.

These are actually symbolic languages. Symbols representing operations are

the main building blocks. The symbols are mnemonics or acronyms of the

operations to be performed. Programs written in middle level languages are

very cryptic. Assembly language falls under this category. High level languages

are sometimes converted to middle level languages before further translation

to low level languages. In C language we can even write code in middle level

language but in that case the middle level language code is translated by the

respected language compiler, which needs to be installed in the machine

and C environment must be configured to use that compiler.

iii. High level languages: These are the languages which are closer to

the human understandable languages and include FORTRAN, BASIC, PASCAL,

COBOL, PL/1 etc. These languages have been designed for better programming

efficiency and have the following advantages:

The syntax is like English language. This enables the programmer to easily

learn the language. Additionally, the programs written in these languages

are easily understandable.

 The programs written in these languages are portable, means the

programs are not hardware dependent.

The C language stands between these two types of languages. It has some



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20120

features of the low level languages along with the features of high level

languages. The C language has capability of directly interacting with the

hardware.

A program written in high level language needs to be compiled for checking

syntax or grammatical errors. If the program is free of error then it is

translated to low level language which can be directly executed on the

computer.

1.2.5   Features of C Language

C provides the fundamental control-flow constructions required for well-

structured programs: statement grouping, decision making (if-else), selecting

one of a set of possible values (switch), looping with the termination test at

the top (while, for) or at the bottom (do) and early loop exit (break).

C language is case sensitive. ‘A’ and ‘a’ mean differently in the language.

Functions may return values of basic types, structures, unions or pointers.

Any function may be called recursively. Local variables are typically “automatic”,

or created a new with each invocation. Function definitions may not be nested

but variables may be declared in a block-structured fashion. The functions of a

C program may exist in separate source files that are compiled separately.

Variables may be internal to a function, external but known only within a

single source file or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion

of other source files and conditional compilation.

C is a relatively “low-level” language. This characterization is not pejorative;

it simply means that C deals with the same sort of objects that most computers

do, namely characters, numbers and addresses. These may be combined

and moved about with the arithmetic and logical operators implemented by

real machines.

C provides no operations to deal directly with composite objects such as

character strings, sets, lists or arrays. There are no operations that

manipulate an entire array or string, although structures may be copied as a

unit. The language does not define any storage allocation facility other than

static definition and the stack discipline provided by the local variables of

functions; there is no heap or garbage collection. Finally, C itself provides no

input/output facilities; there are no READ or WRITE statements and no built-

in file access methods. All of these higher-level mechanisms must be provided

by explicitly called functions. Most C implementations have included a

reasonably standard collection of such functions.

Similarly, C offers only straightforward, single-thread control flow: tests,



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20121

loops, grouping and subprograms, but not multiprogramming, parallel

operations, synchronization or co-routines.

Although the absence of some of these features may seem like a grave

deficiency, (“You mean I have to call a function to compare two character

strings?”), keeping the language down to modest size has real benefits. Since

C is relatively small, it can be described in small space and learned quickly.

A programmer can reasonably expect to know and understand and indeed

regularly use the entire language.

For many years, the definition of C was the reference manual in the first

edition of The C Programming Language. In 1983, the American National

Standards Institute (ANSI) established a committee to provide a modern,

comprehensive definition of C. The resulting definition, the ANSI standard,

or “ANSI C” was completed in late 1988. Most of the features of the standard

are already supported by modern compilers.

The standard is based on the original reference manual. The language is

relatively little changed; one of the goals of the standard was to make sure

that most existing programs would remain valid, or failing that, that compilers

could produce warnings of new behavior.

For most programmers, the most important change is the new syntax for

declaring and defining functions. A function declaration can now include a

description of the arguments of the function; the definition syntax changes

to match. This extra information makes it much easier for compilers to detect

errors caused by mismatched arguments; in our experience, it is a very useful

addition to the language.

There are other small-scale language changes. Structure assignment and

enumerations, which had been widely available are now officially part of the

language. Floating-point computations may now be done in single precision.

The properties of arithmetic, especially for unsigned types are clarified. The

preprocessor is more elaborate. Most of these changes will have only minor

effects on most programmers.

A second significant contribution of the standard is the definition of a library

to accompany C. It specifies functions for accessing the operating system (for

instance, to read and write files), formatted input and output, memory

allocation, string manipulation and the like. A collection of standard headers

provides uniform access to declarations of functions in data types. Programs

that use this library to interact with a host system are assured of compatible

behavior. Most of the library is closely modeled on the “standard I/O library”

of the UNIX system. This library was described in the first edition and has



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20122

been widely used on other systems as well. Again, most programmers will

not see much change.

Because the data types and control structures provided by C are supported

directly by most computers, the run-time library required to implement self-

contained programs is tiny. The standard library functions are only called

explicitly, so they can be avoided if they are not needed. Most can be written

in C and except for the operating system details they conceal are themselves

portable.

Although C matches the capabilities of many computers, it is independent of

any particular machine architecture. With a little care it is easy to write

portable programs, that is, programs that can be run without change on a

variety of hardware. The standard makes portability issues explicit and

prescribes a set of constants that characterize the machine on which the

program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking has

been strengthened. The original definition of C frowned on, but permitted, the

interchange of pointers and integers; this has long since been eliminated and

the standard now requires the proper declarations and explicit conversions

that had already been enforced by good compilers. The new function

declarations are another step in this direction. Compilers will warn of most

type errors and there is no automatic conversion of incompatible data types.

Nevertheless, C retains the basic philosophy that programmers know what

they are doing; it only requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have the

wrong precedence; some parts of the syntax could be better. Nonetheless, C has

proven to be an extremely effective and expressive language for a wide variety of

programming applications.

Self Check Exercise

Q: What are the high level languages?

Q: Write the various features of C language?

1.2.6   Structure of a C Program

The only way to learn a new programming language is by writing programs in

it. The first program to write is the same for all languages:

Print the words

hello, world

This is a big hurdle; to leap over it you have to be able to create the program

text somewhere, compile it successfully, load it, run it and find out where



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20123

your output went. With these mechanical details mastered, everything else

is comparatively easy.

In C, the program to print “hello, world” is

#include <stdio.h>

main()

{

printf(“hello, world\n”);

}

To run this program first it needs to be compiled and translated to

machine level language, which we shall discuss in the next section.After

executing the program it will print

hello, world

Now, for some explanations about the program itself. A C program, whatever

its size, consists of functions and variables. A function contains statements that

specify the computing operations to be done and variables store values used

during the computation. C functions are like the subroutines and functions

in Fortran or the procedures and functions of Pascal. Our example is a function

named main. Normally you are at liberty to give functions whatever names

you like, but “main” is special - your program begins executing at the beginning

of main. This means that every program must have a main somewhere.

main will usually call other functions to help perform its job, some that you

wrote, and others from libraries that are provided for you. The first line of

the program,

#include <stdio.h>

tells the compiler to include information about the standard input/output

library; the line appears at the beginning of many C source files. The standard

library is described in following lessons.

One method of communicating data between functions is for the calling

function to provide a list of values called arguments, to the function it calls.

The parentheses after the function name surround the argument list. In

this example, main is defined to be a function that expects no arguments,

which is indicated by the empty list ( ).

#include <stdio.h> include information about standard library

main() define a function called main that received

no argument values, statements of main are

{ enclosed in braces main calls library



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20124

printf(“hello, world\n”); function printf to print this sequence

     of characters, \n represents the

      newline character

}

The first C program

The statements of a function are enclosed in braces { }. The function

main contains only one statement,

printf(“hello, world\n”);

A function is called by naming it, followed by a parenthesized list of

arguments, so this calls the function printf with the argument “hello, world\n”.

printf is a library function that prints output, in this case the string of

characters between the quotes.

A sequence of characters in double quotes, like “hello, world\n” is

called a character string or string constant. For the moment our only use of

character strings will be as arguments for printf and other functions.

The sequence \n in the string is C notation for the newline character,

which when printed advances the output to the left margin on the next line.

If you leave out the \n (a worthwhile experiment), you will find that there is

no line advance after the output is printed. You must use \n to include a

newline character in the printf argument; if you try something like

printf(“hello, world

“);

the C compiler will produce an error message.

printf never supplies a newline character automatically, so several

calls may be used to build up an output line in stages. Our first program

could just as well have been written

#include <stdio.h>

main()

{

printf(“hello, “);

printf(“world”);

printf(“\n”);

}

to produce identical output.

Notice that \n represents only a single character. An escape sequence like \n

provides a general and extensible mechanism for representing hard-to-type

or invisible characters. Among the others that C provides are \t for tab, \b



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20125

for backspace, \” for the double quote, \a for producing a bell sound and \\

for the backslash itself.

1.2.7   Stages in Program Development

The following are the various stages involved in development of computer

program ready to be executed on the computer:

i. Developing the program: The first and fore most task for develop the

program for a particular problem is to understand the problem in hand to be

solved. Analysis of the problem will reveal the input required and output

produced by the problem solution. Some input is clearly visible from the problem

statement itself and some other input may be hidden which is revealed while

developing the solution. Output to be produced by the program is clearly stated

by the problem itself. Some auxiliary output may also be produced, however,

which may or may not be of some use. The next step is to prepare a detailed

list of steps required to be carried out for solving the problem which is called

the algorithm. Once input, output and algorithm have been clearly defined,

the next step is to translate these steps in a computer program using any high

level language. The program in high level language is called the source code

and is stored in a disk file. This program contains the logic or steps for solving

the problem.

ii. Compile the program: The next step is to compile the program for

checking syntax errors and translation. This is done by the C compiler. The

output of compilation is the object code, if no syntax errors are reported by

the compiler. The following figure shows the compilation process.

Figure 1: Stages in Compilation of a C program



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20126

C compiler has in-built pre-processor. The pre-processor processes the source

code before it is passed to the compiler for compilation. Pre-processor

commands also known as directives, tell the pre-processor how to process

the source code. Depending on the pre-processor directives, the pre-processor

processes the source code and produces the expanded version of source

code. The C complier takes expanded version of the source code as its input

and if there are no errors in the source code, it produces a machine code

(object code) version of the program which is saved on the disk file.

If there are some errors during compilation phase, known as syntax errors,

then the compiler reports these errors in the form of diagnostic messages, which tell

the cause and origin of errors and compilation process terminates. Having corrected

the reported errors the source code is compiled again as shown in figure 1.

iii. Linking the program: After the compilation stage, the machine code

version of the program is ready, but it can not be directly executed, as it may

contain references to the library functions or user defined functions in other

object modules which are compiled separately. In order to produce an

executable code, these object codes are to be linked together and also with

the system library. The process of linking is shown in figure 2 below:

Figure 2: Linking of object code(s) with system libraries

Once the linking process is over, another disk, with the same name as of the

program file, with extension exe is produced. This is the file that contains

the code which can be directly executed on the computer.

iv. Debugging the program: The next stage in the program development

is debugging of the program to make sure that the program is free of bugs and

produces the desired outputs for all possible inputs. In this stage the program



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20127

is executed with all possible values of input data for which result is known or

can be computed manually. The program is declared correct if the output of

the program matches the expected results. If the output does not match the

expected results, then the program is said to be semantically or logically

incorrect and needs to be corrected by scanning the logic used in the source

code. The logical or semantic errors are removed and the program is compiled

and linked again.

v. Documenting the program: The final stage in the development of a

program is documentation. The term documentation means recording the

important information regarding the program. The documentation enables

other users or programmers to understand the logic and purpose of the

program. This facilitates maintenance and upgradation of the program.

Some compilers, like Turbo C, have integrated development environment

(IDE), which facilitates program writing (editing), compilation, linking and

execution of the program from one place. But in some other systems like in

UNIX we need separate tools for editing, compilation, linking and execution

of the program.

1.2.8   Summary

The C language was developed in Bell Laboratories by Dennis Ritchie and his

associates. It is a refined version of BCPL with enhanced features. The C

language is a high level language with capabilities of low level language as

well. It has defined data types and program constructs like sequential,

conditional and iterative flows. A program written in C language is first checked

for syntax correctness and then converted to object code, thereafter it is linked

with other libraries and finally an executable file is produced.

1.2.9   Keywords

High level languages: These are the languages which are closer to the

human understandable languages and have been designed for better

programming efficiency.

Debugging : It is the process of isolating and correcting the errors.

compiler : A program that translates a program written in a high

level language into machine language so that it can be

executed.

1.2.10 Short Answer Type Questions

1. What are the various types of programming languages?

2. What are the various types of errors?

3. Name any four high level programming languages?



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20128

1.2.11 Long Answer Type Questions

1. Discuss in detail the origin of C language.

2. What are the various features of C programming language?

3. What are various parts of a C program?

4. What are various stages of program development using C

language?

1.2.12 Suggested Readings

1. Application Programming in C R. S. Salaria

2. C Programming using Turbo C Robert Lafore

3. Let Us C Yashawant Kanetkar

Web Resources

www.tutorialspoint.com/cprogramming/

www.learn-c.org

www.cprogramming.com/tutorial/c-tutorial.html

www.programiz.com/c-programming



B.A. PART-II PAPER : BAP-201

SEMESTER-III C PROGRAMMING AND

DATA STRUCTURES

LESSON NO. 1.3 AUTHOR: DHARAM VEER SHARMA

IDENTIFIERS, KEYWORDS, DATA TYPES AND TYPE CONVERSION

1.3.1 Introduction

1.3.2 Objectives

1.3.3 Character Set

1.3.4 Identifiers

1.3.5 Keywords

1.3.6 Data Types

1.3.7 Type Conversion

1.3.8 Variables and constants

1.3.9 Summary

1.3.10Keywords

1.3.11Short Answer Type Questions

1.3.12Long Answer Type Questions

1.3.13Suggested Readings

1.3.1 Introduction

Identifiers and data types are the basic building blocks of a programming

language. A C program starts with the declaration of data types of the vari-

ous identifiers to be used in the program. Then the behaviour of the identifi-

ers also needs to be defined that whether these are variables or constants.

Study of type conversion methodology is also important as it facilitates safe

programming.

1.3.2 Objectives

In this lesson we will learn about the basic concepts used in the C program-

ming language, which include, identifiers, variables and constants, keywords,

data types and type conversion.

1.3.3 Character Set

The character set used to form words, numbers and expressions depend

upon the computer on which the program runs. The characters in C are29



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20130

classified in the following categories:

i. Letters

ii. Digits

iii. White spaces

iv. Special characters

The C language character set is listed in the following table:

Letters A to Z, a to z

Digits 0 to 9

White Spaces Blank, Horizontal tab, Vertical tab, new line, form

feed

Special characters All other characters available on standard key

board.

1.3.4   Identifiers

Every program element must be named to distinguish it from other ele-

ments. The name assigned to the element should be meaningful, though it

is not necessary, but it facilitates easy understanding of the program. Iden-

tifier is the name given to some program element. The program element is

then identified by that name. The element may be some variable, constant,

data structure, program block, function, pointer, file etc.

The identifier naming rules are as follows:

a. Identifier name should begin with an alphabet or underscore (_) but

never with a digit.

b. The following characters may be any combination of alphabets, digits

and special symbol (underscore) but two consecutive underscores are

not permitted.

c. In some C language compilers identifier length is restricted to some

limit which varies from 32 to 48.

d. No other symbol or special character is permitted.

The following are valid C identifiers:

sum, factorial, number, first_name, permanent_address.

However, sum, SUM and Sum are different identifier because C lan

guage is case sensitive.

The following are invalid C identifiers:



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20131

5thdigit (first letter should be alphabet or underscore)

first name (Identifier can’t contain spaces)

char (It is a reserve word, discussed in next section)

It’s wise to choose identifier names that are related to the purpose of the

identifier, and that are unlikely to get mixed up typographically. We tend to

use short names for local variables, especially loop indices and longer names

for external variables.

1.3.5   Keywords

There is a set of words whose meaning is predefined in the C language and

these words can not be used as identifier. These words are also called re-

serve words. The following is the set of words used as reserve words in the C

language.

1.3.6   Data Types

Since, the C language is a strongly typed language therefore data type of all

the variables need to be declared in advance. There are only a few basic data

types in C:

In addition, there are a number of qualifiers that can be applied to these

basic types. short and long apply to integers:

short int sh;

long int counter;

The word int can be omitted in such declarations and typically it is. The intent

is that short and long should provide different lengths of integers where practi-



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20132

cal; int will normally be the natural size for a particular machine, short is often

16 bits long, and int either 16 or 32 bits. Each compiler is free to choose appro-

priate sizes for its own hardware, subject only to the the restriction that shorts

and ints are at least 16 bits, longs are at least 32 bits and short is no longer

than int, which is no longer than long.

The qualifier signed or unsigned may be applied to char or any integer, un-

signed numbers are always positive or zero and obey the laws of arithmetic

modulo 2n, where n is the number of bits in the type. So, for instance, if chars

are 8 bits, unsigned char variables have values between 0 and 255, while

signed chars have values between -128 and 127 (in a two’s complement ma-

chine.) Whether plain chars are signed or unsigned is machine-dependent,

but printable characters are always positive.

The type long double specifies extended-precision floating point. As with in-

tegers, the sizes of floating-point objects are implementation-defined; float,

double and long double could represent one, two or three distinct sizes.

The standard headers <limits.h> and <float.h> contain symbolic constants

for all of these sizes, along with other properties of the machine and com-

piler.

Data type Size (in bytes)      Range                  Format String

char 1 -128 to 127 %c

unsigned char 1 0 to 255 %c

short or int 2 -32768 to 32767 %i or %d

unsigned int 2 0 to 65535 %u

long 4 -2147483648 to 2147483647 %ld

unsigned long 4 0 to 4294967295 %lu

float 4 3.4 e-38 to 3.4 e+38 %f or %g

double 8 1.7 e-308 to 1.7 e+308 %lf

long double 10 3.4 e-4932 to 1.1 e+4932 %lf

1.3.7   Type Conversion

Some times data type of values needs to be modified. For example, if two

integer values are divided then the result may be required in float but since

the variable are of type integer, the result produced will also be of type

integer.

If a = 5 and b = 2 and both a and b are integer then

result = a/b;



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20133

will store 2 in result irrespective of the data type of variable result.

However to obtain float value we need to modify the data type of the argu-

ment variables of the expression, which can be done as follows:

result = (float)a/b; and value of result will be 2.5

this is called type casting and is done explicitly. Implicit data type conver-

sion is also done while evaluating expression containing mixed types of vari-

able. This is called coercion. In this case the data type of the lower sized or

ranged variable is converted to the upper sized or ranged variable, for ex-

ample, if b is float in the above example then the value of result will be 2.5.

When an operator has operands of different types, they are converted to a

common type according to a small number of rules. In general, the only auto-

matic conversions are those that convert a “narrower” operand into a “wider”

one without losing information, such as converting an integer into floating

point in an expression like f + i. Expressions that don’t make sense, like using

a float as a subscript are disallowed. Expressions that might lose information,

like assigning a longer integer type to a shorter, or a floating-point type to an

integer, may draw a warning, but they are not illegal.

A char is just a small integer, so chars may be freely used in arithmetic

expressions. This permits considerable flexibility in certain kinds of charac-

ter transformations. One is exemplified by this naive implementation of the

function atoi, which converts a string of digits into its numeric equivalent.

   /* atoi:  convert s to integer */

   int atoi(char s[])

   {

       int i, n;

       n = 0;

       for (i = 0; s[i] >= ‘0’ && s[i] <= ‘9’; ++i)

           n = 10 * n + (s[i] - ‘0’);

       return n;

   }

The expression

 s[i] - ‘0’

gives the numeric value of the character stored in s[i], because the

values of ‘0’, ‘1’, etc., form a contiguous increasing sequence.

Another example of char to int conversion is the function lower, which maps



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20134

a single character to lower case for the ASCII character set. If the character is

not an upper case letter, lower returns it unchanged.

   /* lower:  convert c to lower case; ASCII only */

   int lower(int c)

   {

       if (c >= ‘A’ && c <= ‘Z’)

           return c + ‘a’ - ‘A’;

       else

           return c;

   }

This works for ASCII because corresponding upper case and lower case letters

are a fixed distance apart as numeric values and each alphabet is contiguous

— there is nothing but letters between A and Z. This latter observation is not

true of the EBCDIC character set, however, so this code would convert more

than just letters in EBCDIC.

The standard header <ctype.h>, defines a family of functions that provide

tests and conversions that are independent of character set. For example, the

function tolower is a portable replacement for the function lower shown above.

Similarly, the test

c >= ‘0’ && c <= ‘9’

can be replaced by

isdigit(c)

We will use the <ctype.h> functions from now on.

There is one subtle point about the conversion of characters to integers. The

language does not specify whether variables of type char are signed or un-

signed quantities. When a char is converted to an int, can it ever produce a

negative integer? The answer varies from machine to machine, reflecting

differences in architecture. On some machines a char whose leftmost bit is

1 will be converted to a negative integer (“sign extension”). On others, a char

is promoted to an int by adding zeros at the left end, and thus is always

positive.

The definition of C guarantees that any character in the machine’s standard

printing character set will never be negative, so these characters will al-

ways be positive quantities in expressions. But arbitrary bit patterns stored

in character variables may appear to be negative on some machines, yet

positive on others. For portability, specify signed or unsigned if non-charac-



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20135

ter data is to be stored in char variables.

Relational expressions like i > j and logical expressions connected by && and

|| are defined to have value 1 if true and 0 if false. Thus the assignment

d = c >= ‘0’ && c <= ‘9’

sets d to 1 if c is a digit and 0 if not. However, functions like isdigit

may return any non-zero value for true. In the test part of if, while, for, etc.,

“true” just means “non-zero”, so this makes no difference.

Implicit arithmetic conversions work much as expected. In general, if an

operator like + or * that takes two operands (a binary operator) has operands

of different types, the “lower” type is promoted to the “higher” type before the

operation proceeds. The result is of the integer type.

If there are no unsigned operands, however, the following informal set of

rules will suffice:

 If either operand is long double, convert the other to long double.

 Otherwise, if either operand is double, convert the other to double.

 Otherwise, if either operand is float, convert the other to float.

 Otherwise, convert char and short to int.

 Then, if either operand is long, convert the other to long.

Notice that floats in an expression are not automatically converted to double;

this is a change from the original definition. In general, mathematical func-

tions like those in <math.h> will use double precision. The main reason for

using float is to save storage in large arrays or less often, to save time on

machines where double-precision arithmetic is particularly expensive.

Conversion rules are more complicated when unsigned operands are in-

volved. The problem is that comparisons between signed and unsigned val-

ues are machine-dependent, because they depend on the sizes of the vari-

ous integer types. For example, suppose that int is 16 bits and long is 32 bits.

Then -1L < 1U, because 1U, which is an unsigned int, is promoted to a

signed long. But -1L > 1UL because -1L is promoted to unsigned long and

thus appears to be a large positive number.

Conversions take place across assignments; the value of the right side is

converted to the type of the left, which is the type of the result.

A character is converted to an integer, either by sign extension or not, as

described above.

Longer integers are converted to shorter ones or to chars by dropping the

excess high-order bits. Thus in



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20136

   int  i;

   char c;

   i = c;

   c = i;

the value of c is unchanged. This is true whether or not sign exten-

sion is involved. Reversing the order of assignments might lose information,

however.

If x is float and i is int, then x = i and i = x both cause conversions; float to int

causes truncation of any fractional part. When a double is converted to float,

whether the value is rounded or truncated is implementation dependent.

Since an argument of a function call is an expression, type conversion also

takes place when arguments are passed to functions. In the absence of a

function prototype, char and short become int and float becomes double. This

is why we have declared function arguments to be int and double even when

the function is called with char and float.

Finally, explicit type conversions can be forced (“coerced”) in any expression,

with a unary operator called a cast. In the construction

   (type name) expression

the expression is converted to the named type by the conversion rules above.

The precise meaning of a cast is as if the expression were assigned to a variable

of the specified type, which is then used in place of the whole construction. For

example, the library routine sqrt expects a double argument, and will produce

nonsense if inadvertently handled something else. (sqrt is declared in <math.h>.)

So if n is an integer, we can use

sqrt((double) n)

to convert the value of n to double before passing it to sqrt. Note that the cast

produces the value of n in the proper type; n itself is not altered. The cast

operator has the same high precedence as other unary operators, as sum-

marized in the table at the end of this lesson.

If arguments are declared by a function prototype, as they normally should

be, the declaration causes automatic coercion of any arguments when the

function is called. Thus, given a function prototype for sqrt:

double sqrt(double)

the call

root2 = sqrt(2)

coerces the integer 2 into the double value 2.0 without any need for a

cast.



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20137

Self Check Exercise

Q: What do you mean by Identifier?

Q: What do you mean by Reserve Word?

1.3.8   Variables and constants

Variables and constant are the basic data objects manipulated in a program.

Declarations list the variables to be used and state what type they have and

perhaps what their initial values are. Operators specify what is to be done to

them. Expressions combine variables and constants to produce new values.

The type of an object determines the set of values it can have and what

operations can be performed on it.

Declaring variables:

The declaration of all variables to be used in a function should be made in

the variable declaration part of the function. All the variables must be de-

clared before they can be used. A declaration specifies a type and contains a

list of one or more variables of that type. It also provides a variable name to

the compiler and tells the data type of the variable which helps in determin-

ing the memory requirements for the variable. The syntax for variable decla-

ration is as follows:

data_type variable_name

Example

int rollno;

char c;

float amount;

double d;

Commas in the variable declaration separate the variables of the same type, as in

int  lower, upper, step;

char c, line[1000];

Variables can be distributed among declarations in any fashion; the

lists above could well be written as

int  lower;

int  upper;

int  step;

char c;

char line[1000];

The latter form takes more space, but is convenient for adding a comment to



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20138

each declaration for subsequent modifications.

A variable may also be initialized in its declaration. If the name is followed

by an equals sign and an expression, the expression serves as an initializer,

as in

char  esc = ‘\\’;

int   i = 0;

int   limit = MAXLINE+1;

float eps = 1.0e-5;

If the variable in question is not automatic, the initialization is done once

only, conceptionally before the program starts executing and the initializer

must be a constant expression. An explicitly initialized automatic variable is

initialized each time the function or block it is in is entered; the initializer

may be any expression. External and static variables are initialized to zero

by default. Automatic variables for which there is no explicit initializer have

undefined (i.e., garbage) values.

Declaring constants:

The qualifier const can be applied to the declaration of any variable to specify

that its value will not be changed. For an array, the const qualifier says that

the elements will not be altered.

const double e = 2.71828182845905;

const char msg[] = “warning: “;

The const declaration can also be used with array arguments, to indi-

cate that the function does not change that array:

int strlen(const char[]);

The result is implementation-defined if an attempt is made to change a

const.

An integer constant like 1234 is an int. A long constant is written with a

terminal l (ell) or L, as in 123456789L; an integer constant too big to fit into

an int will also be taken as a long. Unsigned constants are written with a

terminal u or U and the suffix ul or UL indicates unsigned long.

Floating-point constants contain a decimal point (123.4) or an exponent (1e-

2) or both; their type is double, unless suffixed. The suffixes f or F indicate a

float constant; l or L indicate a long double.

The value of an integer can be specified in octal or hexadecimal instead of decimal.

A leading 0 (zero) on an integer constant means octal; a leading 0x or 0X means

hexadecimal. For example, decimal 31 can be written as 037 in octal and 0x1f or

0x1F in hex. Octal and hexadecimal constants may also be followed by L to make



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20139

them long and U to make them unsigned: 0XFUL is an unsigned long constant with

value 15 decimal.

A character constant is an integer, written as one character within single

quotes, such as ‘x’. The value of a character constant is the numeric value of

the character in the machine’s character set. For example, in the ASCII

character set the character constant ‘0’ has the value 48, which is unrelated

to the numeric value 0. If we write ‘0’ instead of a numeric value like 48 that

depends on the character set, the program is independent of the particular

value and easier to read. Character constants participate in numeric opera-

tions just as any other integers, although they are most often used in com-

parisons with other characters.

Certain characters can be represented in character and string constants by

escape sequences like \n (newline); these sequences look like two charac-

ters, but represent only one. In addition, an arbitrary byte-sized bit pattern

can be specified by

‘\ooo’

where ooo is one to three octal digits (0...7) or by

‘\xhh’

where hh is one or more hexadecimal digits (0...9, a...f, A...F). So we

might write

#define VTAB ‘\013’   /* ASCII vertical tab */

#define BELL ‘\007’   /* ASCII bell character */

or, in hexadecimal,

#define VTAB ‘\xb’   /* ASCII vertical tab */

#define BELL ‘\x7’   /* ASCII bell character */

The complete set of escape sequences is

  \a   alert (bell) character   \\   backslash

  \b   backspace  \?  question mark

  \f   formfeed   \’  single quote

  \n   newline  \”   double quote

  \r   carriage return  \ooo   octal number

  \t   horizontal tab  \xhh  hexadecimal number 

  \v   vertical tab

The character constant ‘\0’ represents the character with value zero, the

null character. ‘\0’ is often written instead of 0 to emphasize the character

nature of some expression, but the numeric value is just 0.



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20140

A constant expression is an expression that involves only constants. Such

expressions may be evaluated at during compilation rather than run-time

and accordingly may be used in any place that a constant can occur, as in

#define MAXLINE 1000

char line[MAXLINE+1];

or

#define LEAP 1 /* in leap years */

int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31];

A string constant, or string literal, is a sequence of zero or more characters

surrounded by double quotes, as in

“I am a string”

or

“” /* the empty string */

The quotes are not part of the string, but serve only to delimit it. The same

escape sequences used in character constants apply in strings; \” repre-

sents the double-quote character. String constants can be concatenated at

compile time:

“hello, “ “world”

is equivalent to

“hello, world”

This is useful for splitting up long strings across several source lines. Tech-

nically, a string constant is an array of characters. The internal representa-

tion of a string has a null character ‘\0’ at the end, so the physical storage

required is one more than the number of characters written between the

quotes. This representation means that there is no limit to how long a string

can be, but programs must scan a string completely to determine its length.

The standard library function strlen(s) returns the length of its character

string argument s, excluding the terminal ‘\0’. Here is our version:

/* strlen:  return length of s */

int strlen(char s[])

{

int i;

while (s[i] != ‘\0’)

++i;

return i;



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20141

}

strlen and other string functions are declared in the standard header

<string.h>.

Be careful to distinguish between a character constant and a string that

contains a single character: ‘x’ is not the same as “x”. The former is an

integer, used to produce the numeric value of the letter x in the machine’s

character set. The latter is an array of characters that contains one charac-

ter (the letter x) and a ‘\0’.

Enumeration Constant

There is one other kind of constant, the enumeration constant. An enumera-

tion is a list of constant integer values, as in

enum boolean { NO, YES };

The first name in an enum has value 0, the next 1 and so on, unless explicit

values are specified. If not all values are specified, unspecified values con-

tinue the progression from the last specified value, as the second of these

examples:

enum escapes { BELL = ‘\a’, BACKSPACE = ‘\b’, TAB = ‘\t’,

NEWLINE = ‘\n’, VTAB = ‘\v’, RETURN = ‘\r’ };

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC };

                       /* FEB = 2, MAR = 3, etc. */

Names in different enumerations must be distinct. Values need not be dis-

tinct in the same enumeration.

Enumerations provide a convenient way to associate constant values with

names, an alternative to #define with the advantage that the values can be

generated for you. Although variables of enum types may be declared, com-

pilers need not check that what you store in such a variable is a valid value

for the enumeration. Nevertheless, enumeration variables offer the chance

of checking and so are often better than # defines. In addition, a debugger

may be able to print values of enumeration variables in their symbolic form.

1.3.9   Summary

Character set of a language specifies the valid set of characters using which

words of the language are formed for identifier declaration.

Identifier is the name given to some program element. The element may be

some variable, constant, data structure, program block, function, pointer,



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20142

file etc. Identifier is the name given to some program element.

There is a set of words whose meaning is predefined in the C language and

these words can not be used as identifier. These words are also called re-

serve words.

Since, the C language is a strongly typed language therefore data type of all

the variables need to be declared in advance. The qualifier signed or un-

signed may be applied to char or any integer, unsigned numbers are always

positive or zero and obey the laws of arithmetic modulo 2n, where n is the

number of bits in the type.

Type conversion facilitates the conversion of data type of the result of ex-

pression. It may be explicit, called type casting or implicit, called conversion.

Variables and constants are the basic data objects manipulated in a pro-

gram. Declarations list the variables to be used and state what type they

have and perhaps what their initial values are. Operators specify what is to be

done to them. Expressions combine variables and constants to produce new val-

ues. The type of an object determines the set of values it can have and what

operations can be performed on it.

1.3.10 Keywords

Variable : A Variable is a data name that may be used to store a

data value.

Constants : There are the fixed values that do not change during the

execution of a program.

Keywords : There are the set of words whose meaning is predefined

in the C language and these words can not be used as a

identifier.

Identifiers :There are the names you supply for variables, types, func

tions and labels in your program.

1.3.11 Short Answer Type Questions

Q1. What are valid characters in the C character set?

Q2. What is the need of declaring the type of a variable?

Q3. What do you mean by type conversion?

Q4. What is the difference between variable and constant?

Q5. Explain Enumeration Cosntants.

1.3.12 Long Answer Type Questions

Q1. Discuss the various identifier naming rules.

Q2. Write any 24 reserve words of C language.



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20143

Q3. What are the basic data types available in C language? What is the

size of each data type?

Q4. What are the various types of constant declarations? Explain giving examples.

1.3.13 Suggested Readings

Programming with ANSI and Turbo C Ashok N. Kamthane

C Programming E. Balagurusamy

Application Programming in C R. S. Salaria

Let Us C Yashawant Kanetkar

Web Resources

www.tutorialspoint.com/cprogramming/

www.learn-c.org

www.cprogramming.com/tutorial/c-tutorial.html

www.programiz.com/c-programming



B.A. PART-II PAPER : BAP-201

SEMESTER-III C PROGRAMMING AND

DATA STRUCTURES

LESSON NO. 1.4 AUTHOR: DHARAM VEER SHARMA

PERFORMING INPUT OUTPUT OPERATIONS

1.4.1 Introduction

1.4.2 Objectives

1.4.3 Unformatted Input Statements

1.4.4 Formatted Input - scanf

1.4.5 Unformatted Output Statements

1.4.6 Formatted Output – printf

1.4.7 Escape Sequences

1.4.8 Summary

1.4.9 Keywords

1.4.10Short Answer Type Questions

1.4.11Long Answer Type Questions

1.4.12Suggested Readings

1.4.1 Introduction

Input output statements facilitate interaction between program and the users.

Through input statements user provide input to the program and through the

output statements prompts and results are displayed. The following are the

input output functions which we shall discuss in this lesson.

44



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20145

1.4.2   Objectives

In this lesson we will discuss the role, types and usage of input and output

statements.

1.4.3   Unformatted Input Statements

Input and output are not part of the C language itself, so we have not

emphasized them in our presentation thus far. Nonetheless, programs interact

with their environment in much more complicated ways than those we have

shown before. In this lesson we will describe the standard library, a set of

functions that provide input and output, string handling, storage management,

mathematical routines and a variety of other services for C programs. We

will concentrate on input and output

The ANSI standard defines these library functions precisely, so that they

can exist in compatible form on any system where C exists. Programs that

confine their system interactions to facilities provided by the standard library

can be moved from one system to another without change.

The properties of library functions are specified in more than a dozen headers;

we have already seen several of these, including <stdio.h>, <string.h> and

<ctype.h>. We will not present the entire library here, since we are more

interested in writing C programs that use it.

Standard Input

As we said, the library implements a simple model of text input and output. A

text stream consists of a sequence of lines; each line ends with a newline

character. If the system doesn’t operate that way, the library does whatever

necessary to make it appear as if it does. For instance, the library might

convert carriage return and linefeed to newline on input and back again on

output.

The simplest input mechanism is to read one character at a time from the

standard input, normally the keyboard, with getchar:

int getchar(void)

getchar returns the next input character each time it is called or EOF when

it encounters end of file. The symbolic constant EOF is defined in <stdio.h>.

The value is typically -1, but tests should be written in terms of EOF so as to

be independent of the specific value.

In many environments, a file may be substituted for the keyboard by using the

< convention for input redirection: if a program prog uses getchar, then the

command line

prog <infile



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20146

causes prog to read characters from infile instead. The switching of

the input is done in such a way that prog itself is oblivious to the change; in

particular, the string “<infile” is not included in the command-line arguments

in argv. Input switching is also invisible if the input comes from another

program via a pipe mechanism: on some systems, the command line

otherprog | prog

runs the two programs otherprog and prog and pipes the standard

output of otherprog into the standard input for prog.

Following are the unformatted input functions

a. getchar() fucntion: This function returns a single character from the

standard input device i.e. keyboard. The typed character is echoed on the

screen. After typing the appropriate character, the user is required to press

Enter Key. General syntax of using getchar function is : character  variable =

getchar () e.g.

char ch;

ch = getchar ()

b. getche()function: This function also returns  a character that has

been recently typed. The character is also echoed on the screen, but it is not

required to press Enter Key after typing the character. The syntax is same

as getchar ().

c. getch() function: This function also returns a character that has been

recently typed. But here, user is not required to press the Enter Key and the

character being type is not echoed on the screen. The syntax is same as getchar () and

getche ().

d. gets() : This function is used for accpeting any string through stdin

(keyboard) until enter key is pressed. The header file stdio.h is needed for

implementing this function.

1.4.4   Formatted Input – scanf

The function scanf is the input analog of printf, providing many of the same

conversion facilities in the opposite direction.

int scanf(char *format, ...)

scanf reads characters from the standard input, interprets them

according to the specification in format and stores the results through the

remaining arguments. The format argument is described below; the other

arguments, each of which must be a pointer, indicate where the corresponding

converted input should be stored. As with printf, this section is a summary of

the most useful features, not an exhaustive list.



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20147

scanf stops when it exhausts its format string or when some input

fails to match the control specification. It returns as its value the number of

successfully matched and assigned input items. This can be used to decide

how many items were found. On the end of file, EOF is returned; note that

this is different from 0, which means that the next input character does not

match the first specification in the format string. The next call to scanf

resumes searching immediately after the last character already converted.

There is also a function sscanf that reads from a string instead of the standard

input:

int sscanf(char *string, char *format, arg1, arg2, ...)

It scans the string according to the format and stores the resulting values

through arg1, arg2, etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are used

to control conversion of input. The format string may contain:

 Blanks or tabs, which are not ignored.

 Ordinary characters (not %), which are expected to match the next

non-white space character of the input stream.

 Conversion specifications, consisting of the character %, an optional

assignment suppression character *, an optional number specifying a

maximum field width, an optional h, l or L indicating the width of the

target, and a conversion character.

A conversion specification directs the conversion of the next input

field. Normally the result is placed in the variable pointed to by the

corresponding argument. If assignment suppression is indicated by the *

character, however, the input field is skipped; no assignment is made. An

input field is defined as a string of non-white space characters; it extends

either to the next white space character or until the field width, specified is

exhausted. This implies that scanf will read across boundaries to find its

input, since newlines are white space. (White space characters are blank,

tab, newline, carriage return, vertical tab and formfeed.)

The conversion character indicates the interpretation of the input field.

The corresponding argument must be a pointer, as required by the call-by-

value semantics of C. Conversion characters are shown in following table.



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20148

Basic scanf Conversions

Character Input Data; Argument type

D decimal integer; int *

i integer; int *. The integer may be in octal (leading 0)

or hexadecimal (leading 0x or 0X).

o octal integer (with or without leading zero); int *

u unsigned decimal integer; unsigned int *

x hexadecimal integer (with or without leading 0x or 0X);

int *

c characters; char *. The next input characters (default 1)

are placed at the indicated spot. The normal skip-over white

space is suppressed; to read the next non-white space

character, use %1s

s character string (not quoted); char *, pointing to an

array of characters long enough for the string and a

terminating ‘\0’ that will be added.

e, f, g floating-point number with optional sign, optional

decimal point and optional exponent; float *

% literal %; no assignment is made.

The conversion characters d, i, o, u, and x may be preceded by h to indicate

that a pointer to short rather than int appears in the argument list or by l

(letter ell) to indicate that a pointer to long appears in the argument list.

As a first example, the rudimentary calculator can be written with scanf to

do the input conversion:

#include <stdio.h>

main()  /* rudimentary calculator */

{

double sum, v;

sum = 0;

while (scanf(“%lf”, &v) == 1)

printf(“\t%.2f\n”, sum += v);

return 0;

}

Suppose we want to read input lines that contain dates of the form



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20149

25 Dec 1988

The scanf statement is

int day, year;

char monthname[20];

scanf(“%d %s %d”, &day, monthname, &year);

No & is used with monthname, since an array name is a pointer.

Literal characters can appear in the scanf format string; they must match the

same characters in the input. So we could read dates of the form mm/dd/yy with

the scanf statement:

int day, month, year;

scanf(“%d/%d/%d”, &month, &day, &year);

scanf ignores blanks and tabs in its format string. Furthermore, it

skips over white space (blanks, tabs, newlines, etc.) as it looks for input

values. To read input whose format is not fixed, it is often best to read a line

at a time, then pick it apart with scanf. For example, suppose we want to

read lines that might contain a date in either of the forms above. Then we

could write

while (getline(line, sizeof(line)) > 0) {

if (sscanf(line, “%d %s %d”, &day, monthname, &year) == 3)

printf(“valid: %s\n”, line); /* 25 Dec 1988 form */

else if (sscanf(line, “%d/%d/%d”, &month, &day, &year) == 3)

printf(“valid: %s\n”, line); /* mm/dd/yy form */

else

printf(“invalid: %s\n”, line); /* invalid form */

}

Calls to scanf can be mixed with calls to other input functions. The next call

to any input function will begin by reading the first character not read by

scanf.

A final warning: the arguments to scanf and sscanf must be pointers. By far

the most common error is writing

scanf(“%d”, n);

instead of

scanf(“%d”, &n);

This error is not generally detected at compile time.



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20150

Self Check Exercise

Q: Explain the purpose of following functions:

- getchar

- getch

- gets

Q: What are the formatted input output functions available

in C?

1.4.5   Unformatted Output Statements

The function

int putchar(int)

is used for output: putchar(c) puts the character c on the standard

output, which is by default the screen. putchar returns the character written

or EOF if an error occurs. Again, output can usually be directed to a file with

>filename: if prog uses putchar,

prog >outfile

will write the standard output to outfile instead. If pipes are supported,

prog | anotherprog

puts the standard output of prog into the standard input of anotherprog.

Output produced by printf also finds its way to the standard output. Calls to

putchar and printf may be interleaved - output happens in the order in which

the calls are made.

Each source file that refers to an input/output library function must contain

the line

#include <stdio.h>

before the first reference. When the name is bracketed by < and > a

search is made for the header in a standard set of places (for example, on

UNIX systems, typically in the directory /usr/include).

Following are the unformatted output functions:

a. putchar(): This functions prints one character on the screen at a time.

b. putch(): This function prints any character taken by the standard

input devices.

c. puts(): This function prints the string or character array.

Many programs read only one input stream and write only one output stream;

for such programs, input and output with getchar, putchar and printf may be

entirely adequate, and is certainly enough to get started. This is particularly



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20151

true if redirection is used to connect the output of one program to the input

of the next. For example, consider the program lower, which converts its

input to lower case:

#include <stdio.h>

#include <ctype.h>

main() /* lower: convert input to lower case*/

{

int c

while ((c = getchar()) != EOF)

putchar(tolower(c));

return 0;

}

The function tolower is defined in <ctype.h>; it converts an upper case letter

to lower case and returns other characters untouched. As we mentioned

earlier, “functions” like getchar and putchar in <stdio.h> and tolower in

<ctype.h> are often macros, thus avoiding the overhead of a function call per

character. Regardless of how the <ctype.h> functions are implemented on a

given machine, programs that use them are shielded from knowledge of the

character set.

1.4.6   Formatted Output - printf

The output function printf translates internal values to characters. We have used

printf informally in previous lessons. The description here covers most typical

uses but is not complete; for the full story, refer the books given at the end of this

lesson.

int printf(char *format, arg1, arg2, ...);

printf converts, formats, and prints its arguments on the standard

output under control of the format. It returns the number of characters

printed.

The format string contains two types of objects: ordinary characters, which

are copied to the output stream and conversion specifications, each of which

causes conversion and printing of the next successive argument to printf.

Each conversion specification begins with a % and ends with a conversion

character. Between the % and the conversion character there may be, in

order:

 A minus sign, which specifies left adjustment of the converted

argument.

 A number that specifies the minimum field width. The converted

argument will be printed in a field at least this wide. If necessary it



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20152

will be padded on the left (or right, if left adjustment is called for) to

make up the field width.

 A period, which separates the field width from the precision.

 A number, the precision, that specifies the maximum number of

characters to be printed from a string or the number of digits after the

decimal point of a floating-point value or the minimum number of digits

for an integer.

 An h if the integer is to be printed as a short or l (letter ell) if as a

long.

Conversion characters are shown in the following table. If the character

after the % is not a conversion specification, the behavior is undefined.

A width or precision may be specified as *, in which case the value is computed

by converting the next argument (which must be an int). For example, to

print at most max characters from a string s,

printf(“%.*s”, max, s);

Basic printf Conversions

Character Argument type; Printed As

d,i int; decimal number

o int; unsigned octal number (without a leading zero)

x,X int; unsigned hexadecimal number (without a leading

0x or 0X), using abcdef or ABCDEF for 10, ...,15.

u int; unsigned decimal number

c int; single character

s char *; print characters from the string until a ‘\0’ or

the number of characters given by the precision.

f double; [-]m.dddddd, where the number of d’s is given

by the precision (default 6).

e,E double; [-]m.dddddde+/-xx or [-]m.ddddddE+/-xx,

where the number of d’s is given by the precision

(default 6).

g,G double; use %e or %E if the exponent is less than -4 or

greater than or equal to the precision; otherwise use

%f. Trailing zeros and a trailing decimal point are not

printed.

p void *; pointer (implementation-dependent

representation).

% no argument is converted; print a %



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20153

Along with the conversion characters, precision can also be defined for

reserving or limiting the space for output. Most of the format conversions

have been illustrated in earlier sections. One exception is the precision as it

relates to strings. The field width of the strings is specified by using the

format % w. p s where w is the field width and only  p character of string w

are to be displayed in right justified way.The following table shows the effect

of a variety of specifications in printing “hello, world” (12 characters). We

have put colons around each field so you can see its extent.

:%s: :hello, world:

:%10s: :hello, world:

:%.10s: :hello, wor:

:%-10s: :hello, world:

:%.15s: :hello, world:

:%-15s: :hello, world:

:%15.10s: : hello, wor:

:%-15.10s: :hello, wor:

A warning: printf uses its first argument to decide how many arguments

follow and what their type is. It will get confused and you will get wrong

answers, if there are not enough arguments of if they are the wrong type.

You should also be aware of the difference between these two calls:

   printf(s);         /* FAILS if s contains % */

   printf(“%s”, s);   /* SAFE */

The function sprintf does the same conversions as printf does, but stores the

output in a string:

  int sprintf(char *string, char *format, arg1, arg2, ...);

sprintf formats the arguments in arg1, arg2, etc., according to format

as before, but places the result in string instead of the standard output;

string must be big enough to receive the result.

1.4.7  Escape Sequences

The printf() and scanf() statements follow the combination of characters called

as escape sequences. The following are the escape sequences with their use

and ASCII value.



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20154

Escape Sequence Use ASCII Value

\n New line 10

\b Backspace 8

\f Form Feed 12

\’ Single Quote 39

\\ Backslash 92

\0 Null 0

\t Horizontal Tab 9

\r Carriage Return 13

\a Alert 7

\” Double Quote 34

\v Vertical Tab 11

\? Question Mark 63

Escape sequences facilitate formatting of output, generating alerts and

printing some characters which can not be directly printed using output

functions.

1.4.8   Summary

Input and output are not part of the C language itself, so we have not emphasized

them in our previous lessons. Nonetheless, programs interact with their

environment in much more complicated ways than those we have shown before.

In this lesson we have described the standard library, a set of functions that

provide input and output functions.

1.4.9   Keywords

printf : printf  function converts formats and print its arguments

on the standard output under the control of the fomat.

scanf : scanf reads characters from the standard input

interprets them according to the specification in format and stores the result

through the remaining arguments.

1.4.10  Short Answer Type Questions

1. What are the basic input output functions available in C?

2. What do you mean by formatted I/O?

3. What is the difference between getch() and getche() functions?

4. Why ampersand (&) is used in scanf while reading numeric or character

data types?



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20155

1.4.11  Long Answer Type Questions

1. Discuss in detail the various types of input and output functions used in

C language. Also discuss the syntax of each of the functions giving

examples.

2. Which characters are used for conversion in printf and scanf

statements?

3. What are the various escape sequences? Write their use as well.

1.4.12  Suggested Readings

Programming with ANSI and Turbo C Ashok N. Kamthane

C Programming E. Balagurusamy

Application Programming in C R. S. Salaria

Let Us C Yashawant Kanetkar

Web Resources

www.tutorialspoint.com/cprogramming/

www.learn-c.org

www.cprogramming.com/tutorial/c-tutorial.html

www.programiz.com/c-programming



B.A. PART-II PAPER : BAP-201

SEMESTER-III C PROGRAMMING AND

DATA STRUCTURES

LESSON NO. 1.5 AUTHOR: DHARAM VEER SHARMA

OPERATORS AND EXPRESSIONS

1.5.1 Introduction

1.5.2 Objectives

1.5.3 Arithmetic Operators

1.5.4 Relational Operators and Logical Operators

1.5.5 Bitwise  Operators

1.5.6 Assignment Operator and Expression Evaluation

1.5.7 Conditional Expression

1.5.8 Comma Operator

1.5.9 Operator Precedence and Associativity

1.5.10Summary

1.5.11Keywords

1.5.12Short Answer Type Questions

1.5.13Long Answer Type Questions

1.5.14Suggested Readings

1.5.1 Introduction

In order to perform different types of operations, C uses different kind of

operators. An operator indicates an operation to be performed on data that

yields a value. With the help of various operators available in C language,

one can link the variables and constants. An operand is a data item on which

operators perform the operations. C provides four classes of operators. They

are 1) Arithmetic 2) Relational 3) Logical and 4) bitwise. Along with these

operators there are other operators like unary, conditional, assignment and

comma operator.

The following are the various types of operators available in C lan-

guage:

47



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20157

Type of operator Symbolic representation

Arithmetic +, -, *, / and %

Relational >, >, >=, <=, == and !=

Logical &&, || and !

Increment and decrement ++ and —

Assignment =

Bitwise &, |, ^, >>, << and ~

Comma ,

Conditional ? :

1.5.2   Objectives

In this lesson we shall discuss the various types of operators available in the

C language. We shall also discuss the method of using these operators, their

precedence and their order of evaluation in expressions.

1.5.3   Arithmetic Operators

The binary arithmetic operators are +, -, *, / and the modulus operator %.

Integer division truncates any fractional part. The expression

x % y

produces the remainder when x is divided by y, and thus is zero when

y divides x exactly. For example, a year is a leap year if it is divisible by 4 but

not by 100, except that years divisible by 400 are leap years.

Therefore

   if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

printf(“%d is a leap year\n”, year);

   else

printf(“%d is not a leap year\n”, year);

The % operator cannot be applied to a float or double. The direction of trun-

cation for / and the sign of the result for % are machine-dependent for

negative operands, as is the action taken on overflow or underflow.

The binary + and - operators have the same precedence, which is lower than

the precedence of *, / and %, which is in turn lower than unary + and -.

Arithmetic operators associate left to right.

Unary Operators

C provides two unusual operators for incrementing and decrementing vari-

ables. The increment operator ++ adds 1 to its operand, while the decrement



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20158

operator -- subtracts 1. We have frequently used ++ to increment variables,

as in

   if (c == ‘\n’)

       ++nl;

The unusual aspect is that ++ and -- may be used either as prefix operators

(before the variable, as in ++n), or postfix operators (after the variable: n++). In

both cases, the effect is to increment n. But the expression ++n increments n

before its value is used, while n++ increments n after its value has been used.

This means that in a context where the value is being used, not just the

effect, ++n and n++ are different. If n is 5, then

   x = n++;

sets x to 5, but

   x = ++n;

sets x to 6. In both cases, n becomes 6. The increment and decrement

operators can only be applied to variables; an expression like (i+j)++ is ille-

gal.

In a context where no value is wanted, just the incrementing effect,

as in

if (c == ‘\n’)

nl++;

prefix and postfix are the same. But there are situations where one or

the other is specifically called for. For instance, consider the function

squeeze(s,c), which removes all occurrences of the character c from the

string s.

   /* squeeze:  delete all c from s */

   void squeeze(char s[], int c)

{

      int i, j;

      for (i = j = 0; s[i] != ‘\0’; i++)

          if (s[i] != c)

              s[j++] = s[i];

      s[j] = ‘\0’;

}

Each time a non-c occurs, it is copied into the current j position and only

then is j incremented to be ready for the next character. This is exactly



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20159

equivalent to

   if (s[i] != c) {

       s[j] = s[i];

       j++;

   }

Another example of a similar construction comes from the getline function

that we wrote in lesson 1, where we can replace

   if (c == ‘\n’) {

       s[i] = c;

       ++i;

}

by the more compact

   if (c == ‘\n’)

      s[i++] = c;

As a third example, consider the standard function strcat(s,t), which concat-

enates the string t to the end of string s. strcat assumes that there is

enough space in s to hold the combination. As we have written it, strcat

returns no value; the standard library version returns a pointer to the re-

sulting string.

   /* strcat:  concatenate t to end of s; s must be big enough */

   void strcat(char s[], char t[])

   {

       int i, j;

       i = j = 0;

       while (s[i] != ‘\0’) /* find end of s */

           i++;

       while ((s[i++] = t[j++]) != ‘\0’) /* copy t */

           ;

}

As each member is copied from t to s, the postfix ++ is applied to both i and j

to make sure that they are in position for the next pass through the loop.

1.5.4   Relational Operators and Logical Operators

The relational operators are

   >   >=   <   <=



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20160

They all have the same precedence. Just below them in precedence are the

equality operators:

   ==   !=

Relational operators have lower precedence than arithmetic operators, so an

expression like i < lim-1 is taken as i < (lim-1), as would be expected.

More interesting are the logical operators && and ||. Expressions connected

by && or || are evaluated left to right and evaluation stops as soon as the

truth or falsehood of the result is known. Most C programs rely on these

properties. For example, here is a loop from the input function getline:

   for (i=0; i < lim-1 && (c=getchar()) != ‘\n’ && c != EOF; ++i)

       s[i] = c;

Before reading a new character it is necessary to check that there is room to

store it in the array s, so the test i < lim-1 must be made first. Moreover, if

this test fails, we must not go on and read another character.

Similarly, it would be unfortunate if c were tested against EOF before getchar

is called; therefore the call and assignment must occur before the character

in c is tested.

The precedence of && is higher than that of || and both are lower than

relational and equality operators, so expressions like

   i < lim-1 && (c=getchar()) != ‘\n’ && c != EOF

need no extra parentheses. But since the precedence of != is higher

than assignment, parentheses are needed in

   (c=getchar()) != ‘\n’

to achieve the desired result of assignment to c and then comparison

with ‘\n’.

By definition, the numeric value of a relational or logical expression is 1 if

the relation is true, and 0 if the relation is false.

The unary negation operator ! converts a non-zero operand into 0 and a zero

operand in 1. A common use of ! is in constructions like

   if (!valid)

rather than

   if (valid == 0)

It’s hard to generalize about which form is better. Constructions like !valid

read nicely (“if not valid”), but more complicated ones can be hard to under-

stand.



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20161

1.5.5   Bitwise Operators

C provides six operators for bit manipulation; these may only be applied to

integral operands, that is, char, short, int and long, whether signed or un-

signed.

& bitwise AND

| bitwise inclusive OR

^ bitwise exclusive OR

<<   left shift

>> right shift

~ one’s complement (unary)

The bitwise AND operator & is often used to mask off some set of bits, for

example

   n = n & 0177;

In the above example 0177 is an octal number 177 whose binary form is

00000000001111111. So when we AND nwith 01777, all the bits of n other

than the last seven bits will be set to zero irrespecitve of their value.

sets to zero all but the low-order 7 bits of n.

The bitwise OR operator | is used to turn bits on:

   x = x | SET_ON;

sets to one in x the bits that are set to one in SET_ON.

The bitwise exclusive OR operator ^ sets a one in each bit position where its

operands have different bits and zero where they are the same.

One must distinguish the bitwise operators & and | from the logical opera-

tors && and ||, which imply left-to-right evaluation of a truth value. For

example, if x is 1 and y is 2, then x & y is zero while x && y is one.

The shift operators << and >> perform left and right shifts of their left oper-

and by the number of bit positions given by the right operand, which must be

non-negative. Thus x << 2 shifts the value of x by two positions, filling va-

cated bits with zero; this is equivalent to multiplication by 4. Right shifting

an unsigned quantity always fits the vacated bits with zero. Right shifting a

signed quantity will fill with bit signs (“arithmetic shift”) on some machines

and with 0-bits (“logical shift”) on others.

The unary operator ~ yields the one’s complement of an integer; that is, it

converts each 1-bit into a 0-bit and vice versa. For example

   x = x & ~077

sets the last six bits of x to zero. Note that x & ~077 is independent of



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20162

word length, and is thus preferable to, for example, x & 0177700, which

assumes that x is a 16-bit quantity. The portable form involves no extra cost,

since ~077 is a constant expression that can be evaluated at compile time.

As an illustration of some of the bit operators, consider the function

getbits(x,p,n) that returns the (right adjusted) n-bit field of x that begins at

position p. We assume that bit position 0 is at the right end and that n and p

are sensible positive values. For example, getbits(x,4,3) returns the three

bits in positions 4, 3 and 2, right-adjusted.

   /* getbits:  get n bits from position p */

   unsigned getbits(unsigned x, int p, int n)

   {

       return (x >> (p+1-n)) & ~(~0 << n);

   }

The expression x >> (p+1-n) moves the desired field to the right end of the

word. ~0 is all 1-bits; shifting it left n positions with ~0<<n places zeros in the

rightmost n bits; complementing that with ~ makes a mask with ones in the

rightmost n bits.

Self Check Exercise

Q: What is a Unary Operator?

Q: What are the various bitwise operators?

1.5.6   Assignment Operator and Expression Evaluation

An expression such as

   i = i + 2

in which the variable on the left side is repeated immediately on the

right, can be written in the compressed form

   i += 2

The operator += is called an assignment operator.

Most binary operators (operators like + that have a left and right oper-

and) have a corresponding assignment operator op=, where op is one of

   +   -   *   /   %   <<   >>   &   ^   |

If expr
1
 and expr

2
 are expressions, then

   expr
1
 op= expr

2

is equivalent to

   expr
1
 = (expr

1
) op (expr

2
)

except that expr
1
 is computed only once. Notice the parentheses around



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20163

expr
2
:

   x *= y + 1

means

   x = x * (y + 1)

rather than

   x = x * y + 1

As an example, the function bitcount counts the number of 1-bits in

its integer argument.

   /* bitcount:  count 1 bits in x */

   int bitcount(unsigned x)

   {

       int b;

       for (b = 0; x != 0; x >>= 1)

           if (x & 01)

               b++;

       return b;

   }

Declaring the argument x to be an unsigned ensures that when it is right-

shifted, vacated bits will be filled with zeros, not sign bits, regardless of the

machine the program is run on.

Quite apart from conciseness, assignment operators have the advantage that

they correspond better to the way people think. We say “add 2 to i” or “incre-

ment i by 2”, not “take i, add 2, then put the result back in i”. Thus the

expression i += 2 is preferable to i = i+2. In addition, for a complicated ex-

pression like

   yyval[yypv[p3+p4] + yypv[p1]] += 2

the assignment operator makes the code easier to understand, since

the reader doesn’t have to check painstakingly that two long expressions are

indeed the same, or to wonder why they’re not. And an assignment operator

may even help a compiler to produce efficient code.

We have already seen that the assignment statement has a value and can

occur in expressions; the most common example is

   while ((c = getchar()) != EOF)

       ...

The other assignment operators (+=, -=, etc.) can also occur in expressions,



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20164

although this is less frequent.

In all such expressions, the type of an assignment expression is the

type of its left operand and the value is the value after the assignment.

1.5.7   Conditional Expression

The statements

   if (a > b)

       z = a;

   else

       z = b;

compute in z the maximum of a and b. The conditional expression, written

with the ternary operator “?:”, provides an alternate way to write this and

similar constructions. In the expression

   expr
1
 ? expr

2
 : expr

3

the expression expr
1
 is evaluated first. If it is non-zero (true), then the

expression expr
2
 is evaluated and that is the value of the conditional expres-

sion. Otherwise expr
3
 is evaluated and that is the value. Only one of expr

2

and expr
3
 is evaluated. Thus to set z to the maximum of a and b,

   z = (a > b) ? a : b;    /* z = max(a, b) */

It should be noted that the conditional expression is indeed an expression,

and it can be used wherever any other expression can be. If expr
2
 and expr

3

are of different types, the type of the result is determined by the conversion

rules discussed earlier in the previous lesson. For example, if f is a float and

n an int, then the expression

   (n > 0) ? f : n

is of type float regardless of whether n is positive.

Parentheses are not necessary around the first expression of a conditional

expression, since the precedence of ?: is very low, just above assignment. They

are advisable anyway, however, since they make the condition part of the ex-

pression easier to see.

The conditional expression often leads to succinct code. For example, this

loop prints n elements of an array, 10 per line, with each column separated

by one blank, and with each line (including the last) terminated by a newline.

   for (i = 0; i < n; i++)

       printf(“%6d%c”, a[i], (i%10==9 || i==n-1) ? ‘\n’ : ‘ ‘);

A newline is printed after every tenth element and after the n-th. All other

elements are followed by one blank. This might look tricky, but it’s more



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20165

compact than the equivalent if-else. Another good example is

   printf(“You have %d items %s.\n”, n, n==1 ? “” : “s”);

Here if n = 1, then the word item will be printed, otherwise items wil be

printed.

1.5.8   Comma Operator

The comma operator is used to separate two or more expressions. The comma

operator has the lowest priority among all the operators. It is not essential to

enclose the expressions with comma operators within the parenthesis.

Example:

A=2,b=3,c=5; or (A=2,b=3,c=5;)

are valid statements.

1.5.9   Operator Precedence and Associativity

Table below summarizes the rules for precedence and associativity of all opera-

tors, including those that we have not yet discussed. Operators on the same

line have the same precedence; rows are in order of decreasing precedence, so,

for example, *, /, and % all have the same precedence, which is higher than

that of binary + and -. The “operator” () refers to function call. The operators ->

and . are used to access members of structures; they will be covered in lessons

11 and 12, along with sizeof (size of an object). Lesson 11 discusses * (indirec-

tion through a pointer) and & (address of an object).



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20166



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20167

Unary & +, -, and * have higher precedence than the binary forms.

Note that the precedence of the bitwise operators &, ^, and | falls

below == and !=. This implies that bit-testing expressions like

  if ((x & MASK) == 0) ...

must be fully parenthesized to give proper results.

C, like most languages, does not specify the order in which the operands of

an operator are evaluated. (The exceptions are &&, ||, ?:, and ‘,’.) For ex-

ample, in a statement like

   x = f() + g();

f may be evaluated before g or vice versa; thus if either f or g alters a

variable on which the other depends, x can depend on the order of evalua-

tion. Intermediate results can be stored in temporary variables to ensure a

particular sequence.

Similarly, the order in which function arguments are evaluated is not speci-

fied, so the statement

   printf(“%d %d\n”, ++n, power(2, n));   /* WRONG */

can produce different results with different compilers, depending on

whether n is incremented before power is called. The solution, of course, is

to write

   ++n;

   printf(“%d %d\n”, n, power(2, n));

Function calls, nested assignment statements and increment and decre-

ment operators cause “side effects” - some variable is changed as a by-

product of the evaluation of an expression. In any expression involving side

effects, there can be subtle dependencies on the order in which variables

taking part in the expression are updated. One unhappy situation is typified

by the statement

   a[i] = i++;

The question is whether the subscript is the old value of i or the new. Com-

pilers can interpret this in different ways and generate different answers

depending on their interpretation. The standard intentionally leaves most

such matters unspecified. When side effects (assignment to variables) take

place within an expression is left to the discretion of the compiler, since the

best order depends strongly on machine architecture. (The standard does

specify that all side effects on arguments take effect before a function is

called, but that would not help in the call to printf above.)



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20168

The moral is that writing code that depends on order of evaluation is a bad

programming practice in any language. Naturally, it is necessary to know

what things to avoid but if you don’t know how they are done on various

machines, you won’t be tempted to take advantage of a particular implemen-

tation.

1.5.10  Summary

Operators are the building blocks of expressions. The C language uses differ-

ent kind of operators. There are arithmetic, relational, logical, assignment,

conditional, comma and bitwise operators available in C.

1.5.11  Keywords

Operator: An operator indicates an operation to be performed on

data that yields a value.

Operand : An operand is a data item on which operators performs

the opeations.

Precedence : It is the priority for grouping different types of op

    erators with their operands.

Associativity : It is the left to right or right to left order for group

ing operands to operators that have the same precedence.

1.5.12  Short Answer Type Questions

1. What is the precedence of different arithmetic operators?

2. What is a ternary operator?

3. What are the various relational operators?

4. What is the role of comma operator?

1.5.13  Long Answer Type Questions

1. What is the difference between precedence and associativity?

2. What are the rule governing the use of logical operators?

3. How bitwise operators are used?

1.5.14  Suggested Readings

Programming with ANSI and Turbo C Ashok N. Kamthane

Programming using C E. Balagurusamy

Application Programming in C R. S. Salaria

Let Us C Yashawant Kanetkar



B.A. PART-II (SEMESTER-III)       PAPER : BAP-20169

Web Resources

www.tutorialspoint.com/cprogramming/

www.learn-c.org

www.cprogramming.com/tutorial/c-tutorial.html

www.programiz.com/c-programming



B.A. PART-I 

SEMESTER-III 

   PAPER : BAP-201 

C PROGRAMMING AND  

DATA STRUCTURES 

LESSON NO. 1.6 AUTHOR : DHARAM VEER SHARMA 

 

SEQUENTIAL AND CONDITIONAL CONTROL STATEMENTS 

 

1.6.1  Introduction 

1.6.2  Objectives  

1.6.3  Statements and Blocks 

1.6.4  if … else Construct 

1.6.5  else … if 

1.6.6  Using logical operators in if construct 

1.6.7  switch … case Construct 

1.6.8  goto and labels 

1.6.9  Summary 

1.6.10  Short Answer Type Questions 

1.6.11  Long Answer Type Questions 

1.6.12  Suggested Books 

 

1.6.1   Introduction 

The control-flow of a language specifies the order in which computations are 

performed. In C language there are sequential, conditional and iterative control 

structures available for program design. In this lesson we shall discuss the 

various conditional control structures and iterative control structures will be 

discussed in the next lesson. Conditional constructs are required for making 

decision and choosing some execution path based on the satisfied condition. 

1.6.2   Objectives  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 71 

In this lesson we shall discuss the various conditional control structures 

available in the C language. These constructs provide branching with in the 

program based on some condition. 

1.6.3   Statements and Blocks  

An expression such as x = 0 or i++ or printf(...) becomes a statement when it is 

followed by a semicolon, as in  

x = 0; 

i++; 

printf(...); 

In C, the semicolon is a statement terminator, rather than a separator as it is in 

languages like Pascal.  

Braces { and } are used to group declarations and statements together into a 

compound statement or block, so that they are syntactically equivalent to a 

single statement. The braces that surround the statements of a function are one 

obvious example; braces around multiple statements after an if, else, while, or 

for are another. (Variables can be declared inside any block) There is no 

semicolon after the right brace that ends a block. A block can be created 

anywhere with in the program. 

Example 

main() 

{ 

 int a = 10; 

 { 

  int a = 20; 

printf("Value of a inside the block is -> %d",a); 

} 

printf("Value of a outside the block is -> %d",a); 

return 0; 

} 

In the above example, for the second declaration of a, a's scope is limited to the 

block only and output will be 20 for the first printf statement and for the 

second printf the output will be 10. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 72 

1.6.4   if … else Construct 

The if-else statement is used to express decisions. Formally the syntax is  

if (expression) 

statement1 

else 

statement2 

where the else part is optional. The expression is evaluated; if it is true (that is, 

if expression has a non-zero value), statement1 is executed. If it is false 

(expression is zero) and if there is an else part, statement2 is executed instead.  

 Since an if tests the numeric value of an expression, certain coding 

shortcuts are possible. The most obvious is writing  

if (expression) 

instead of  

if (expression != 0) 

Sometimes this is natural and clear; at other times it can be cryptic.  

Because the else part of an if-else is optional, there is an ambiguity when an 

else if omitted from a nested if sequence. This is resolved by associating the else 

with the closest previous else-less if. For example, in  

if (n > 0) 

if (a > b) 

z = a; 

else 

z = b; 

the else goes to the inner if, as we have shown by indentation. If that isn't what 

you want, braces must be used to force the proper association:  

if (n > 0) { 

if (a > b) 

z = a; 

} 

else 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 73 

z = b; 

 The ambiguity is especially pernicious in situations like this:  

if (n > 0) 

for (i = 0; i < n; i++) 

             if (s[i] > 0) { 

printf("..."); 

return i; 

} 

 else        /* WRONG */ 

printf("error -- n is negative\n"); 

The indentation shows unequivocally what you want, but the compiler doesn't 

get the message and associates the else with the inner if. This kind of bug can 

be hard to find; it's a good idea to use braces when there are nested ifs.  

 By the way, notice that there is a semicolon after z = a in  

if (a > b) 

z = a; 

else 

z = b; 

This is because grammatically, a statement follows the if, and an expression 

statement like ``z = a;'' is always terminated by a semicolon. 

1.6.5  else … if 

 The construction  

if (expression) 

statement 

else if (expression) 

statement 

else if (expression) 

statement 

else if (expression) 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 74 

statement 

else 

statement 

 occurs so often that it is worth a brief separate discussion. This sequence of 

if statements is the most general way of writing a multi-way decision. The 

expressions are evaluated in order; if an expression is true, the statement 

associated with it is executed and this terminates the whole chain. As always, the 

code for each statement is either a single statement or a group of them in braces.  

The last else part handles the ``none of the above'' or default case where none of 

the other conditions is satisfied. Sometimes there is no explicit action for the 

default; in that case the trailing  

else 

statement 

can be omitted, or it may be used for error checking to catch an ``impossible'' condition.  

To illustrate a three-way decision, here is a binary search function that decides 

if a particular value x occurs in the sorted array v. The elements of v must be in 

increasing order. The function returns the position (a number between 0 and n-

1) if x occurs in v and -1 if not.  

Binary search first compares the input value x to the middle element of the 

array v. If x is less than the middle value, searching focuses on the lower half of 

the table, otherwise on the upper half. In either case, the next step is to 

compare x to the middle element of the selected half. This process of dividing 

the range in two continues until the value is found or the range is empty.  

/* binsearch:  find x in v[0] <= v[1] <= ... <= v[n-1] */ 

int binsearch(int x, int v[], int n) 

{ 

int low, high, mid; 

low = 0; 

high = n - 1; 

while (low <= high) { 

mid = (low+high)/2; 

if (x < v[mid]) 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 75 

high = mid + 1; 

else if (x  > v[mid]) 

low = mid + 1; 

else    /* found match */ 

return mid; 

        } 

        return -1;   /* no match */ 

} 

The fundamental decision is whether x is less than, greater than, or equal to 

the middle element v[mid] at each step; this is a natural for else-if. 

Utmost care should be taken while using conditional constructs, as is evident 

from the following example. 

if (day == 1) 

 printf("Monday"); 

if (day == 2) 

 printf("Tuesday"); 

if (day == 3) 

 printf("Wednesday"); 

if (day == 4) 

 printf("Thursday"); 

if (day == 5) 

 printf("Friday"); 

if (day == 6) 

 printf("Saturday"); 

else 

 printf("Sunday"); 

The above use of if is wrong as for any value of day between 1 and 5 it will print 

the Sunday as well because in the last if statement it will always printf Sunday 

if value of day is not 6. Therefore, in the above example if else if construct 

should be used, as given below. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 76 

if (day == 1) 

 printf("Monday"); 

else if (day == 2) 

 printf("Tuesday"); 

else if (day == 3) 

 printf("Wednesday"); 

else if (day == 4) 

 printf("Thursday"); 

else if (day == 5) 

 printf("Friday"); 

else if (day == 6) 

 printf("Saturday"); 

else 

  printf("Sunday"); 

 In this case any condition will be checked only if its previous condition is false. 

1.6.6  Using logical operators in if construct 

Logical operators are indispensable part of if … else construct, but these should 

be used with utmost caution. There is a need of understanding the way these 

are evaluated. 

 if (condition1 && condition2) 

  statement 

In this construct condition2 is evaluated only if condition1 is true, otherwise 

condition2 is never reached. Therefore if some calculation is involved in 

condition2 then that calculation will also not be performed. Therefore, care 

should be taken while using && operator. 

 if (condition1 || condition2) 

  statement1 

In this construct conditon2 is evaluated only if condition1 is false, otherwise 

condition2 is never reached. Therefore the problem is the same as in the case of 

&& operator.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 77 

1.6.7  switch … case Construct 

 The switch statement is a multi-way decision that tests whether an expression 

matches one of a number of constant integer values and branches accordingly.  

switch (expression) { 

case const-expr: statements 

case const-expr: statements 

default: statements 

} 

Important distinction between use of if and switch construct is that for each 

switch construct there is an equivalent if construct available. However, the 

reverse is not true. switch can replace only those if constructs where the value 

of only one variable is tested for different integer values. 

Example 

if (day == 1) 

 printf("Monday"); 

else if (day == 2) 

 printf("Tuesday"); 

else if (day == 3) 

 printf("Wednesday"); 

else if (day == 4) 

 printf("Thursday"); 

else if (day == 5) 

 printf("Friday"); 

else if (day == 6) 

 printf("Saturday"); 

else 

  printf("Sunday"); 

For this situation where value of day is checked, switch construct is the most 

suitable. 

switch (day) 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 78 

{ 

 case 1: printf("Monday"); 

  break; 

case 2: printf("Tuesday"); 

 break; 

case 3: printf("Wednesday"); 

 break; 

case 4: printf("Thursday"); 

 break; 

case 5: printf("Friday"); 

break; 

case 6: printf("Saturday"); 

 break; 

case 7: printf("Sunday"); 

 break; 

} 

Each case is labeled by one or more integer-valued constants or constant 

expressions. If a case matches the expression value, execution starts at that 

case. All case expressions must be different. The case labeled default is 

executed if none of the other cases are satisfied. A default is optional; if it isn't 

there and if none of the cases match, no action at all takes place. Cases and the 

default clause can occur in any order.  

Following is a program to count the occurrences of each digit, white space, and 

all other characters, using a switch:  

#include <stdio.h> 

main()  /* count digits, white space, others */ 

{ 

int c, i, nwhite, nother, ndigit[10]; 

nwhite = nother = 0; 

for (i = 0; i < 10; i++) 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 79 

ndigit[i] = 0; 

while ((c = getchar()) != EOF) { 

switch (c) { 

case '0': case '1': case '2': case '3': case '4': 

case '5': case '6': case '7': case '8': case '9': 

ndigit[c-'0']++; 

break; 

case ' ': case '\n': case '\t': nwhite++; 

break; 

default: 

nother++; 

break; 

} 

} 

printf("digits ="); 

for (i = 0; i < 10; i++) 

printf(" %d", ndigit[i]); 

printf(", white space = %d, other = %d\n", nwhite, nother); 

return 0; 

} 

Note that multiple cases can be combined as is the case with the digits in the 

above program. This is similar to the multiple conditions combined using logical 

or (||) with in one if statement. Therefore, it can be said that if multiple 

conditions involving single variable, but combined using logical or (||) are under 

one if then those can be safely converted to switch construct. But if the logical 

and has been used to combine multiple conditions or if the multiple conditions 

involve more than one variable, then switch construct can not be used. 

The break statement causes an immediate exit from the switch. Because cases 

serve just as labels, after the code for one case is done, execution falls through 

to the next unless you take explicit action to escape. break and return are the 

most common ways to leave a switch. A break statement can also be used to 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 80 

force an immediate exit from while, for and do loops, as will be discussed later 

in this lesson.  

Falling through cases is a mixed blessing. On the positive side, it allows several 

cases to be attached to a single action, as with the digits in this example. But it 

also implies that normally each case must end with a break to prevent falling 

through to the next. Falling through from one case to another is not robust, 

being prone to disintegration when the program is modified. With the exception 

of multiple labels for a single computation, fall-throughs should be used 

sparingly and commented.  

Default case is used when none of the conditions specified under cases are 

encountered and thus may be ignored or an appropriate action may be taken. It 

means all those cases which have not been handled using case labels. 

As a matter of good form, put a break after the last case (the default here) even 

though it's logically unnecessary. Some day when another case gets added at 

the end, this bit of defensive programming will save you.  

1.6.8  goto and labels 

C provides the infinitely-abusable goto statement and labels to branch to. 

Formally, the goto statement is never necessary and in practice it is almost 

always easy to write code without it. We have not used goto in this book.  

Nevertheless, there are a few situations where gotos may find a place. The most 

common is to abandon processing in some deeply nested structure, such as 

breaking out of two or more loops at once. The break statement cannot be used 

directly since it only exits from the innermost loop. Thus:  

 for ( ... ) 

  for ( ... ) { 

   ... 

   if (disaster) 

   goto error; 

  } 

  ... 

 error: 

 /* clean up the mess */ 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 81 

This organization is handy if the error-handling code is non-trivial and if errors 

can occur in several places.  

A label has the same form as a variable name and is followed by a colon. It can 

be attached to any statement in the same function as the goto. The scope of a 

label is the entire function.  

As another example, consider the problem of determining whether two arrays a 

and b have an element in common. One possibility is  

 for (i = 0; i < n; i++) 

for (j = 0; j < m; j++) 

   if (a[i] == b[j]) 

    goto found; 

   /* didn't find any common element */ 

 ... 

 found: 

 /* got one: a[i] == b[j] */ 

 ... 

Code involving a goto can always be written without one, though perhaps at the 

price of some repeated tests or an extra variable. For example, the array search 

becomes  

 found = 0; 

 for (i = 0; i < n && !found; i++) 

  for (j = 0; j < m && !found; j++) 

   if (a[i] == b[j]) 

    found = 1; 

 if (found) 

  /* got one: a[i-1] == b[j-1] */ 

  ... 

 else 

  /* didn't find any common element */ 

  ... 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 82 

With a few exceptions like those cited here, code that relies on goto statements 
is generally harder to understand and to maintain than code without gotos. 
Although we are not dogmatic about the matter, it does seem that goto 
statements should be used rarely, if at all. 

1.6.9   Summary 

Conditional flow of program provides decision making ability. In C language 
there are if …else and switch constructs for implementing conditional flow. if 
statements can be nested. In case of switch statement value of some variable is 
checked against integer constants. Logical operators are to be used cautiously 
for combining conditions. 

1.6.10   Short Answer Type Questions 

1. What are the various conditional constructs available in C? 

2. What is the purpose of switch statement? 

3. Why break is needed after cases? 

4. What is a default case? 

1.6.11 Long Answer Type Questions 

1. What is the difference between if and switch constructs? 

2. In what type of situation switch will be preferred over if statements? 

3. What are the rules of using logical operators with conditions? 

4. Is it possible to replace all kinds of if constructs with switch? If 
not then why? 

5. WAP to check whether the person is eligible for voting or not. 

6. WAP to calculate total modes, percentage and division of the 
student using nested if Else. 

7. WAP to show use of switch statement. 

6.12 Suggested Books 

 Programming with ANSI and Turbo C  Ashok N. Kamthane 

 Programming using C    E. Balagurusamy 

 Application Programming in C   R. S. Salaria 

Let Us C      Yashawant Kanetkar 

 

 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 83 

Web Resources 

 www.tutorialspoint.com/cprogramming/ 

 www.learn-c.org 

 www.cprogramming.com/tutorial/c-tutorial.html 

 www.programiz.com/c-programming 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 84 

 

B.A. PART-II 

SEMESTER-III 

   PAPER : BAP-201 

C PROGRAMMING AND  

DATA STRUCTURES 

 

LESSON NO. 1.7 AUTHOR : DHARAM VEER SHARMA 

 

ITERATIVE CONTROL STATEMENTS 

 

1.7.1  Introduction 

1.7.2  Objectives of the Lesson 

1.7.3  while Loop 

1.7.4  for Loop 

1.7.5  do … while Loop 

1.7.6  Nested loops 

1.7.7  Sequence Breaking Control Statements 

1.7.8  Summary 

1.7.9  Short Answer Type Questions 

1.7.10  Long Answer Type Questions 

1.7.11  Suggested Books 

 

1.7.1  Introduction  

Iterative control structures provide repetitive computations. In case where some 

set of statements are to be executed repeatedly, the iterative control structures 

can be used. The C language provides three iterative control structures namely 

for, while and do ... while loops. for and while loops are entry control loops 

where as do … while is an exit controlled loop. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 85 

 

1.7.2   Objectives of the Lesson 

In this lesson we shall discuss the various iterative control structures available 

in the C language. These constructs provide repetitive execution of some set of 

statements. 

1.7.3  while Loop 

As discussed earlier while is an entry controlled loop, means if the condition is 

true only then statements under the loop will be executed. In  

while (expression) 

         statement 

the expression is evaluated, if it is non-zero, statement is executed and 

expression is re-evaluated. This cycle continues until expression becomes zero, 

at which point execution resumes after statement. However if the expression 

evaluates to zero then the statement is not executed. while loop is used in case 

the number of iterations are not known in advance. 

 

 The following variant of while loop produces an infinite loop 

 while (1) 

In this case since expression always evaluates to non-zero value, the loop is not 

terminated by just checking the expression. Instead, some internal control 

breaking mechanism is required to come out of the loop. The mechanism has 

been discussed later in this lesson. 

1.7.4  for Loop 

 Like while loop, for is also an entry controlled loop. The for statement  

 for (expr1; expr2; expr3) 

          statement 

 is equivalent to  

 expr1; 

 while (expr2) { 

          statement 

          expr3; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 86 

 } 

 except for the behaviour of break or continue. 

A loop control variable is used for controlling the number of times for which the 

loop will be executed. 

Grammatically, the three components of a for loop are expressions. Most 

commonly, expr1 and expr3 are assignments or function calls and expr2 is a 

relational expression. Any of the three parts can be omitted, although the 

semicolons must remain. If expr1 or expr3 is omitted, it is simply dropped from the 

expansion. If the test, expr2, is not present, it is taken as permanently true, so  

for (;;) { 

... 

} 

 is an ``infinite'' loop, presumably to be broken by other means, such as a 

break or return.  

The three expressions of the for loop are executed in the following way: 

expr1: It is executed only once, primarily for initializing the loop control 

variable. 

expr2: It is executed repeatedly for checking the truthfulness of 

condition, up to which the body of the loop is to be executed. 

When the condition evaluates to false the loop is terminated. 

expr3: It is also repeatedly executed for incrementing or decrementing the 

value of the loop control variable. 

In general, for loop is used when number of iterations is known in advance and 

while is used when iterations are not known. However these can be used 

interchangeably. Whether to use while or for largely becomes a matter of 

personal preference. For example, in  

while ((c = getchar()) == ' ' || c == '\n' || c = '\t') 

         ;   /* skip white space characters */ 

 there is no initialization or re-initialization, so the while is most natural.  

The for is preferable when there is a simple initialization and increment since it 

keeps the loop control statements close together and visible at the top of the 

loop. This is most obvious in  

for (i = 0; i < n; i++) 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 87 

         ... 

which is the C idiom for processing the first n elements of an array, the analog 

of the Fortran DO loop or the Pascal for. The analogy is not perfect, however, 

since the index variable i retains its value when the loop terminates for any 

reason. Because the components of the for are arbitrary expressions, for loops 

are not restricted to arithmetic progressions. Nonetheless, it is bad style to force 

unrelated computations into the initialization and increment of a for, which are 

better reserved for loop control operations.  

As a larger example, here is another version of atoi for converting a string to its 

numeric equivalent. It copes with optional leading white space and an optional 

+ or - sign. 

 The structure of the program reflects the form of the input:  

 skip white space, if any 

 get sign, if any 

 get integer part and convert it  

Each step does its part, and leaves things in a clean state for the next. The whole 

process terminates on the first character that could not be part of a number.  

#include <ctype.h> 

/* atoi:  convert s to integer; version 2 */ 

int atoi(char s[]) 

{ 

int i, n, sign; 

for (i = 0; isspace(s[i]); i++)  /* skip white space */ 

          ; 

        sign = (s[i] == '-') ? -1 : 1; 

        if (s[i] == '+' || s[i] == '-')  /* skip sign */ 

i++; 

for (n = 0; isdigit(s[i]); i++) 

n = 10 * n + (s[i] - '0'); 

return sign * n; 

} 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 88 

The standard library provides a more elaborate function strtol for conversion of 

strings to long integers.  

The advantages of keeping loop control centralized are even more obvious when 

there are several nested loops. The following function is a Shell sort for sorting 

an array of integers.  

The basic idea of this sorting algorithm, which was invented in 1959 by D. L. 

Shell, is that in early stages, far-apart elements are compared, rather than 

adjacent ones as in simpler interchange sorts. This tends to eliminate large 

amounts of disorder quickly, so later stages have less work to do. The interval 

between compared elements is gradually decreased to one, at which point the 

sort effectively becomes an adjacent interchange method.  

/* shellsort:  sort v[0]...v[n-1] into increasing order */ 

void shellsort(int v[], int n) 

{ 

int gap, i, j, temp; 

for (gap = n/2; gap > 0; gap /= 2) 

           for (i = gap; i < n; i++) 

for (j=i-gap; j>=0 && v[j]>v[j+gap]; j-=gap) { 

temp = v[j]; 

v[j] = v[j+gap]; 

v[j+gap] = temp; 

} 

} 

There are three nested loops. The outermost controls the gap between compared 

elements, shrinking it from n/2 by a factor of two each pass until it becomes zero. 

The middle loop steps along the elements. The innermost loop compares each pair of 

elements that is separated by gap and reverses any that are out of order. Since gap 

is eventually reduced to one, all elements are eventually ordered correctly. Notice 

how the generality of the for makes the outer loop fit in the same form as the others, 

even though it is not an arithmetic progression.  

One final C operator is the comma ``,'', which most often finds use in the for 

statement. A pair of expressions separated by a comma is evaluated left to 

right, and the type and value of the result are the type and value of the right 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 89 

operand. Thus in a for statement, it is possible to place multiple expressions in 

the various parts, for example to process two indices in parallel. This is 

illustrated in the function reverse(s), which reverses the string s in place.  

#include <string.h> 

/* reverse:  reverse string s in place */ 

void reverse(char s[]) 

{ 

int c, i, j; 

 

for (i = 0, j = strlen(s)-1; i < j; i++, j--) { 

c = s[i]; 

s[i] = s[j]; 

s[j] = c; 

} 

} 

The commas that separate function arguments, variables in declarations, etc., 

are not comma operators and do not guarantee left to right evaluation.  

Comma operators should be used sparingly. The most suitable uses are for 

constructs strongly related to each other, as in the for loop in reverse and in 

macros where a multistep computation has to be a single expression. A comma 

expression might also be appropriate for the exchange of elements in reverse, 

where the exchange can be thought of a single operation:  

for (i = 0, j = strlen(s)-1; i < j; i++, j--) 

           c = s[i], s[i] = s[j], s[j] = c; 

Forms of for loop 

Syntax Output Remarks 

for (;;) Infinite loop No arguments means condition is 

always true, therefore the loop executes 

for infinite number of times. 

for (a=0;a<=20;) Infinite loop Value of 'a' is not modified, therefore, 

condition will always evaluate to true 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 90 

making the loop an infinite loop. 

for (a=0;a<=10;a++) 

printf("%d ",a); 

Displays 

values from 0 

to 10 

Since initial value of 'a' is 0 and it is 

incremented by one, the values from 0 

to 10 will be printed. When 'a' will 

become 11 the condition will be false 

and loop will terminate. 

for (a=10;a>=0;a--) Displays 

values from 10 

to 1 

Since initial value of 'a' is 10 and it is 

decremented by one, the values from 

10 to 0 will be printed. When 'a' will 

become -1 the condition will be false 

and loop will terminate. 

1.7.5  do … while Loop 

As we discussed in lesson 1, the while and for loops test the termination condition 

at the top. By contrast, the third loop in C, the do-while, tests at the bottom after 

making each pass through the loop body; the body is always executed at least 

once. Therefore, do … while loop is termed as exit controlled loop. 

 The syntax of the do is  

  do 

          statement 

 while (expression); 

The statement is executed, then expression is evaluated. If it is true, statement 

is evaluated again and so on. When the expression becomes false, the loop 

terminates. Except for the sense of the test, do-while is equivalent to the Pascal 

repeat-until statement.  

Experience shows that do-while is much less used than while and for. 

Nonetheless, from time to time it is valuable, as in the following function itoa, 

which converts a number to a character string (the inverse of atoi). The job is 

slightly more complicated than might be thought at first, because the easy 

methods of generating the digits generate them in the wrong order. We have 

chosen to generate the string backwards, then reverse it.  

/* itoa:  convert n to characters in s */ 

void itoa(int n, char s[]) 

{ 

int i, sign; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 91 

if ((sign = n) < 0)  /* record sign */ 

           n = -n;          /* make n positive */ 

i = 0; 

do {      /* generate digits in reverse order */ 

           s[i++] = n % 10 + '0';  /* get next digit */ 

} while ((n /= 10) > 0);    /* delete it */ 

if (sign < 0) 

           s[i++] = '-'; 

s[i] = '\0'; 

reverse(s); 

} 

The do-while is necessary, or at least convenient, since at least one character 

must be installed in the array s, even if n is zero. We also used braces around 

the single statement that makes up the body of the do-while, even though they 

are unnecessary, so the hasty reader will not mistake the while part for the 

beginning of a while loop. 

do … while construct is best suited for situations where some program or block 

is to be repeatedly executed but that must be executed at least once. Following 

is the example demonstrating the use of do … while construct: 

Example 

/* program for finding sum any n numbers */ 

#include <stdio.h> 

#include <conio.h> 

void main() 

{ 

 int i, x, n, sum; 

char choice; 

do { 

 sum = 0; 

 clrscr(); 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 92 

  printf("Enter the number of values -> "); 

  scanf("%d",&n); 

  for (i=0; i < n;i++) 

  { 

   printf("\nEnter some number -> "); 

   scanf("%d",&x); 

   sum += x; 

} 

printf("\nSum of entered numbers is -> %d",sum); 

printf("Want to run the program again <Y/N>"); 

choice = getch(); 

  } while (choice == 'Y' || choice == 'y'); 

  printf("\n!!! That's all folks !!!"); 

  getch(); 

} 

In the above example the program runs for the first time and then asks the user 

if he wants to run the program again. Depending on the choice of the user the 

program either executes again or is exits. 

1.7.6   Nested loops 

Loops can be nested in any order within a program. If iterations with in 

iterations are to be performed then nested loops can be used. In such cases 

loop control variable, which controls the number of iterations to be performed, 

should be chosen separately for each of the inner loops. 

This can be well demonstrated from the following example in which all possible 

outcomes of throwing three dice can be generated: 

Example 

#include <stdio.h> 

#include <conio.h> 

void main() 

{ 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 93 

 int i,j,k; 

 printf("Possible outcomes of throwing three dice are -> \n"); 

 for (i=1;i<=6;i++) 

  for (j=1;j<=6;j++) 

   for (k=1;k<=6;k++) 

    printf("%d %d %d\t",i,j,k); 

} 

 This program will produce all possible outcomes of throwing three dice 

simultaneously. 

1.7.7   Sequence Breaking Control Statements 

It is sometimes convenient to be able to exit from a loop other than by testing at 

the top or bottom. The break statement provides an early exit from for, while 

and do, just as from switch. A break causes the innermost enclosing loop or 

switch to be exited immediately.  

The following function, trim, removes trailing blanks, tabs and newlines from 

the end of a string, using a break to exit from a loop when the rightmost non-

blank, non-tab, non-newline is found.  

/* trim:  remove trailing blanks, tabs, newlines */ 

int trim(char s[]) 

{ 

int n; 

for (n = strlen(s)-1; n >= 0; n--) 

           if (s[n] != ' ' && s[n] != '\t' && s[n] != '\n') 

                 break; 

s[n+1] = '\0'; 

return n; 

} 

strlen returns the length of the string. The for loop starts at the end and scans 

backwards looking for the first character that is not a blank or tab or newline. The 

loop is broken when one is found or when n becomes negative (that is, when the 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 94 

entire string has been scanned). You should verify that this is correct behavior even 

when the string is empty or contains only white space characters.  

The continue statement is related to break, but less often used; it causes the 

next iteration of the enclosing for, while, or do loop to begin. In the while and 

do, this means that the test part is executed immediately; in the for, control 

passes to the increment step. The continue statement applies only to loops, not 

to switch. A continue inside a switch inside a loop causes the next loop 

iteration.  

 As an example, this fragment processes only the non-negative elements 

in the array a; negative values are skipped.  

for (i = 0; i < n; i++) 

if (a[i] < 0)   /* skip negative elements */ 

continue; 

... /* do positive elements */ 

 The continue statement is often used when the part of the loop that 

follows is complicated, so that reversing a test and indenting another level 

would nest the program too deeply.  

1.7.8   Summary 

Iterative control structures are used when some statements are to be executed 

repetitively. In C language, there are three iterative control structures available. 

for and while are entry controlled loops and can be used interchangeably. do 

…while is an exit controlled loop. for or while loops should not be used in place 

of do … while loop. 

1.7.9  Short Answer Type Questions 

 1. What are the various iterative controlled structures available in C? 

2. What is the difference between for and while loop? 

3. Atleast how many times statements are executed in do … while loop? 

4. What is the difference between break and continue? 

1.7.10  Long Answer Type Questions 

1. Discuss in detail the syntax and use of for and while loops. 

2. Is it possible to use for or while loops in place of do … while loop? 

Explain your answer. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 95 

3. Explain the meaning of sequence breaking control statements. 

4. WAP to print the Even numbers less than 100. 

5. WAP to print the following : 

1 

1  2 

1  2  3 

1  2  3  4 

1  2  3  4  5 

1.7.11  Suggested Books 

 Programming with ANSI and Turbo C  Ashok N. Kamthane 

 Programming using C    E. Balagurusamy 

 Application Programming in C   R. S. Salaria 

Let Us C      Yashawant Kanetkar 

Web Resources 

 www.tutorialspoint.com/cprogramming/ 

 www.learn-c.org 

 www.cprogramming.com/tutorial/c-tutorial.html 

 www.programiz.com/c-programming 

 

 

 

 

 

 

 

 

 

B.A. PART-II PAPER : BAP-201 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 96 

SEMESTER-III C PROGRAMMING AND  

DATA STRUCTURES 

 

LESSON NO. 1.8 AUTHOR : DHARAM VEER SHARMA 

 

ARRAYS 

 

1.8.1 Introduction 

1.8.2 Objectives  

1.8.3 Array Basics 

1.8.4 Array Initialization 

1.8.5 Arrays and functions 

1.8.6 Multi-dimensional Arrays 

1.8.7 Summary 

1.8.8 Short Answer Type Questions 

1.8.9 Long Answer Type Questions 

1.8.10 Suggested Books 

 

1.8.1   Introduction 

When multiple elements of the same data type are to be used, then we need 

some such identifier which can store these multiple elements. In the C language 

array is one such data structure that can store groups of similar data type 

elements. These elements are stored in contiguous memory area. The array 

elements are accessed by providing the name of the storage area or the array 

and a subscript representing the position of the element within array. 

1.8.2   Objectives 

We shall discuss the declaration, initialization, printing and manipulation of 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 97 

array elements in this lesson. We shall see how arrays are passed to functions. 

We shall also discuss multi-dimensional array and using pointers with arrays. 

1.8.3   Array basics 

Let's start by looking at a single variable used to store a person's age. 

1: #include <stdio.h> 

2:  

3: int main() 

4: { 

5:   short age; 

6:   age=23; 

7:   printf("%d\n", age); 

8:   return 0; 

9: } 

 Not much to it. The variable age is created at line (5) as a short. A value 

is assigned to age. Finally, age is printed to the screen. 

 

Now let's keep track of 4 ages instead of just one. We could create 4 separate 

variables, but 4 separate variables have limited appeal. (If using 4 separate 

variables is appealing to you, then consider keeping track of 1000 ages instead 

of just 4). Rather than using 4 separate variables, we'll use an array which can 

store a group of similar data type elements as single entity and whose each 

element is accessed by providing its offset with in the array. 

An array is a simple sequence of objects. All of the objects in the sequence are 

of the same type. The following example presents an array of four integers. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 98 

 
    Array of four integers 

 Each cell of the array is accessed through its index number. Arrays are zero-

based. Thus the first cell is defined by index 0, the second by index 1 and so 

on. 

  

 

  Arrays are declared in the following manner: 

  type variable_name[array_size]; 

 The following examples show different ways to declare various arrays. 

  int my_int_array[4]; // An array of 4 integers 

  double my_double_array[10]; // An array of 10 doubles 

Accessing an element within an array 

Elements within an array can be accessed ( for reading or writing ) with the 

subscript operator [ ]. 

Example -  

int my_array[10]; // create an array of 10 integers  

my_array[3] = 15; // store the number 15 in the 4th element of my-array 

cout << my_array[3]; // display the number 15 we just put in 

NOTE: In C, arrays do not have boundary checking. This means that the 

programmer is responsible for knowing the number of cells in the array and 

thus, the last valid index which can be referenced. Accessing an element past 

the end of the array bounds will not cause a compiler error, but will crash your 

program at an unpredictable (but usually the worst possible) time. This is a 

very common bug which is found even in some of the most popular commercial 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 99 

software packages. Be careful – this is one of the most difficult bugs to track 

down. 

Example -  

int the_array[2];  //array of 2 integers 

the_array[0] = 42;  //valid access 

the_array[1] = 1776; //valid access 

the_array[3] = 1492; //oops! Error but not reported by compiler. 

 Here's how to create an array and one way to initialize an array:  

1: #include <stdio.h> 

2:  

3: int main() 

4: { 

5:   short age[4];  

6:   age[0]=23; 

7:   age[1]=34; 

8:   age[2]=65; 

9:   age[3]=74; 

10:   return 0; 

11: } 

On line (5), an array of 4 shorts is created. Values are assigned to each variable 

in the array on line (6) through line (9). 

 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 100

Accessing any single short variable or element, in the array is straightforward. 

Simply provide a number in square braces next to the name of the array. The 

number identifies which of the 4 elements in the array you want to access.  

The program above shows that the first element of an array is accessed with the 

number 0 rather than 1. Later We'll discuss why 0 is used to indicate the first 

element in the array. 

1.8.4  Array Initialization 

When an array of any type is created, the cells within the array are not empty. 

Depending on your setup, they will either have an already initialized value 

depending on the type of array you created or the cells will contain garbage 

values left over from previous use of that piece of memory. In either case, it is 

usually a good idea to initialize the elements of the array prior to use. Two 

common ways of initializing an array is through an initializer list or through a 

loop. Array elements can be initialized at the time of declaration of the array as 

following. 

Example (initializer list) -  

int int_arr[] = { 34, 68, 7, 9, 20 };     

double double_arr[] = { 22.78, 9.7, 3.1415, 2.71 }; 

char name[10] = "John"; 

char name[10]= { 'J', 'o','h','n','\0'}; 

In all the above declaration the array has been initialized there itself. If an array 

is partially initialized, then the remaining elements are automatically initialized 

to 0 in case of numeric arrays. 

 int a[10] = {0}; 

 The above example is a handy way of initializing all elements of an array 

to 0. 

NOTE: When initializer lists are used, the size of the array inside the brackets 

is not needed. You are free to explicitly place the number there, but if you do 

not, the compiler will know the size based on the number of elements you 

initialized the array with. 

Example (loop) -  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 101

const int ARRAY_SIZE = 10; 

int my_array[ARRAY_SIZE]; 

for (int i = 0; i < ARRAY_SIZE; i++) 

{ 

 my_array[i] = 0; 

} 

 This method is useful when arrays are to be initialized with in the program. 

NOTE:  A ‘for’ loop is used by convention to initialize the array. When the value 

to be used to initialize the array is the same for all the cells, a loop is usually 

the way to go. 

Arrays and Loops 

Most of the useful work done with an array requires some sort of searching 

through the array. While searching through the array, you are accessing every 

cell in that array. This is done with the same kind of ‘for’ loop. The following 

example ‘traverses’ (runs through) the entire array in order to check if the 

number 2 appears anywhere within the array. 

Example: 

const int ARR_SIZE = 7; 

int my_array[ARR_SIZE] = { 60, 3, 2, 8, 19, 2, 9 }; 

for (int i = 0; i < ARR_SIZE; i++) 

{ 

 if (my_array[i] == 2) 

 { 

  cout << “Number 2 appears in index “ << i; 

 } 

} 

1.8.5   Arrays and Functions 

Arrays, by default, are not passed to functions in the same way as regular 

variables are. In C, regular variables are passed by value, meaning that any 

changes you make to those variables in that function will not persist after you 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 102

leave the function. Arrays are passed by reference (this isn’t technically true, 

but the effect is the same), meaning that any changes you make to array cells in 

the function are still in effect when the function exits. 

NOTE: (For the more inquisitive of you): The name of the array is actually a pointer 

to the first cell of the array. When you pass an array to a function, what is passed is 

actually the address of the first cell. Because of this, access to other cells of the array 

is freely available from inside the function through the use of the subscript operator 

or through pointer arithmetic.  

What follows is a complete program which declares an array, initializes its cells and 

increments the value in each cell in a separate function. 

Example -  

void increment_all(int an_array[], int size) 

{    

 for (int i = 0; i < size; i++) 

  an_array[i] += 1; 

} 

int main() 

{ 

 const int ARR_SIZE = 10; 

 int my_arr[ARR_SIZE]; 

 for (int i = 0; i < ARR_SIZE; i++) 

  my_arr[i] = i; 

 increment_all(my_arr, ARR_SIZE); 

 return 0; 

} 

Like other languages, C uses arrays as a way of describing a collection of 

variables with identical properties. The group has a single name for all of the 

members, with the individual members being selected by an index.  

 Here's an array being declared: 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 103

  double ar[100]; 

The name of the array is ar and its members are accessed as ar[0] through to 

ar[99] inclusive, as the following figure shows. 

 

 
100 element array 

 

Each of the hundred members is a separate variable whose type is double. 

Without exception, all arrays in C are numbered from 0 up to one less than the 

bound given in the declaration. This is a prime cause of surprise to beginners—

watch out for it. For simple examples of the use of arrays, look back at earlier 

lessons where several problems are solved with their help. 

One important point about array declarations is that they don't permit the use 

of varying subscripts. The numbers given must be constant expressions which 

can be evaluated at compile time, not run time. For example, this function 

incorrectly tries to use its argument in the size of an array declaration: 

 f(int x){ 

  char var_sized_array[x];        /* FORBIDDEN */ 

 } 

It's forbidden because the value of x is unknown when the program is compiled; 

it's a run-time, not a compile-time, value. 

To tell the truth, it would be easy to support arrays whose first dimension is 

variable, but neither Old C nor the Standard permits it, although we do know of 

one Very Old C compiler that used to do it. 

1.8.6  Multi-dimensional Arrays  

 Multidimensional arrays can be declared like this: 

 int three_dee[5][4][2]; 

 int t_d[2][3] 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 104

The use of the brackets gives a clue to what is going on. The first declaration gives 

us a five-element array called three_dee. The members of that array are each a four 

element array whose members are an array of two ints. We have declared arrays of 

arrays, as the following figure shows for two dimensions. 

 

 
Two-dimensional array, showing layout 

 

In the diagram, you will notice that t_d[0] is one element, immediately followed by 

t_d[1] (there is no break). It so happens that both of these elements are themselves 

arrays of three integers. Because of C's storage layout rules, t_d[1][0] is immediately 

after t_d[0][2]. It would be possible (but very poor practice) to access t_d[1][0] by 

making use of the lack of array-bound checking in C and to use the expression 

t_d[0][3]. That is not recommended—apart from anything else, if the declaration of 

t_d ever changes, then the results will be likely to surprise you. 

That's all very well, but does it really matter in practice? Not much it's true; but 

it is interesting to note that in terms of actual machine storage layout the 

rightmost subscript ‘varies fastest’. This has an impact when arrays are 

accessed via pointers. Otherwise, they can be used just as would be expected; 

expressions like these are quite in order: 

 three_dee[1][3][1] = 0; 

 three_dee[4][3][1] += 2; 

The second of those is interesting for two reasons. First, it accesses the very last 

member of the entire array—although the subscripts were declared to be 

[5][4][2], the highest usable subscript is always one less than the one used in 

the declaration. Second, it shows where the combined assignment operators are 

a real blessing. For the experienced C programmer, it is much easier to tell that 

only one array member is being accessed, and that it is being incremented by 

two. Other languages would have to express it like this: 

 three_dee[4][3][1] = three_dee[4][3][1] + 2; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 105

It takes a conscious effort to check that the same array member is being 

referenced on both sides of the assignment. It makes things easier for the 

compiler too: there is only one array indexing calculation to do and this is likely 

to result in shorter, faster code. (Of course a clever compiler would notice that 

the left- and right-hand sides look alike and would be able to generate equally 

efficient code—but not all compilers are clever and there are lots of special 

cases where even clever compilers are unable to make use of the information.) 

It may be of interest to know that although C offers support for 

multidimensional arrays, they aren't particularly common to see in practice. 

One-dimensional arrays are present in most programs, if for no other reason 

than that's what strings are. Two dimensional arrays are seen occasionally and 

arrays of higher order than that are most uncommon. One of the reasons is that 

the array is a rather inflexible data structure, and the ease of building and 

manipulating other types of data structures in C means that they tend to 

replace arrays in the more advanced programs. We will see more of this when 

we look at pointers. 

1.8.7   Summary 

Arrays are used for storing multiple elements of the same data type. Elements 

of array can be accessed by providing a subscript enclosed in square brackets. 

Arrays can be initialized at the time of declaration or using a for loop. If array is 

partially initialized then the remaining elements are automatically initialized to 

0, in case of numeric arrays. Arrays can be passed as arguments to functions. 

Multi-dimensional arrays are used for storing matrix and other higher 

dimensional data. 

1.8.8  Short Answer Type Questions 

 1. Define arrays. 

2. How array can be initialized at the time of declaration? 

3. Define multi-dimensional array. 

1.8.9  Long Answer Type Questions 

 1. What are the methods of arrays initialization? Explain giving  

  examples. 

2. How arrays are passed as arguments to functions? Explain. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 106

3. What is the purpose of multi-dimensional arrays? Give an example 

of these. 

4. WAP to find the transpose of a matrix. 

5. WAP of matrix multiplication using Array's. 

1.8.10  Suggested Books 

1. Application Programming in C  R. S. Salaria 

2. C Programming using Turbo C  Robert Lafore 

3. Programming with ANSI and Turbo C  Ashok N. Kamthane 

4. Programming using C   E. Balagurusamy 

5.  Let Us C     Yashawant Kanetkar 

Web Resources 

 www.tutorialspoint.com/cprogramming/ 

 www.learn-c.org 

 www.cprogramming.com/tutorial/c-tutorial.html 

 www.programiz.com/c-programming 

 

 

 

 

 

 

 

 

 

 

 

 

 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 107

B.A. PART-II 

SEMESTER-III 

   PAPER : BAP-201 

C PROGRAMMING AND  

DATA STRUCTURES 

 

LESSON NO. 1.9 AUTHOR : DHARAM VEER SHARMA 

 

Functions 

1.9.1 Introduction 

1.9.2 Objectives  

1.9.3 Basics of Functions  

1.9.4 Functions Returning Non-integers 

1.9.5 External Variables 

1.9.6 Formal and Actual Arguments 

1.9.7 Scope Rules 

1.9.8 Header Files 

1.9.9 Recursion  

1.9.10 Summary 

1.9.11 Short Answer Type Questions 

1.9.12 Long Answer Type Questions 

1.9.13 Suggested Books 

1.9.1  Introduction 

The C language is basically a functional programming language, in which the 

program is divided in small manageable pieces of code called functions, which 

break large computing tasks into smaller ones and enable people to build on 

what others have done instead of starting over from scratch. Appropriate 

functions hide details of operation from parts of the program that don't need to 

know about them, thus clarifying the whole and easing the pain of making 

changes.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 108

C has been designed to make functions efficient and easy to use; C programs 

generally consist of many small functions rather than a few big ones. A program 

may reside in one or more source files. Source files may be compiled separately 

and loaded together, along with previously compiled functions from libraries. 

We will not go into that process here, however, since the details vary from 

system to system. 

1.9.2  Objectives  

In this lesson, we shall discuss the program structuring tool called function. We 

shall discuss function prototyping, function definition and function calling 

methods. The discussion will also include methods of parameter passing and 

recursive functions. 

1.9.3  Basics of Functions 

A function definition contains a function declaration and the body of a function. 

To begin with, let us design and write a program to print each line of its input 

that contains a particular ``pattern'' or string of characters. For example, 

searching for the pattern of letters ``ould'' in the set of lines :  

 Ah Love! could you and I with Fate conspire 

 To grasp this sorry Scheme of Things entire, 

 Would not we shatter it to bits -- and then 

 Re-mould it nearer to the Heart's Desire! 

 will produce the output  

 Ah Love! could you and I with Fate conspire 

 Would not we shatter it to bits -- and then 

 Re-mould it nearer to the Heart's Desire! 

 The job falls neatly into three pieces:  

 while (there's another line) 

 if (the line contains the pattern) 

            print it 

Although it's certainly possible to put the code for all of this in main, a better way is 

to use the structure to advantage by making each part a separate function. Three 

small pieces are better to deal with than one big one, because irrelevant details can 

be buried in the functions and the chance of unwanted interactions is minimized. 

And the pieces may even be useful in other programs.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 109

``While there's another line'' is getline, a function that we wrote in lesson 1, and 

``print it'' is printf, which someone has already provided for us. This means we 

need only write a routine to decide whether the line contains an occurrence of 

the pattern.  

We can solve that problem by writing a function strindex(s,t) that returns the 

position or index in the string s where the string t begins, or -1 if s does not 

contain t. Because C arrays begin at position zero, indexes will be zero or 

positive, and so a negative value like -1 is convenient for signaling failure. When 

we later need more sophisticated pattern matching, we only have to replace 

strindex; the rest of the code can remain the same. (The standard library 

provides a function strstr that is similar to strindex, except that it returns a 

pointer instead of an index.)  

Given this much design, filling in the details of the program is straightforward. Here 

is the whole thing, so you can see how the pieces fit together. For now, the pattern to 

be searched for is a literal string, which is not the most general of mechanisms. We 

will return shortly to a discussion of how to initialize character arrays and will show 

how to make the pattern a parameter that is set when the program is run. There is 

also a slightly different version of getline; you might find it instructive to compare it 

to the one in lesson 2.  

#include <stdio.h> 

#define MAXLINE 1000 /* maximum input line length */ 

int getline(char line[], int max) 

int strindex(char source[], char searchfor[]); 

char pattern[] = "ould";   /* pattern to search for */ 

/* find all lines matching pattern */ 

main() 

{ 

char line[MAXLINE]; 

int found = 0; 

while (getline(line, MAXLINE) > 0) 

if (strindex(line, pattern) >= 0) { 

printf("%s", line); 

found++; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 110

} 

return found; 

} 

/* getline:  get line into s, return length */ 

int getline(char s[], int lim) 

{ 

int c, i; 

 i = 0; 

 while (--lim > 0 && (c=getchar()) != EOF && c != '\n') 

  s[i++] = c; 

 if (c == '\n') 

s[i++] = c; 

 s[i] = '\0'; 

return i; 

} 

 

/* strindex:  return index of t in s, -1 if none */ 

int strindex(char s[], char t[]) 

{ 

int i, j, k; 

 for (i = 0; s[i] != '\0'; i++) { 

for (j=i, k=0; t[k]!='\0' && s[j]==t[k]; j++, k++) 

   ; 

   if (k > 0 && t[k] == '\0') 

return i; 

} 

 return -1; 

} 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 111

 Each function definition has the form  

return-type function-name(argument declarations) 

{ 

 declarations and statements 

} 

Various parts may be absent; a minimal function is  

dummy() {} 

which does nothing and returns nothing. A do-nothing function like this is 

sometimes useful as a place holder during program development. If the return 

type is omitted, int is assumed.  

A program is just a set of definitions of variables and functions. Communication 

between the functions is by arguments and values returned by the functions, 

and through external variables. The functions can occur in any order in the 

source file and the source program can be split into multiple files, so long as no 

function is split.  

The return statement is the mechanism for returning a value from the called 

function to its caller. Any expression can follow return:  

return expression; 

The expression will be converted to the return type of the function if necessary. 

Paresthesis are often used around the expression, but they are optional.  

The calling function is free to ignore the returned value. Furthermore, there 

need to be no expression after return; in that case, no value is returned to the 

caller. Control also returns to the caller with no value when execution ``falls off 

the end'' of the function by reaching the closing right brace. It is not illegal, but 

probably a sign of trouble, if a function returns a value from one place and no 

value from another. In any case, if a function fails to return a value, its ``value'' 

is certain to be garbage.  

The pattern-searching program returns a status from main, the number of 

matches found. This value is available for use by the environment that called 

the program  

The mechanics of how to compile and load a C program that resides on multiple 

source files vary from one system to the other. Suppose that the three functions 

are stored in three files called main.c, getline.c and strindex.c. Then the 

command  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 112

cc main.c getline.c strindex.c 

compiles the three files, placing the resulting object code in files main.o, 

getline.o, and strindex.o, then loads them all into an executable file called a.out. 

If there is an error, say in main.c, the file can be recompiled by itself and the 

result loaded with the previous object files, with the command  

cc main.c getline.o strindex.o 

The cc command uses the ``.c'' versus ``.o'' naming convention to distinguish 

source files from object files. 

1.9.4   Functions Returning Non-integers 

So far our examples of functions have returned either no value (void) or an int. 

What if a function must return some other type? many numerical functions like 

sqrt, sin, and cos return double; other specialized functions return other types. 

To illustrate how to deal with this, let us write and use the function atof(s), 

which converts the string s to its double-precision floating-point equivalent. atof 

if an extension of atoi, which we showed versions of in lessons 2 and 3. It 

handles an optional sign and decimal point and the presence or absence of 

either part or fractional part. Our version is not a high-quality input conversion 

routine; that would take more space than we care to use. The standard library 

includes an atof; the header <stdlib.h> declares it.  

 First, atof itself must declare the type of value it returns, since it is not 

int. The type name precedes the function name:  

#include <ctype.h> 

/* atof:  convert string s to double */ 

double atof(char s[]) 

{ 

double val, power; 

 int i, sign; 

 for (i = 0; isspace(s[i]); i++)  /* skip white space */ 

           ; 

 sign = (s[i] == '-') ? -1 : 1; 

 if (s[i] == '+' || s[i] == '-') 

  i++; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 113

 for (val = 0.0; isdigit(s[i]); i++) 

  val = 10.0 * val + (s[i] - '0'); 

 if (s[i] == '.') 

  i++; 

 for (power = 1.0; isdigit(s[i]); i++) { 

  val = 10.0 * val + (s[i] - '0'); 

  power *= 10; 

 } 

 return sign * val / power; 

} 

Second, and just as important, the calling routine must know that atof returns 

a non-int value. One way to ensure this is to declare atof explicitly in the calling 

routine. The declaration is shown in this primitive calculator (barely adequate 

for check-book balancing), which reads one number per line, optionally 

preceded with a sign, and adds them up, printing the running sum after each 

input:  

#include <stdio.h> 

#define MAXLINE 100 

/* rudimentary calculator */ 

main() 

{ 

double sum, atof(char []); 

char line[MAXLINE]; 

int getline(char line[], int max); 

 sum = 0; 

 while (getline(line, MAXLINE) > 0) 

  printf("\t%g\n", sum += atof(line)); 

 return 0; 

} 

The declaration  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 114

double sum, atof(char []); 

 says that sum is a double variable and that atof is a function that takes 

one char[] argument and returns a double.  

The function atof must be declared and defined consistently. If atof itself and 

the call to it in main have inconsistent types in the same source file, the error 

will be detected by the compiler. But if (as is more likely) atof were compiled 

separately, the mismatch would not be detected, atof would return a double 

that main would treat as an int and meaningless answers would result.  

In the light of what we have said about how declarations must match 

definitions, this might seem surprising. The reason a mismatch can happen is 

that if there is no function prototype, a function is implicitly declared by its first 

appearance in an expression, such as  

 sum += atof(line) 

If a name that has not been previously declared occurs in an expression and is 

followed by a left parentheses, it is declared by context to be a function name, 

the function is assumed to return an int and nothing is assumed about its 

arguments. Furthermore, if a function declaration does not include arguments, 

as in  

 double atof(); 

 that too is taken to mean that nothing is to be assumed about the 

arguments of atof; all parameter checking is turned off. This special meaning of 

the empty argument list is intended to permit older C programs to compile with 

new compilers. But it's a bad idea to use it with new C programs. If the function 

takes arguments, declare them; if it takes no arguments, use void.  

 Given atof, properly declared, we could write atoi (convert a string to int) 

in terms of it:  

/* atoi:  convert string s to integer using atof */ 

int atoi(char s[]) 

{ 

 double atof(char s[]); 

 return (int) atof(s); 

} 

Notice the structure of the declarations and the return statement. The value of 

the expression in  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 115

return expression; 

is converted to the type of the function before the return is taken. Therefore, the 

value of atof, a double, is converted automatically to int when it appears in this 

return, since the function atoi returns an int. This operation does potentionally 

discard information, however, some compilers warn of it. The cast states 

explicitly that the operation is intended and suppresses any warning. 

1.9.5  External Variables 

A C program consists of a set of external objects, which are either variables or 

functions. The adjective ``external'' is used in contrast to ``internal'', which 

describes the arguments and variables defined inside functions. External 

variables are defined outside of any function and are thus potentionally 

available to many functions. Functions themselves are always external, because 

C does not allow functions to be defined inside other functions. By default, 

external variables and functions have the property that all references to them 

by the same name, even from functions compiled separately are references to 

the same thing. (The standard calls this property external linkage.) In this 

sense, external variables are analogous to Fortran COMMON blocks or variables 

in the outermost block in Pascal. We will see later how to define external 

variables and functions that are visible only within a single source file. Because 

external variables are globally accessible, they provide an alternative to function 

arguments and return values for communicating data between functions. Any 

function may access an external variable by referring to it by name, if the name 

has been declared somehow.  

If a large number of variables must be shared among functions, external 

variables are more convenient and efficient than long argument lists. As pointed 

out in lesson 1, however, this reasoning should be applied with some caution, 

for it can have a bad effect on program structure and lead to programs with too 

many data connections between functions.  

External variables are also useful because of their greater scope and lifetime. 

Automatic variables are internal to a function; they come into existence when 

the function is entered and disappear when it is left. External variables, on the 

other hand, are permanent, so they can retain values from one function 

invocation to the next. Thus if two functions must share some data, yet neither 

calls the other, it is often most convenient if the shared data is kept in external 

variables rather than being passed in and out via arguments.  

1.9.6   Formal and Actual Arguments  

The values passed to the function at the time of call are called actual 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 116

parameters. The values of the actual parameters are received by the variable 

declared at the time of the function declaration. These receiving variable are 

called formal parameters. 

Example: 

#include <stdio.h> 

unsigned long GetSquare(unsigned long x) 

{ 

 return x * x; 

} 

void main() 

{ 

 int a = 10; 

 printf("Square of value %d is %ld", GetSquare(a)); 

} 

In the above example, while calling the function GetSquare(a), the parameter 

passed is an actual parameter, while when this values is received by the 

function then it is stored in formal parameter x. 

1.9.7   Scope Rules 

The functions and external variables that make up a C program need not all be 

compiled at the same time; the source text of the program may be kept in 

several files, and previously compiled routines may be loaded from libraries. 

Among the questions of interest are  

 How are declarations written so that variables are properly 

declared during compilation?  

 How are declarations arranged so that all the pieces will be 

properly connected when the program is loaded?  

 How are declarations organized so there is only one copy?  

 How are external variables initialized?  

Let us discuss these topics by reorganizing the calculator program into several 

files. As a practical matter, the calculator is too small to be worth splitting, but 

it is a fine illustration of the issues that arise in larger programs.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 117

The scope of a name is the part of the program within which the name can be 

used. For an automatic variable declared at the beginning of a function, the 

scope is the function in which the name is declared. Local variables of the same 

name in different functions are unrelated. The same is true of the parameters of 

the function, which are in effect local variables.  

The scope of an external variable or a function lasts from the point at which it 

is declared to the end of the file being compiled. For example, if main, sp, val, 

push, and pop are defined in one file, in the order shown above, that is,  

main() { ... } 

int sp = 0; 

double val[MAXVAL]; 

void push(double f) { ... } 

double pop(void) { ... } 

then the variables sp and val may be used in push and pop simply by naming 

them; no further declarations are needed. But these names are not visible in 

main, nor are push and pop themselves.  

On the other hand, if an external variable is to be referred to before it is defined, 

or if it is defined in a different source file from the one where it is being used 

then an extern declaration is mandatory.  

It is important to distinguish between the declaration of an external variable 

and its definition. A declaration announces the properties of a variable 

(primarily its type); a definition also causes storage to be set aside. If the lines  

int sp; 

double val[MAXVAL]; 

appear outside of any function, they define the external variables sp and val, 

cause storage to be set aside and also serve as the declarations for the rest of 

that source file. On the other hand, the lines  

extern int sp; 

extern double val[]; 

declare for the rest of the source file that sp is an int and that val is a double 

array (whose size is determined elsewhere), but they do not create the variables 

or reserve storage for them.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 118

There must be only one definition of an external variable among all the files that 

make up the source program; other files may contain extern declarations to 

access it. (There may also be extern declarations in the file containing the 

definition.) Array sizes must be specified with the definition, but are optional 

with an extern declaration. Initialization of an external variable goes only with 

the definition.  

Although it is not a likely organization for this program, the functions push and 

pop could be defined in one file and the variables val and sp defined and 

initialized in another. Then these definitions and declarations would be 

necessary to tie them together:  

 in file1:  

extern int sp; 

extern double val[]; 

void push(double f) { ... } 

double pop(void) { ... } 

 in file2:  

int sp = 0; 

double val[MAXVAL]; 

Because the extern declarations in file1 lie ahead of and outside the function 

definitions, they apply to all functions; one set of declarations suffices for all of 

file1. This same organization would also bee needed if the definition of sp and 

val followed their use in one file. 

1.9.8   Header Files 

Let us now consider dividing the calculator program into several source files, as 

it might be if each of the components were substantially bigger. The main 

function would go in one file, which we will call main.c; push, pop and their 

variables go into a second file, stack.c; getop goes into a third, getop.c. Finally, 

getch and ungetch go into a fourth file, getch.c; we separate them from the 

others because they would come from a separately-compiled library in a 

realistic program.  

There is one more thing to worry about - the definitions and declarations 

shared among files. As much as possible, we want to centralize this, so that 

there is only one copy to get and keep right as the program evolves. Accordingly, 

we will place this common material in a header file, calc.h, which will be 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 119

included as necessary. (The #include line is described in) The resulting program 

then looks like this:  

 

 

There is a tradeoff between the desire that each file have access only to the 

information it needs for its job and the practical reality that it is harder to 

maintain more header files. Up to some moderate program size, it is probably 

best to have one header file that contains everything that is to be shared 

between any two parts of the program; that is the decision we made here. For a 

much larger program, more organization and more headers would be needed. 

 

 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 120

1.9.9   Recursion 

Calling a function by itself is known as recursion. Any function can call any 

function including itself. C functions may be used recursively; that is, a 

function may call itself either directly or indirectly. Consider printing a number 

as a character string. As we mentioned before, the digits are generated in the 

wrong order: low-order digits are available before high-order digits, but they 

have to be printed the other way around.  

There are two solutions to this problem. On is to store the digits in an array as 

they are generated, then print them in the reverse order, as we did with itoa in 

lesson 7. The alternative is a recursive solution, in which printd first calls itself 

to cope with any leading digits, then prints the trailing digit. Again, this version 

can fail on the largest negative number.  

#include <stdio.h> 

/* printd:  print n in decimal */ 

 void printd(int n) 

 { 

  if (n < 0) { 

   putchar('-'); 

   n = -n; 

  } 

  if (n / 10) 

   printd(n / 10); 

  putchar(n % 10 + '0'); 

 } 

When a function calls itself recursively, each invocation gets a fresh set of all 

the automatic variables, independent of the previous set. Thus in printd(123) 

the first printd receives the argument n = 123. It passes 12 to a second printd, 

which in turn passes 1 to a third. The third-level printd prints 1, then returns 

to the second level. That printd prints 2, then returns to the first level. That one 

prints 3 and terminates.  

Recursion may provide no saving in storage, since somewhere a stack of the 

values being processed must be maintained. Nor will it be faster. But recursive 

code is more compact, and often much easier to write and understand than the 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 121

non-recursive equivalent. Recursion is the natural solution for some of the 

problems like factorial computation, Fibonacci series generation, quick sort, 

binary search etc. 

While using recursion, care should be taken that recursive function always 

return some value or recursion has some terminating point. 

1.9.10 Summary 

Functions decompose a large program into manageable smaller units, which 

can be tested independently. Functions also facilitate breaking the program into 

logical units. While calling the functions, any parameter passed is the actual 

parameter and the variable receiving the value is called formal parameter. 

Recursive functions are those which call themselves directly or indirectly. 

Recursive functions should have a terminating point. 

1.9.11 Short Answer Type Questions 

1. What is the syntax of declaring a function? 

2. What is the difference between function declaration and function definition? 

3. What is the meaning of function prototyping? 

4. Define recursion.  

1.9.12 Long Answer Type Questions 

1. What is the advantage of decomposing program into functions? 

2. What type of values can be returned by functions? 

3. What is the difference between formal and actual parameters? 

1.9.13 Suggested Books 

1. Application Programming in C  R. S. Salaria 

2. C Programming using Turbo C  Robert Lafore 

3. Programming with ANSI and Turbo C Ashok N. Kamthane 

4. Programming using C   E. Balagurusamy 

5. Let Us C     Yashwant Kantekar 

 

 

 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 122

Web Resources  

 www.tutorialspoint.com/cprogramming/ 

 www.learn-c.org 

 www.cprogramming.com/tutorial/c-tutorial.html 

 www.programiz.com/c-programming 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 123

 

B.A. PART-II 

SEMESTER-III 

   PAPER : BAP-201 

C PROGRAMMING AND  

DATA STRUCTURES 

 

LESSON NO. 1.10 AUTHOR : DHARAM VEER SHARMA 

 

STRINGS 

 

1.10.1 Introduction 

1.10.2 Objectives of the Lesson 

1.10.3 Representing Strings and String I/O 

1.10.4 Defining Strings Within a Program 

1.10.5 Inbuilt String Functions 

1.10.6 Summary 

1.10.7 Short Answer Type Questions 

1.10.8 Long Answer Type Questions 

1.10.9 Suggested Books 

 

1.10.1 Introduction 

The character string is one of the most useful and important data types in C. 

You have been using character strings all along, but there still is much to learn 

about them. The C library provides a wide range of functions for reading and 

witting strings, copying strings, comparing strings, combining strings, 

searching strings, and more. This lesson will add these capabilities to your 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 124

programming skills. 

1.10.2 Objectives of the Lesson 

You will learn about the following in this chapter: 

 Functions: gets(), puts(), strcat(), strncat(), strcmp(), strncmp(), 

strcpy(), strncpy(), sprintf(), strchr() 

 Creating and using strings 

 Using several string and character functions from the C library 

and creating your own string functions 

 Using command-line arguments 

1.10.3 Representing Strings and String I/O 

Of course, you already know the most basic fact: A character string is a char 

array terminated with a null character ('\O'). Therefore, what you've learned 

about arrays and pointers carries over to character strings. But because 

character strings are so commonly used, C provides many functions specifically 

designed to work with strings. This lesson discusses the nature of strings, how 

to declare and initialize strings, how to get them into and out of programs and 

how to manipulate strings. 

The following listing presents a busy program that illustrates several ways to 

set up, read, and print strings. It uses two new functions—gets(), which reads a 

string and puts(), which prints a string. (You probably notice a family 

resemblance to getchar() and putchar().) The rest of the program should look 

fairly familiar. 

The strings.c Program 

// strings.c -- stringing the user along 

#include <stdio.h> 

#define MSG "You must have many talents. Tell me some." 

                            // a symbolic string constant 

#define LIM  5 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 125

#define LINELEN 81     // maximum string length + 1 

int main(void) 

{ 

 char name[LINELEN]; 

 char talents[LINELEN]; 

 int i; 

 // initializing a one dimensioned char array 

 const char m1[40] = "Limit yourself to one line's worth."; 

    // letting the compiler compute the 

                          // array size 

 const char m2[] = "If you can't think of anything, fake it."; 

    // initializing a pointer 

 const char *m3 = "\nEnough about me - what's your name?"; 

    // initializing an array of 

                            // string pointers 

 const char *mytal[LIM] = {  // array of 5 pointers 

  "Adding numbers swiftly", 

  "Multiplying accurately", "Stashing data", 

           "Following instructions to the letter", 

  "Understanding the C language" 

 }; 

 printf("Hi! I'm Clyde the Computer." 

  " I have many talents.\n"); 

 printf("Let me tell you some of them.\n"); 

 puts("What were they? Ah, yes, here's a partial list."); 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 126

 for (i = 0; i < LIM; i++) 

  puts(mytal[i]);   // print list of computer talents 

 puts(m3); 

 gets(name); 

 printf("Well, %s, %s\n", name, MSG); 

 printf("%s\n%s\n", m1, m2); 

 gets(talents); 

 puts("Let's see if I've got that list:"); 

 puts(talents); 

 printf("Thanks for the information, %s.\n", name); 

 return 0; 

} 

 To show you what this program does, here is a sample run: 

Hi! I'm Clyde the Computer. I have many talents. 

Let me tell you some of them. 

What were they? Ah, yes, here's a partial list. 

Adding numbers swiftly 

Multiplying accurately 

Stashing data 

Following instructions to the letter 

Understanding the C language 

Enough about me – what's your name? 

Nigel Barntwit 

Well, Nigel Barntwit, You must have many talents. Tell me some. 

Just limit yourself to one line's worth. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 127

If you can't think of anything, fake it. 

Fencing, yodeling, malingering, cheese tasting, and sighing. 

Let's see if I've got that list: 

Fencing, yodeling, malingering, cheese tasting, and sighing. 

Thanks for the information, Nigel Barntwit. 

 Rather than going through the listing line-by-line, let's take a more 

encompassing approach. First, you will look at ways of defining a string within 

a program. Then you will see what is involved in reading a string into a 

program. Finally, you will study ways to output a string. 

1.10.4 Defining Strings Within a Program 

As you probably noticed when you read the above listing, there are many ways 

to define a string. The principal ways are using string constants, using char 

arrays, using char pointers and using arrays of character strings. A program 

should make sure there is a place to store a string and we will cover that topic, 

too. 

Character String Constants (String Literals) 

A string constant, also termed a string literal, is anything enclosed in double 

quotation marks. The enclosed characters, plus a terminating '\O' character 

automatically provided by the compiler, are stored in memory as a character string. 

The program uses several such character string constants, most often as arguments 

for the printf() and puts() functions. Note, too, that you can use #define to define 

character string constants. 

Recall that ANSI C concatenates string literals if they are separated by nothing 

or by whitespace. For example, 

  char greeting[50] = "Hello, and"" how are"  " you" 

     " today!"; 

 is equivalent to this: 

  char greeting[50] = "Hello, and how are you today!"; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 128

 If you want to use a double quotation mark within a string, precede the 

quotation mark with a backslash, as follows: 

  printf("\"Run, Spot, run!\" exclaimed Dick.\n"); 

 This produces the following output: 

  "Run, Spot, run!" exclaimed Dick. 

Character string constants are placed in the static storage class, which means 

that if you use a string constant in a function, the string is stored just once and 

lasts for the duration of the program, even if the function is called several 

times. The entire quoted phrase acts as a pointer to where the string is stored. 

This action is analogous to the name of an array acting as a pointer to the 

array's location. If this is true, what kind of output should the program in the 

following listing produce? 

The quotes.c Program 

/* quotes.c -- strings as pointers */ 

#include <stdio.h> 

int main(void) 

{ 

 printf("%s, %p, %c\n", "We", "are", *"space farers"); 

 return 0; 

} 

The %s format should print the string We. The %p format produces an address. 

So if the phrase "are" is an address, then %p should print the address of the 

first character in the string. (Pre-ANSI implementations might have to use %u 

or %lu instead of %p.) Finally, *"space farers" should produce the value of the 

address pointed to, which should be the first character of the string "space 

farers". Does this really happen? Well, here is the output: 

We, 0x0040c010, s 

 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 129

Character String Arrays and Initialization 

When you define a character string array, you must let the compiler know how 

much space is needed. One way is to specify an array size large enough to hold 

the string. The following declaration initializes the array m1 to the characters of 

the indicated string: 

  const char m1[40] = "Limit yourself to one line's worth."; 

 The const indicates the intent to not alter this string. 

This form of initialization is short for the standard array initialization form: 

 const char m1[40] = {  'L', 'i', 'm', 'i', 't', ' ', 'y', 'o', 'u', 'r', 's', 'e', 'l', 

     'f', ' ', 't', 'o', ' ', 'o', 'n', 'e', ' ', 

     'l', 'i', 'n', 'e', '\", 's', ' ', 'w', 'o', 'r', 

     't', 'h', '.', '\0' 

  }; 

Note the closing null character. Without it, you have a character array, but not 

a string. 

When you specify the array size, be sure that the number of elements is at least 

one more (that null character again) than the string length. Any unused 

elements are automatically initialized to 0 (which in char form is the null 

character, not the zero digit character).  

Often, it is convenient to let the compiler determine the array size; recall that if 

you omit the size in an initializing declaration, the compiler determines the size 

for you: 

  const char m2[] = "If you can't think of anything, fake it."; 

Initializing character arrays is one case when it really does make sense to let 

the compiler determine the array size. That's because string-processing 

functions typically don't need to know the size of the array because they can 

simply look for the null character to mark the end. 

Note that the program had to assign a size explicitly for the array name: 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 130

 #define LINELEN 81        // maximum string length + 1 

  ... 

  char name[LINELEN]; 

Because the contents for name are to be read when the program runs, the 

compiler has no way of knowing in advance how much space to set aside unless 

you tell it. There is no string constant present whose characters the compiler 

can count, so we gambled that 80 characters would be enough to hold the 

user's name. When you declare an array, the array size must evaluate to an 

integer constant. You can't use a variable that gets set at runtime. The array 

size is locked into the program at compile time. (Actually, with C99 you could 

use a variable-length array, but you still have no way of knowing in advance 

how big it has to be.) 

  int n = 8; 

  char cakes[2 + 5];  /* valid, size is a constant expression 

  char crumbs[n];     /* invalid prior to C99, a VLA after C99 

The name of a character array, like any array name, yields the address of the 

first element of the array. Therefore, the following holds for the array m1: 

  m1 == &m1[0] , *m1 == 'L', and *(m1+1) == m1[1] == 'i' 

Indeed, you can use pointer notation to set up a string. For example, the 

following declaration uses the pointer: 

  const char *m3 = "\nEnough about me -- what's your name?"; 

 This declaration is very nearly the same as this one: 

  char m3[] = "\nEnough about me -- what's your name?" 

Both declarations amount to saying that m3 is a pointer to the indicated string. In both 

cases, the quoted string itself determines the amount of storage set aside for the string. 

Nonetheless, the forms are not identical. 

Array Versus Pointer 

What is the difference, then, between an array and a pointer form? The array 

form (m3[]) causes an array of 38 elements (one for each character plus one for 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 131

the terminating '\0') to be allocated in the computer memory. Each element is 

initialized to the corresponding character. Typically, what happens is that the 

quoted string is stored in a data segment that is part of the executable file; 

when the program is loaded into memory, so is that string. The quoted string is 

said to be in static memory. But the memory for the array is allocated only after 

the program begins running. At that time, the quoted string is copied into the 

array. Hereafter, the compiler will recognize the name m3 as a synonym for the 

address of the first array element, &m3[0]. One important point here is that in 

the array form, m3 is an address constant. You can't change m3, because that 

would mean changing the location (address) where the array is stored. You can 

use operations such as m3+1 to identify the next element in an array, but ++m3 

is not allowed. The increment operator can be used only with the names of 

variables, not with constants. 

The pointer form (*m3) also causes 38 elements in static storage to be set aside 

for the string. In addition, once the program begins execution, it sets aside one 

more storage location for the pointer variable m3 and stores the address of the 

string in the pointer variable. This variable initially points to the first character 

of the string, but the value can be changed. Therefore, you can use the 

increment operator. For instance, ++m3 would point to the second character 

(E). 

In short, initializing the array copies a string from static storage to the array, 

whereas initializing the pointer merely copies the address of the string. 

Are these differences important? Often they are not, but it depends on what you 

try to do. See the following discussion for some examples. 

Array and Pointer Differences 

Let's examine the differences between initializing a character array to hold a 

string and initializing a pointer to point to a string. (By "pointing to a string," we 

really mean pointing to the first character of a string.) For example, consider 

these two declarations: 

  char heart[] = "I love Tillie!"; 

  char *head = "I love Millie!"; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 132

The chief difference is that the array name heart is a constant, but the pointer 

head is a variable. What practical difference does this make? 

First, both can use array notation: 

 for (i = 0; i < 6; i++) 

  putchar(heart[i]); 

 putchar('\n'); 

 for (i = 0; i < 6; i++) 

  putchar(head[i])); 

 putchar('\n'); 

 This is the output: 

  I love 

  I love 

 Next, both can use pointer addition: 

 for (i = 0; i < 6; i++) 

  putchar(*(heart + i)); 

 putchar('\n'); 

 for (i = 0; i < 6; i++) 

  putchar(*(head + i)); 

 putchar('\n'); 

 Again, the output is as follows: 

  I love 

  I love 

 Only the pointer version, however, can use the increment operator: 

  while (*(head) != '\0')  /* stop at end of string            */ 

  putchar(*(head++));  /* print character, advance pointer */ 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 133

 

 This produces the following output: 

  I love Millie! 

 Suppose you want head to agree with heart. You can say 

  head = heart;  /* head now points to the array heart */ 

 This makes the head pointer point to the first element of the heart array. 

 However, you cannot say 

  heart = head;  /* illegal construction */ 

The situation is analogous to x = 3; versus 3 = x;. The left side of the 

assignment statement must be a variable or, more generally, an lvalue, such as 

*p_int. Incidentally, head = heart; does not make the Millie string vanish; it just 

changes the address stored in head. Unless you've saved the address of "I love 

Millie!" elsewhere, however, you won't be able to access that string when head 

points to another location. 

There is a way to alter the heart message—go to the individual array elements: 

  heart[7]= 'M';  or  *(heart + 7) = 'M'; 

 The elements of an array are variables (unless the array was declared as 

const), but the name is not a variable. 

 Let's go back to a pointer initialization: 

  char * word = "frame"; 

 Can you use the pointer to change this string? 

  word[1] = 'l';  // allowed?? 

Your compiler probably will allow this, but, under the current C standard, the 

behavior for such an action is undefined. Such a statement could, for example, 

lead to memory access errors. The reason is that a compiler can choose to 

represent all identical string literals with a single copy in memory. For example, 

the following statements could all refer to a single memory location of string 

"Klingon": 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 134

  char * p1 = "Klingon"; 

  p1[0] = 'F';    // ok? 

  printf("Klingon"); 

  printf(": Beware the %ss!\n", "Klingon"); 

That is, the compiler can replace each instance of "Klingon" with the same address. If 

the compiler uses this single-copy representation and allows changing p1[0] to 'F', that 

would affect all uses of the string, so statements printing the string literal "Klingon" 

would actually display "Flingon": 

  Flingon: Beware the Flingons! 

In fact, several compilers do behave this rather confusing way, whereas others produce 

programs that abort. Therefore, the recommended practice for initializing a pointer to a 

string literal is to use the const modifier: 

  const char * pl = "Klingon";  // recommended usage 

Initializing a non-const array with a string literal, however, poses no such 

problems, because the array gets a copy of the original string. 

1.10.5 Inbuilt String Functions 

The C library supplies several string-handling functions; ANSI C uses the string.h 

header file to provide the prototypes. We'll look at some of the most useful and 

common ones: strlen(), strcat(), strncat(), strcmp(), strncmp(), strcpy() and strncpy(). 

We'll also examine sprintf(), supported by the stdio.h header file. For a complete list of 

the string.h family of functions. 

The strlen() Function 

The strlen() function, as you already know, finds the length of a string. It's used in 

the next example, a function that shortens lengthy strings: 

/* fit.c –– truncation function */ 

void fit(char * string, unsigned int size) 

{ 

 if (strlen(string) > size) 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 135

  *(string + size) = '\0'; 

} 

This function does change the string, so the function header doesn't use const 

in declaring the formal parameter string. 

The ANSI string.h file contains function prototypes for the C family of string 

functions, which is why this example includes it.  

The strcat() Function 

The strcat() (for string concatenation) function takes two strings for arguments. 

A copy of the second string is tacked onto the end of the first and this combined 

version becomes the new first string. The second string is not altered. Function 

strcat() is type char * (that is, a pointer-to-char). It returns the value of its first 

argument—the address of the first character of the string to which the second 

string is appended. 

/* str_cat.c -- joins two strings */ 

#include <stdio.h> 

#include <string.h>  /* declares the strcat() function */ 

#define SIZE 80 

int main(void) 

{ 

 char flower[SIZE]; 

 char addon[] = "s smell like old shoes."; 

 puts("What is your favorite flower?"); 

 gets(flower); 

 strcat(flower, addon); 

 puts(flower); 

 puts(addon); 

 return 0; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 136

} 

 This is the output: 

 What is your favorite flower? 

 Rose 

 Roses smell like old shoes. 

 s smell like old shoes. 

The strncat() Function 

The strcat() function does not check to see whether the second string will fit in 

the first array. If you fail to allocate enough space for the first array, you will 

run into problems as excess characters overflow into adjacent memory 

locations. Of course, you can use strlen() to look before you leap. Note that it 

adds 1 to the combined lengths to allow space for the null character. 

Alternatively, you can use strncat(), which takes a second argument indicating 

the maximum number of characters to add. For example, strncat(bugs, addon, 

13) will add the contents of the addon string to bugs, stopping when it reaches 

13 additional characters or the null character, whichever comes first. Therefore, 

counting the null character (which is appended in either case), the bugs array 

should be large enough to hold the original string (not counting the null 

character), a maximum of 13 additional characters and the terminal null 

character. The following listing uses this information to calculate a value for the 

available variable, which is used as the maximum number of additional 

characters allowed. 

The join_chk.c Program 

/* join_chk.c -- joins two strings, check size first */ 

#include <stdio.h> 

#include <string.h> 

#define SIZE 30 

#define BUGSIZE 13 

int main(void) 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 137

{ 

 char flower[SIZE]; 

 char addon[] = "s smell like old shoes."; 

 char bug[BUGSIZE]; 

 int available; 

 puts("What is your favorite flower?"); 

 gets(flower); 

 if ((strlen(addon) + strlen(flower) + 1) <= SIZE) 

  strcat(flower, addon); 

 puts(flower); 

 puts("What is your favorite bug?"); 

 gets(bug); 

 available = BUGSIZE - strlen(bug) - 1; 

 strncat(bug, addon, available); 

 puts(bug); 

 return 0; 

} 

 Here is a sample run: 

What is your favorite flower? 

Rose 

Roses smell like old shoes. 

What is your favorite bug? 

Aphid 

Aphids smell 

 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 138

The strcmp() Function 

Suppose you want to compare someone's response to a stored string, as shown 

in the following listing. 

The nogo.c Program 

/* nogo.c -- will this work? */ 

#include <stdio.h> 

#define ANSWER "Grant" 

int main(void) 

{ 

 char try[40]; 

 puts("Who is buried in Grant's tomb?"); 

 gets(try); 

 while (try != ANSWER) 

 { 

  puts("No, that's wrong. Try again."); 

  gets(try); 

 } 

 puts("That's right!"); 

 return 0; 

} 

As nice as this program might look, it will not work correctly. ANSWER and try 

really are pointers, so the comparison try != ANSWER doesn't check to see 

whether the two strings are the same. Rather, it checks to see whether the two 

strings have the same address. Because ANSWER and try are stored in different 

locations, the two addresses are never the same and the user is forever told that 

he or she is wrong. Such programs tend to discourage people. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 139

What you need is a function that compares string contents, not string 

addresses. You could devise one, but the job has been done for you with 

strcmp() (for string comparison). This function does for strings what relational 

operators do for numbers. In particular, it returns 0 if its two string arguments 

are the same. The revised program is shown in the following listing. 

The compare.c Program 

/* compare.c -- this will work */ 

#include <stdio.h> 

#include <string.h>   /* declares strcmp() */ 

#define ANSWER "Grant" 

#define MAX 40 

int main(void) 

{ 

 char try[MAX]; 

 puts("Who is buried in Grant's tomb?"); 

 gets(try); 

 while (strcmp(try,ANSWER) != 0) 

 { 

  puts("No, that's wrong. Try again."); 

  gets(try); 

 } 

 puts("That's right!"); 

 return 0; 

} 

One of the nice features of strcmp() is that it compares strings, not arrays. 

Although the array try occupies 40 memory cells and "Grant" only six (one for 

the null character), the comparison looks only at the part of try up to its first 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 140

null character. Therefore, strcmp() can be used to compare strings stored in 

arrays of different sizes. 

What if the user answers "GRANT" or "grant" or "Ulysses S. Grant"? The user is 

told that he or she is wrong. To make a friendlier program, you have to 

anticipate all possible correct answers. There are some tricks you can use. For 

example, you can use #define to define the answer as "GRANT" and write a 

function that converts all input to uppercase. That eliminates the problem of 

capitalization, but you still have the other forms to worry about. We leave that 

as an exercise for you. 

The strcmp() Return Value 

What value does strcmp() return if the strings are not the same? The following 

listing shows an example. 

The compback.c Program 

/* compback.c -- strcmp returns */ 

#include <stdio.h> 

#include <string.h> 

int main(void) 

{ 

 printf("strcmp(\"A\", \"A\") is "); 

 printf("%d\n", strcmp("A", "A")); 

 printf("strcmp(\"A\", \"B\") is "); 

 printf("%d\n", strcmp("A", "B")); 

 printf("strcmp(\"B\", \"A\") is "); 

 printf("%d\n", strcmp("B", "A")); 

 printf("strcmp(\"C\", \"A\") is "); 

 printf("%d\n", strcmp("C", "A")); 

 printf("strcmp(\"Z\", \"a\") is "); 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 141

 printf("%d\n", strcmp("Z", "a")); 

 printf("strcmp(\"apples\", \"apple\") is "); 

 printf("%d\n", strcmp("apples", "apple")); 

 return 0; 

} 

 Here is the output on one system: 

 strcmp("A", "A") is 0 

 strcmp("A", "B") is -1 

 strcmp("B", "A") is 1 

 strcmp("C", "A") is 1 

 strcmp("Z", "a") is -1 

 strcmp("apples", "apple") is 1 

Comparing "A" to itself returns 0. Comparing "A" to "B" returns -1 and reversing the 

comparison returns 1. These results suggest that strcmp() returns a negative 

number if the first string precedes the second alphabetically and that it returns a 

positive number if the order is the other way. Therefore, comparing "C" to "A" gives a 

1. Other systems might return 2—the difference in ASCII code values. The ANSI 

standard says that strcmp() returns a negative number if the first string comes 

before the second alphabetically, returns 0 if they are the same and returns a 

positive number if the first string follows the second alphabetically. The exact 

numerical values, however, are left open to the implementation. Here, for example, is 

the output for another implementation, one that returns the difference between the 

character codes: 

 strcmp("A", "A") is 0 

 strcmp("A", "B") is -1 

 strcmp("B", "A") is 1 

 strcmp("C", "A") is 2 

 strcmp("Z", "a") is -7 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 142

 strcmp("apples", "apple") is 105 

What if the initial characters are identical? In general, strcmp() moves along until it 

finds the first pair of disagreeing characters. It then returns the corresponding code. 

For instance, in the very last example, "apples" and "apple" agree until the final s of 

the first string. This matches up with the sixth character in "apple", which is the null 

character, ASCII 0. Because the null character is the very first character in the ASCII 

sequence, s comes after it and the function returns a positive value. 

The last comparison points out that strcmp() compares all characters, not just 

letters, so instead of saying the comparison is alphabetic, we should say that 

strcmp() goes by the machine collating sequence. That means characters are 

compared according to their numeric representation, typically the ASCII values. 

In ASCII, the codes for uppercase letters precede those for lowercase letters. 

Therefore, strcmp("Z", "a") is negative. 

Most often, you won't care about the exact value returned. You just want to 

know if it is zero or nonzero—that is, whether there is a match or not—or you 

might be trying to sort the strings alphabetically, in which case you want to 

know if the comparison is positive, negative or zero. 

Incidentally, sometimes it is more convenient to terminate input by entering an 

empty line—that is, by pressing the Enter key or Return key without entering 

anything else. To do so, you can modify the while loop control statement so that 

it looks like this: 

The strncmp() Variation 

The strcmp() function compares strings until it finds corresponding characters 

that differ, which could take the search to the end of one of the strings. The 

strncmp() function compares the strings until they differ or until it has 

compared a number of characters specified by a third argument. For example, if 

you wanted to search for strings that begin with "astro", you could limit the 

search to the first five characters. The following listing shows how. 

The starsrch.c Program 

/* starsrch.c -- use strncmp() */ 

#include <stdio.h> 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 143

#include <string.h> 

#define LISTSIZE 5 

int main() 

{ 

 const char * list[LISTSIZE] = 

 { 

  "astronomy", "astounding", 

  "astrophysics", "ostracize", 

  "asterism" 

 }; 

 int count = 0; 

 int i; 

 for (i = 0; i < LISTSIZE; i++) 

  if (strncmp(list[i],"astro", 5) == 0) 

  { 

   printf("Found: %s\n", list[i]); 

   count++; 

  } 

 printf("The list contained %d words beginning with 

astro\n",  count); 

 return 0; 

} 

 Here is the output: 

 Found: astronomy 

 Found: astrophysics 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 144

 The list contained 2 words beginning with astro. 

The strcpy() and strncpy() Functions 

We've said that if pts1 and pts2 are both pointers to strings, the expression 

  pts2 = pts1; 

copies only the address of a string, not the string itself. Suppose, though, that 

you do want to copy a string. Then you can use the strcpy() function. The 

following listing asks the user to enter words beginning with q. The program 

copies the input into a temporary array and if the first letter is a q, the program 

uses strcpy() to copy the string from the temporary array to a permanent 

destination. The strcpy() function is the string equivalent of the assignment 

operator. 

The copy1.c Program 

/* copy1.c -- strcpy() demo */ 

#include <stdio.h> 

#include <string.h>  /* declares strcpy() */ 

#define SIZE 40 

#define LIM 5 

int main(void) 

{ 

 char qwords[LIM][SIZE]; 

 char temp[SIZE]; 

 int i = 0; 

 printf("Enter %d words beginning with q:\n", LIM); 

 while (i < LIM && gets(temp)) 

 { 

  if (temp[0] != 'q') 

   printf("%s doesn't begin with q!\n", temp); 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 145

  else 

  { 

   strcpy(qwords[i], temp); 

   i++; 

  } 

 } 

 puts("Here are the words accepted:"); 

 for (i = 0; i < LIM; i++) 

  puts(qwords[i]); 

 return 0; 

} 

 Here is a sample run: 

Enter 5 words beginning with q: 

quackery 

quasar 

quilt 

quotient 

no more 

no more doesn't begin with q! 

quiz 

Here are the words accepted: 

quackery 

quasar 

quilt 

quotient 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 146

quiz 

Note that the counter i is incremented only when the word entered passes the q test. 

Also note that the program uses a character-based test: 

  if (temp[0] != 'q') 

That is, is the first character in the temp array not a q? Another possibility is 

using a string-based test: 

  if (strncmp(temp, "q", 1) != 0) 

That is, are the strings temp and "q" different from each other in the first element? 

Note that the string pointed to by the second argument (temp) is copied into the array 

pointed to by the first argument (qword[i]). The copy is called the target and the 

original string is called the source. You can remember the order of the arguments by 

noting that it is the same as the order in an assignment statement (the target string is 

on the left): 

char target[20]; 

int x; 

x = 50;                    /* assignment for numbers */ 

strcpy(target, "Hi ho!");  /* assignment for strings */ 

target = "So long";        /* syntax error           */ 

It is your responsibility to make sure the destination array has enough room to 

copy the source. The following is asking for trouble: 

 char * str; 

 strcpy(str, "The C of Tranquility"); /* a problem */ 

The function will copy the string "The C of Tranquility" to the address specified 

by str, but str is uninitialized, so the copy might wind up anywhere! 

In short, strcpy() takes two string pointers as arguments. The second pointer, 

which points to the original string, can be a declared pointer, an array name, or 

a string constant. The first pointer, which points to the copy, should point to a 

data object, such as an array, roomy enough to hold the string. Remember, 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 147

declaring an array allocates storage space for data; declaring a pointer only 

allocates storage space for one address. 

The sprintf() Function 

The sprintf() function is declared in stdio.h instead of string.h. It works like 

printf(), but it writes to a string instead of writing to a display. Therefore, it 

provides a way to combine several elements into a single string. The first 

argument to sprintf() is the address of the target string. The remaining 

arguments are the same as for printf()—a conversion specification string 

followed by a list of items to be written. 

 The following listing uses sprintf() to combine three items (two strings 

and a number) into a single string. Note that it uses sprintf() the same way you 

would use printf(), except that the resulting string is stored in the array formal 

instead of being displayed onscreen. 

The format.c Program 

/* format.c -- format a string */ 

#include <stdio.h> 

#define MAX 20 

int main(void) 

 { 

char first[MAX]; 

char last[MAX]; 

char formal[2 * MAX + 10]; 

double prize; 

puts("Enter your first name:"); 

gets(first); 

puts("Enter your last name:"); 

gets(last); 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 148

puts("Enter your prize money:"); 

scanf("%lf", &prize); 

sprintf(formal, "%s, %-19s: $%6.2f\n", last, first, prize); 

puts(formal); 

return 0; 

 } 

 Here's a sample run: 

Enter your first name: 

Teddy 

Enter your last name: 

Behr 

Enter your prize money: 

2000 

Behr, Teddy              : $2000.00 

The sprintf() command took the input and formatted it into a standard form, 

which it then stored in the string formal. 

Other String Functions 

The ANSI C library has more than 20 string-handling functions and the 

following list summarizes some of the more commonly used ones: 

 char *strcpy(char * s1, const char * s2); 

 This function copies the string (including the null character) pointed to by s2 

to the location pointed to by s1. The return value is s1. 

 char *strncpy(char * s1, const char * s2, size_t n); 

 This function copies to the location pointed to by s1 no more than n characters 

from the string pointed to by s2. The return value is s1. No characters after a 

null character are copied and, if the source string is shorter than n characters, 

the target string is padded with null characters. If the source string has n or 

more characters, no null character is copied. The return value is s1. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 149

 char *strcat(char * s1, const char * s2); 

 The string pointed to by s2 is copied to the end of the string pointed to by s1. 

The first character of the s2 string is copied over the null character of the s1 

string. The return value is s1. 

 char *strncat(char * s1, const char * s2, size_t n); 

 No more than the first n characters of the s2 string are appended to the 

s1 string, with the first character of the s2 string being copied over the 

null character of the s1 string. The null character and any characters 

following it in the s2 string are not copied and a null character is 

appended to the result. The return value is s1. 

 int strcmp(const char * s1, const char * s2); 

 This function returns a positive value if the s1 string follows the s2 string in the 

machine collating sequence, the value 0 if the two strings are identical and a 

negative value if the first string precedes the second string in the machine 

collating sequence. 

 int strncmp(const char * s1, const char * s2, size_t n); 

 This function works like strcmp(), except that the comparison stops after n 

characters or when the first null character is encountered, whichever comes 

first. 

 char *strchr(const char * s, int c); 

 This function returns a pointer to the first location in the string s that holds 

the character c. (The terminating null character is part of the string, so it can 

be searched for.) The function returns the null pointer if the character is not 

found. 

 char *strpbrk(const char * s1, const char * s2); 

 This function returns a pointer to the first location in the string s1 that holds 

any character found in the s2 string. The function returns the null pointer if no 

character is found. 

 char *strrchr(const char * s, int c); 

 This function returns a pointer to the last occurrence of the character c in 

the string s. (The terminating null character is part of the string, so it can 

be searched for.) The function returns the null pointer if the character is not 

found. 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 150

 char *strstr(const char * s1, const char * s2); 

 This function returns a pointer to the first occurrence of string s2 in string 

s1. The function returns the null pointer if the string is not found. 

 size_t strlen(const char * s); 

 This function returns the number of characters, not including the 

terminating null character, found in the string s. 

 Note that these prototypes use the keyword const to indicate which strings are 

not altered by a function. For example, consider the following: 

  char *strcpy(char * s1, const char * s2); 

It means s2 points to a string that can't be changed, at least not by the strcpy() 

function, but s1 points to a string that can be changed. This makes sense, 

because s1 is the target string, which gets altered, and s2 is the source string, 

which should be left unchanged. 

1.10.6 Summary 

The C language does not support string data type. String must be terminated by 

appending a null character. But string can be simulated either using character array 

or pointer to character. The C language has a rich set of string functions, which 

operate on both representations of the string.  

1.10.7 Short Answer Type Questions 

1. What is the difference between character array and character pointer? 

2. What is the purpose of strlen() function? 

3. What is the purpose of strcat() function? 

1.10.8 Long Answer Type Questions 

1. Define and distinguish between character array and character 

pointer modes of string representation. 

2. What are the various ways of storing strings? 

3. What are the different ways of copying string? 

4. What are the different ways of comparing strings? 

 

 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 151

1.10.9 Suggested Books 

1. Application Programming in C  R. S. Salaria 

2. C Programming using Turbo C  Robert Lafore 

3. Programming with ANSI and Turbo C  Ashok N. Kamthane 

4. Programming using C   E. Balagurusamy 

5. Let Us C     Yashwant Kantekar 

Web Resources  

 www.tutorialspoint.com/cprogramming/ 

 www.learn-c.org 

 www.cprogramming.com/tutorial/c-tutorial.html 

 www.programiz.com/c-programming 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 152

 

B.A. PART-II 

SEMESTER-III 

   PAPER : BAP-201 

C PROGRAMMING AND  

DATA STRUCTURES 

 

LESSON NO. 1.11 AUTHOR : DHARAM VEER SHARMA 

 

Structures 

1.11.1 Introduction 

1.11.2 Objectives  

1.11.3 Basics of Structures 

1.11.4 Structures and Functions 

1.11.5 Arrays of Structures 

1.11.6 Pointers to Structures 

1.11.7 Self-referential Structures 

1.11.8 typedef 

1.11.9 union 

1.11.10 Summary 

1.11.11 Short Answer Type Questions 

1.11.12 Long Answer Type Questions 

1.11.13 Suggested Books 

 

1.11.1 Introduction 

A structure is a collection of one or more variables, possibly of different types, 

grouped together under a single name for convenient handling. (Structures are 

called ``records'' in some languages, notably Pascal.) Structures help to organize 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 153

complicated data, particularly in large programs, because they permit a group 

of related variables to be treated as a unit instead of as separate entities.  

One traditional example of a structure is the payroll record: an employee is 

described by a set of attributes such as name, address, social security number, 

salary, etc. Some of these in turn could be structures: a name has several 

components, as does an address and even a salary. Another example, more 

typical for C, comes from graphics: a point is a pair of coordinate, a rectangle is 

a pair of points, and so on.  

The main change made by the ANSI standard is to define structure assignment 

- structures may be copied and assigned to, passed to functions, and returned 

by functions. This has been supported by most compilers for many years, but 

the properties are now precisely defined. Automatic structures and arrays may 

now also be initialized. 

1.11.2 Objectives 

Structures and unions are the subject matter of this lesson. We shall delve into 

details of the declaration, use and importance of structures and unions. 

1.11.3 Basics of Structures  

A structure is a collection o variable referenced under are name, providing a 

convenient means of keeping related information together. Let us create a few 

structures suitable for graphics. The basic object is a point, which we will 

assume has an x coordinate and a y coordinate, both integers.  

 

 The two components can be placed in a structure declared like this:  

 struct point { 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 154

   int x; 

   int y; 

  }; 

The keyword struct introduces a structure declaration, which is a list of 

declarations enclosed in braces. An optional name called a structure tag may 

follow the word struct (as with point here). The tag names this kind of structure 

and can be used subsequently as a shorthand for the part of the declaration in 

braces.  

The variables named in a structure are called members. A structure member or 

tag and an ordinary (i.e., non-member) variable can have the same name 

without conflict, since they can always be distinguished by context. 

Furthermore, the same member names may occur in different structures, 

although as a matter of style one would normally use the same names only for 

closely related objects.  

A struct declaration defines a type. The right brace that terminates the list of 

members may be followed by a list of variables, just as for any basic type. That 

is,  

 struct { ... } x, y, z; 

 is syntactically analogous to  

  int x, y, z; 

in the sense that each statement declares x, y and z to be variables of the 

named type and causes space to be set aside for them.  

A structure declaration that is not followed by a list of variables reserves no 

storage; it merely describes a template or shape of a structure. If the 

declaration is tagged, however, the tag can be used later in definitions of 

instances of the structure. For example, given the declaration of point above,  

  struct point pt; 

defines a variable pt which is a structure of type struct point. A structure can 

be initialized by following its definition with a list of initializers, each a constant 

expression, for the members:  

  struct maxpt = { 320, 200 }; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 155

An automatic structure may also be initialized by assignment or by calling a 

function that returns a structure of the right type.  

A member of a particular structure is referred to in an expression by a 

construction of the form  

  structure-name.member  

The structure member operator ``.'' connects the structure name and the member 

name. To print the coordinates of the point pt, for instance,  

  printf("%d,%d", pt.x, pt.y); 

 or to compute the distance from the origin (0,0) to pt,  

  double dist, sqrt(double); 

  dist = sqrt((double)pt.x * pt.x + (double)pt.y * pt.y); 

Structures can be nested. One representation of a rectangle is a pair of points 

that denote the diagonally opposite corners:  

 

  struct rect { 

   struct point pt1; 

   struct point pt2; 

  }; 

 The rect structure contains two point structures. If we declare screen as  

  struct rect screen; 

 then  

  screen.pt1.x 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 156

 refers to the x coordinate of the pt1 member of screen.  

1.11.4 Structures and Functions 

The only legal operations on a structure are copying it or assigning to it as a 

unit, taking its address with &, and accessing its members. Copy and 

assignment inpclude passing arguments to functions and returning values from 

functions as well. Structures may not be compared. A structure may be 

initialized by a list of constant member values; an automatic structure may also 

be initialized by an assignment.  

Let us investigate structures by writing some functions to manipulate points 

and rectangles. There are at least three possible approaches: pass components 

separately, pass an entire structure or pass a pointer to it. Each has its good 

points and bad points.  

The first function, makepoint, will take two integers and return a point 

structure:  

  /* makepoint:  make a point from x and y components */ 

  struct point makepoint(int x, int y) 

  { 

   struct point temp; 

   temp.x = x; 

   temp.y = y; 

   return temp; 

  } 

Notice that there is no conflict between the argument name and the member 

with the same name; indeed the re-use of the names stresses the relationship.  

 makepoint function can now be used to initialize any structure 

dynamically, or to provide structure arguments to a function:  

  struct rect screen; 

  struct point middle; 

  struct point makepoint(int, int); 

  screen.pt1 = makepoint(0,0); 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 157

  screen.pt2 = makepoint(XMAX, YMAX); 

  middle = makepoint((screen.pt1.x + screen.pt2.x)/2, 

           (screen.pt1.y + screen.pt2.y)/2); 

 The next step is a set of functions to do arithmetic on points. For instance,  

  /* addpoints:  add two points */ 

  struct addpoint(struct point p1, struct point p2) 

  { 

   p1.x += p2.x; 

  p1.y += p2.y; 

   return p1; 

  } 

Here both the arguments and the return value are structures. We incremented 

the components in p1 rather than using an explicit temporary variable to 

emphasize that structure parameters are passed by value like any others.  

As another example, the function ptinrect tests whether a point is inside a rectangle, 

where we have adopted the convention that a rectangle includes its left and bottom 

sides but not its top and right sides:  

 /* ptinrect:  return 1 if p in r, 0 if not */ 

 int ptinrect(struct point p, struct rect r) 

 { 

  return p.x >= r.pt1.x && p.x < r.pt2.x && p.y >=   

  r.pt1.y &&  p.y < r.pt2.y; 

 } 

This assumes that the rectangle is presented in a standard form where the pt1 

coordinates are less than the pt2 coordinates. The following function returns a 

rectangle guaranteed to be in canonical form:  

 #define min(a, b) ((a) < (b) ? (a) : (b)) 

 #define max(a, b) ((a) > (b) ? (a) : (b)) 

 /* canonrect: canonicalize coordinates of rectangle */ 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 158

 struct rect canonrect(struct rect r) 

 { 

  struct rect temp; 

  temp.pt1.x = min(r.pt1.x, r.pt2.x); 

  temp.pt1.y = min(r.pt1.y, r.pt2.y); 

  temp.pt2.x = max(r.pt1.x, r.pt2.x); 

  temp.pt2.y = max(r.pt1.y, r.pt2.y); 

  return temp; 

 } 

If a large structure is to be passed to a function, it is generally more efficient to pass a 

pointer than to copy the whole structure. Structure pointers are just like pointers to 

ordinary variables. The declaration  

  struct point *pp; 

says that pp is a pointer to a structure of type struct point. If pp points to a 

point structure, *pp is the structure, and (*pp).x and (*pp).y are the members. 

To use pp, we might write, for example,  

  struct point origin, *pp; 

  pp = &origin; 

  printf("origin is (%d,%d)\n", (*pp).x, (*pp).y); 

The parentheses are necessary in (*pp).x because the precedence of the 

structure member operator . is higher then *. The expression *pp.x means 

*(pp.x), which is illegal here because x is not a pointer.  

Pointers to structures are so frequently used that an alternative notation is 

provided as a shorthand. If p is a pointer to a structure, then  

  p->member-of-structure 

refers to the particular member. So we could write instead  

  printf("origin is (%d,%d)\n", pp->x, pp->y); 

 Both . and -> associate from left to right, so if we have  

  struct rect r, *rp = &r; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 159

then these four expressions are equivalent:  

  r.pt1.x 

  rp->pt1.x 

  (r.pt1).x 

  (rp->pt1).x 

The structure operators . and ->, together with () for function calls and [] for 

subscripts, are at the top of the precedence hierarchy and thus bind very 

tightly. For example, given the declaration  

  struct { 

   int len; 

   char *str; 

  } *p; 

 then  

  ++p->len 

increments len, not p, because the implied parenthesization is ++(p->len). 

Parentheses can be used to alter binding: (++p)->len increments p before 

accessing len, and (p++)->len increments p afterward. (This last set of 

parentheses is unnecessary.)  

In the same way, *p->str fetches whatever str points to; *p->str++ increments 

str after accessing whatever it points to (just like *s++); (*p->str)++ increments 

whatever str points to; and *p++->str increments p after accessing whatever str 

points to. 

1.11.5 Arrays of Structures 

Consider writing a program to count the occurrences of each C keyword. We 

need an array of character strings to hold the names and an array of integers 

for the counts. One possibility is to use two parallel arrays, keyword and 

keycount, as in  

  char *keyword[NKEYS]; 

  int keycount[NKEYS]; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 160

But the very fact that the arrays are parallel suggests a different organization, 

an array of structures. Each keyword is a pair:  

  char *word; 

  int count; 

and there is an array of pairs. The structure declaration  

  struct key { 

   char *word; 

   int count; 

  } keytab[NKEYS]; 

declares a structure type key, defines an array keytab of structures of this type, 

and sets aside storage for them. Each element of the array is a structure. This 

could also be written  

  struct key { 

   char *word; 

   int count; 

  }; 

  struct key keytab[NKEYS]; 

Since the structure keytab contains a constant set of names, it is easiest to 

make it an external variable and initialize it once and for all when it is defined. 

The structure initialization is analogous to earlier ones - the definition is 

followed by a list of initializers enclosed in braces:  

  struct key { 

   char *word; 

   int count; 

  } keytab[] = { 

    "auto", 0, 

    "break", 0, 

    "case", 0, 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 161

    "char", 0, 

    "const", 0, 

    "continue", 0, 

    "default", 0, 

    /* ... */ 

    "unsigned", 0, 

    "void", 0, 

    "volatile", 0, 

    "while", 0 

  }; 

The initializers are listed in pairs corresponding to the structure members. It 

would be more precise to enclose the initializers for each "row" or structure in 

braces, as in  

  { "auto", 0 }, 

  { "break", 0 }, 

  { "case", 0 }, 

  ... 

but inner braces are not necessary when the initializers are simple variables or 

character strings and when all are present. As usual, the number of entries in 

the array keytab will be computed if the initializers are present and the [] is left 

empty.  

The keyword counting program begins with the definition of keytab. The main 

routine reads the input by repeatedly calling a function getword that fetches 

one word at a time. Each word is looked up in keytab with a version of the 

binary search function. The list of keywords must be sorted in increasing order 

in the table.  

 #include <stdio.h> 

 #include <ctype.h> 

 #include <string.h> 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 162

 #define MAXWORD 100 

 int getword(char *, int); 

 int binsearch(char *, struct key *, int); 

 /* count C keywords */ 

 main() 

 { 

  int n; 

  char word[MAXWORD]; 

  while (getword(word, MAXWORD) != EOF) 

   if (isalpha(word[0])) 

    if ((n = binsearch(word, keytab, NKEYS)) >= 0) 

     keytab[n].count++; 

  for (n = 0; n < NKEYS; n++) 

   if (keytab[n].count > 0) 

    printf("%4d %s\n", 

  keytab[n].count, keytab[n].word); 

  return 0; 

 } 

 /* binsearch:  find word in tab[0]...tab[n-1] */ 

 int binsearch(char *word, struct key tab[], int n) 

 { 

  int cond; 

  int low, high, mid; 

  low = 0; 

  high = n - 1; 

  while (low <= high) { 

   mid = (low+high) / 2; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 163

   if ((cond = strcmp(word, tab[mid].word)) < 0) 

    high = mid - 1; 

   else if (cond > 0) 

    low = mid + 1; 

   else 

    return mid; 

  } 

  return -1; 

 } 

We will show the function getword in a moment; for now it suffices to say that 

each call to getword function finds a word, which is copied into the array 

named as its first argument.  

The quantity NKEYS is the number of keywords in keytab. Although we could 

count this by hand, it's a lot easier and safer to do it by machine, especially if 

the list is subject to change. One possibility would be to terminate the list of 

initializers with a null pointer, then loop along keytab until the end is found.  

But this is more than is needed, since the size of the array is completely 

determined at compile time. The size of the array is the size of one entry times 

the number of entries, so the number of entries is just  

  size of keytab / size of struct key  

C provides a compile-time unary operator called sizeof that can be used to 

compute the size of any object. The expressions  

  sizeof object 

 and  

  sizeof (type name) 

yield an integer equal to the size of the specified object or type in bytes. 

(Strictly, sizeof produces an unsigned integer value whose type, size_t, is 

defined in the header <stddef.h>.) An object can be a variable or array or 

structure. A type name can be the name of a basic type like int or double or a 

derived type like a structure or a pointer.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 164

In our case, the number of keywords is the size of the array divided by the size 

of one element. This computation is used in a #define statement to set the value 

of NKEYS:  

  #define NKEYS (sizeof keytab / sizeof(struct key)) 

Another way to write this is to divide the array size by the size of a specific 

element:  

  #define NKEYS (sizeof keytab / sizeof(keytab[0])) 

This has the advantage that it does not need to be changed if the type changes.  

A size of can not be used in a #if line, because the preprocessor does not parse 

type names. But the expression in the #define is not evaluated by the 

preprocessor, so the code here is legal.  

Now for the function getword. We have written a more general getword than is 

necessary for this program, but it is not complicated. getword fetches the next 

``word'' from the input, where a word is either a string of letters and digits 

beginning with a letter or a single non-white space character. The function 

value is the first character of the word, or EOF for end of file or the character 

itself if it is not alphabetic.  

 /* getword:  get next word or character from input */ 

 int getword(char *word, int lim) 

 { 

  int c, getch(void); 

  void ungetch(int); 

  char *w = word; 

  while (isspace(c = getch())) 

  ; 

  if (c != EOF) 

   *w++ = c; 

  if (!isalpha(c)) { 

   *w = '\0'; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 165

   return c; 

  } 

  for ( ; --lim > 0; w++) 

   if (!isalnum(*w = getch())) { 

    ungetch(*w); 

    break; 

   } 

  *w = '\0'; 

  return word[0]; 

 } 

 getword uses the getch and ungetch. When the collection of an 

alphanumeric token stops, getword has gone one character too far. The call to 

ungetch pushes that character back on the input for the next call. getword also 

uses isspace to skip whitespace, isalpha to identify letters and isalnum to 

identify letters and digits; all are from the standard header <ctype.h>.  

1.11.6 Pointers to Structures 

To illustrate some of the considerations involved with pointers to and arrays of 

structures, let us write the keyword-counting program again, this time using 

pointers instead of array indices.  

The external declaration of keytab need not change, but main and binsearch do 

need modification.  

 #include <stdio.h> 

 #include <ctype.h> 

 #include <string.h> 

 #define MAXWORD 100 

 int getword(char *, int); 

 struct key *binsearch(char *, struct key *, int); 

 /* count C keywords; pointer version */ 

 main() 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 166

 { 

  char word[MAXWORD]; 

  struct key *p; 

  while (getword(word, MAXWORD) != EOF) 

   if (isalpha(word[0])) 

    if ((p=binsearch(word, keytab, NKEYS)) != NULL) 

     p->count++; 

  for (p = keytab; p < keytab + NKEYS; p++) 

  if (p->count > 0) 

   printf("%4d %s\n", p->count, p->word); 

  return 0; 

 } 

 /* binsearch: find word in tab[0]...tab[n-1] */ 

 struct key *binsearch(char *word, struck key *tab, int n) 

 { 

  int cond; 

  struct key *low = &tab[0]; 

  struct key *high = &tab[n]; 

  struct key *mid; 

  while (low < high) { 

   mid = low + (high-low) / 2; 

   if ((cond = strcmp(word, mid->word)) < 0) 

    high = mid; 

   else if (cond > 0) 

    low = mid + 1; 

   else 

    return mid; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 167

  } 

  return NULL; 

 } 

There are several things worthy of note here. First, the declaration of binsearch 

must indicate that it returns a pointer to struct key instead of an integer; this is 

declared both in the function prototype and in binsearch. If binsearch finds the 

word, it returns a pointer to it; if it fails, it returns NULL.  

Second, the elements of keytab are now accessed by pointers. This requires 

significant changes in binsearch.  

The initializers for low and high are now pointers to the beginning and just past 

the end of the table.  

The computation of the middle element can no longer be simply  

 mid = (low+high) / 2    /* WRONG */ 

because the addition of pointers is illegal. Subtraction is legal, however, so 

high-low is the number of elements and thus  

 mid = low + (high-low) / 2 

sets mid to the element halfway between low and high.  

The most important change is to adjust the algorithm to make sure that it does 

not generate an illegal pointer or attempt to access an element outside the 

array. The problem is that &tab[-1] and &tab[n] are both outside the limits of 

the array tab. The former is strictly illegal and it is illegal to dereference the 

latter. The language definition does guarantee, however, that pointer arithmetic 

that involves the first element beyond the end of an array (that is, &tab[n]) will 

work correctly.  

 In main we wrote  

  for (p = keytab; p < keytab + NKEYS; p++) 

If p is a pointer to a structure, arithmetic on p takes into account the size of the 

structure, so p++ increments p by the correct amount to get the next element of 

the array of structures and the test stops the loop at the right time.  

Don't assume, however, that the size of a structure is the sum of the sizes of its 

members. Because of alignment requirements for different objects, there may be 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 168

unnamed ``holes'' in a structure. Thus, for instance, if a char is one byte and an 

int four bytes, the structure  

  struct { 

   char c; 

   int i; 

  }; 

might well require eight bytes, not five. The sizeof operator returns the proper 

value.  

Finally, an aside on program format: when a function returns a complicated 

type like a structure pointer, as in  

  struct key *binsearch(char *word, struct key *tab, int n) 

the function name can be hard to see, and to find with a text editor. Accordingly 

an alternate style is sometimes used:  

  struct key * 

  binsearch(char *word, struct key *tab, int n) 

 This is a matter of personal taste; pick the form you like and hold to it. 

1.11.7 Self-referential Structures 

Suppose we want to handle the more general problem of counting the 

occurrences of all the words in some input. Since the list of words isn't known 

in advance, we can't conveniently sort it and use a binary search. Yet we can't 

do a linear search for each word as it arrives, to see if it's already been seen; the 

program would take too long. (More precisely, its running time is likely to grow 

quadratically with the number of input words.) How can we organize the data to 

copy efficiently with a list or arbitrary words?  

One solution is to keep the set of words seen so far sorted at all times, by 

placing each word into its proper position in the order as it arrives. This 

shouldn't be done by shifting words in a linear array, though - that also takes 

too long. Instead we will use a data structure called a binary tree.  

The tree contains one ``node'' per distinct word; each node contains  

 A pointer to the text of the word,  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 169

 A count of the number of occurrences,  

 A pointer to the left child node,  

 A pointer to the right child node.  

No node may have more than two children; it might have only zero or one.  

The nodes are maintained so that at any node the left subtree contains only 

words that are lexicographically less than the word at the node and the right 

subtree contains only words that are greater. This is the tree for the sentence 

``now is the time for all good men to come to the aid of their party'', as built by 

inserting each word as it is encountered:  

 

To find out whether a new word is already in the tree, start at the root and 

compare the new word to the word stored at that node. If they match, the 

question is answered affirmatively. If the new record is less than the tree word, 

continue searching at the left child, otherwise at the right child. If there is no 

child in the required direction, the new word is not in the tree and in fact the 

empty slot is the proper place to add the new word. This process is recursive, 

since the search from any node uses a search from one of its children. 

Accordingly, recursive routines for insertion and printing will be most natural.  

Going back to the description of a node, it is most conveniently represented as a 

structure with four components:  

 struct tnode {     /* the tree node: */ 

  char *word;           /* points to the text */ 

  int count;            /* number of occurrences */ 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 170

  struct tnode *left;   /* left child */ 

  struct tnode *right;  /* right child */ 

 }; 

This recursive declaration of a node might look chancy, but it's correct. It is 

illegal for a structure to contain an instance of itself, but  

 struct tnode *left; 

declares left to be a pointer to a tnode, not a tnode itself.  

Occasionally, one needs a variation of self-referential structures: two structures 

that refer to each other. The way to handle this is:  

 struct t { 

  ... 

  struct s *p;   /* p points to an s */ 

 }; 

 struct s { 

  ... 

  struct t *q;   /* q points to a t */ 

 }; 

1.11.8 typedef 

C provides a facility called typedef for creating new data type names. For 

example, the declaration  

  typedef int Length; 

makes the name Length a synonym for int. The type Length can be used in 

declarations, casts, etc., in exactly the same ways that the int type can be:  

  Length len, maxlen; 

  Length *lengths[]; 

 Similarly, the declaration  

  typedef char *String; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 171

makes String a synonym for char * or character pointer, which may then be 

used in declarations and casts:  

  String p, lineptr[MAXLINES], alloc(int); 

  int strcmp(String, String); 

  p = (String) malloc(100); 

Notice that the type being declared in a typedef appears in the position of a 

variable name, not right after the word typedef. Syntactically, typedef is like the 

storage classes extern, static, etc. We have used capitalized names for typedefs, 

to make them stand out.  

 As a more complicated example, we could make typedefs for the tree 

nodes shown earlier in this chapter:  

 typedef struct tnode *Treeptr; 

 typedef struct tnode { /* the tree node: */ 

  char *word;           /* points to the text */ 

  int count;            /* number of occurrences */ 

  struct tnode *left;   /* left child */ 

  struct tnode *right;  /* right child */ 

 } Treenode; 

This creates two new type keywords called Treenode (a structure) and Treeptr (a 

pointer to the structure). Then the routine talloc could become  

 Treeptr talloc(void) 

 { 

  return (Treeptr) malloc(sizeof(Treenode)); 

 } 

It must be emphasized that a typedef declaration does not create a new type in 

any sense; it merely adds a new name for some existing type. Nor are there any 

new semantics: variables declared this way have exactly the same properties as 

variables whose declarations are spelled out explicitly. In effect, typedef is like 

#define, except that since it is interpreted by the compiler, it can cope with 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 172

textual substitutions that are beyond the capabilities of the preprocessor. For 

example,  

 typedef int (*PFI)(char *, char *); 

creates the type PFI, for ``pointer to function (of two char * arguments) 

returning int,'' which can be used in contexts like  

 PFI strcmp, numcmp; 

in the sort program. 

Besides purely aesthetic issues, there are two main reasons for using typedefs. 

The first is to parameterize a program against portability problems. If typedefs 

are used for data types that may be machine-dependent, only the typedefs need 

change when the program is moved. One common situation is to use typedef 

names for various integer quantities, then make an appropriate set of choices of 

short, int, and long for each host machine. Types like size_t and ptrdiff_t from 

the standard library are examples.  

 The second purpose of typedefs is to provide better documentation for a 

program - a type called Treeptr may be easier to understand than one declared 

only as a pointer to a complicated structure. 

1.11.9 Union 

A union is a variable that may hold (at different times) objects of different types 

and sizes, with the compiler keeping track of size and alignment requirements. 

Unions provide a way to manipulate different kinds of data in a single area of 

storage, without embedding any machine-dependent information in the 

program. They are analogous to variant records in pascal.  

As an example such as might be found in a compiler symbol table manager, suppose 

that a constant may be an int, a float, or a character pointer. The value of a particular 

constant must be stored in a variable of the proper type, yet it is most convenient for 

table management if the value occupies the same amount of storage and is stored in the 

same place regardless of its type. This is the purpose of a union - a single variable that 

can legitimately hold any of one of several types. The syntax is based on structures:  

 union u_tag { 

  int ival; 

  float fval; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 173

  char *sval; 

 } u; 

The variable u will be large enough to hold the largest of the three types; the 

specific size is implementation-dependent. Any of these types may be assigned 

to u and then used in expressions, so long as the usage is consistent: the type 

retrieved must be the type most recently stored. It is the programmer's 

responsibility to keep track of which type is currently stored in a union; the 

results are implementation-dependent if something is stored as one type and 

extracted as another.  

 Syntactically, members of a union are accessed as  

  union-name.member  

 or  

  union-pointer->member  

just as for structures. If the variable utype is used to keep track of the current 

type stored in u, then one might see code such as  

 if (utype == INT) 

  printf("%d\n", u.ival); 

 if (utype == FLOAT) 

  printf("%f\n", u.fval); 

 if (utype == STRING) 

  printf("%s\n", u.sval); 

 else 

  printf("bad type %d in utype\n", utype); 

Unions may occur within structures and arrays and vice versa. The notation for 

accessing a member of a union in a structure (or vice versa) is identical to that 

for nested structures. For example, in the structure array defined by  

 struct { 

  char *name; 

  int flags; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 174

  int utype; 

  union { 

   int ival; 

   float fval; 

   char *sval; 

  } u; 

 } symtab[NSYM]; 

the member ival is referred to as  

 symtab[i].u.ival 

and the first character of the string sval by either of  

 *symtab[i].u.sval 

 symtab[i].u.sval[0] 

In effect, a union is a structure in which all members have offset zero from the base, 

the structure is big enough to hold the ``widest'' member and the alignment is 

appropriate for all of the types in the union. The same operations are permitted on 

unions as on structures: assignment to or copying as a unit, taking the address and 

accessing a member.  

A union may only be initialized with a value of the type of its first member; thus union u 

described above can only be initialized with an integer value.  

The storage allocator in shows how a union can be used to force a variable to be 

aligned on a particular kind of storage boundary.  

1.11.10   Summary 

Structures facilitate declaration of composite data types of heterogeneous 

variable. A structure may contain variables of different data types. These 

represent the logical organization of distinct variables as one unit. Structures 

may be self referential, where one structure may contain instances of itself. 

Unions are like structure. The only difference is that for union the memory 

allocated is equal to the largest sized data types declared in that union. 

 

 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 175

1.11.11 Short Answer Type Questions 

1. Define structure. 

2. What is the purpose of using a structure? 

3. How an array of structures is declared and used? 

4. How a pointer to a structure is declared and used? 

1.11.12     Long Answer Type Questions 

1. How structures are declared and used ? Explain by giving examples. 

2. Give an example of array of structures. 

3. What are self referential structures? 

4. What is the difference between structure and union? 

1.11.13  Suggested Books 

1. Application Programming in C  R. S. Salaria 

2. C Programming using Turbo C  Robert Lafore 

3. Programming with ANSI and Turbo C  Ashok N. Kamthane 

4. Programming using C   E. Balagurusamy 

5. Let Us C     Yashwant Kantekar 

 

Web Resources  

 www.tutorialspoint.com/cprogramming/ 

www.learn-c.org 

 www.cprogramming.com/tutorial/c-tutorial.html 

 www.programiz.com/c-programming 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 176

 

B.A. PART-II 

SEMESTER-III 

   PAPER : BAP-201 

C PROGRAMMING AND  

DATA STRUCTURES 

 

LESSON NO. 1.12 AUTHOR : DHARAM VEER SHARMA 

 

POINTERS 

1.12.1 Introduction 

1.12.2 Objectives  

1.12.3 Pointer and Addresses 

1.12.4 Pointer and Function Arguments 

1.12.5 Pointers and Arrays 

1.12.6 Address Arithmetic 

1.12.7 Character Pointers and Functions 

1.12.8 Pointer Arrays; Pointers to Pointers 

1.12.9 Pointes to Functions 

1.12.10  Summary 

1.12.11  Short Answer Type Questions 

1.12.12  Long Answer Type Questions 

1.12.13  Suggested Books 

 

1.12.1 Introduction 

A pointer is a variable that contains the address of a variable. Pointers are 

much used in C, partly because they are sometimes the only way to express a 

computation, and partly because they usually lead to more compact and 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 177

efficient code than can be obtained in other ways. Pointers and arrays are 

closely related; this chapter also explores this relationship and shows how to 

exploit it.  

Pointers have been lumped with the goto statement as a marvelous way to create 

impossible-to-understand programs. This is certainly true when they are used 

carelessly, and it is easy to create pointers that point somewhere unexpected. With 

discipline, however, pointers can also be used to achieve clarity and simplicity. This is 

the aspect that we will try to illustrate.  

The main change in ANSI C is to make explicit the rules about how pointers can be 

manipulated, in effect mandating what good programmers already practice and good 

compilers already enforce. In addition, the type void * (pointer to void) replaces char * 

as the proper type for a generic pointer. 

1.12.2 Objectives 

Pointers play important role in efficient programming but are very dangerous if 

proper care is not taken while using them. Through pointers we can directly 

access the memory. In this lesson we shall discuss the concept of pointers and 

how to use pointers, including pointer arithmetic, passing pointers as function 

arguments, relation between arrays and pointers.    

1.12.3 Pointers and Addresses 

Let us begin with a simplified picture of how memory is organized. A typical 

machine has an array of consecutively numbered or addressed memory cells 

that may be manipulated individually or in contiguous groups. One common 

situation is that any byte can be a char, a pair of one-byte cells can be treated 

as a short integer, and four adjacent bytes form a long. A pointer is a group of 

cells (often two or four) that can hold an address. So if c is a char and p is a 

pointer that points to it, we could represent the situation this way:  

 

The unary operator & gives the address of an object, so the statement p = &c; assigns 

the address of c to the variable p, and p is said to ``point to'' c. The & operator only 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 178

applies to objects in memory: variables and array elements. It cannot be applied to 

expressions, constants or register variables. So, we can say that a pointer is a 

variable that points to (or contains) address of another variable. 

The unary operator * is the indirection or dereferencing operator; when applied 

to a pointer, it accesses the object the pointer points to. Suppose that x and y 

are integers and ip is a pointer to int. This artificial sequence shows how to 

declare a pointer and how to use & and *:  

 int x = 1, y = 2, z[10]; 

 int *ip; /* ip is a pointer to int */ 

 ip = &x; /* ip now points to x */ 

 y = *ip; /* y is now 1 */ 

 *ip = 0; /* x is now 0 */ 

 ip = &z[0]; /* ip now points to z[0] */ 

The declaration of x, y, and z are what we've seen all along. The declaration of 

the pointer ip,  

  int *ip; 

is intended as a mnemonic; it says that the expression *ip is an int. The syntax 

of the declaration for a variable mimics the syntax of expressions in which the 

variable might appear. This reasoning applies to function declarations as well. 

For example,  

  double *dp, atof(char *); 

says that in an expression *dp and atof(s) have values of double and that the 

argument of atof is a pointer to char.  

You should also note the implication that a pointer is constrained to point to a 

particular kind of object: every pointer points to a specific data type. (There is 

one exception: a ``pointer to void'' is used to hold any type of pointer but cannot 

be dereferenced itself.) 

If ip points to the integer x, then *ip can occur in any context where x could, so  

  *ip = *ip + 10; 

 increments *ip by 10.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 179

The unary operators * and & bind more tightly than arithmetic operators, so the 

assignment  

  y = *ip + 1 

takes whatever ip points at, adds 1 and assigns the result to y, while  

  *ip += 1 

increments what ip points to, as do  

  ++*ip 

 and  

  (*ip)++ 

The parentheses are necessary in this last example; without them, the 

expression would increment ip instead of what it points to, because unary 

operators like * and ++ associate right to left.  

Finally, since pointers are variables, they can be used without dereferencing. 

For example, if iq is another pointer to int,  

  iq = ip 

copies the contents of ip into iq, thus making iq point to whatever ip pointed to. 

1.12.4 Pointers and Function Arguments 

Since C passes arguments to functions by value, there is no direct way for the 

called function to alter a variable in the calling function. For instance, a sorting 

routine might exchange two out-of-order arguments with a function called 

swap. It is not enough to write  

  swap(a, b); 

 where the swap function is defined as  

  void swap(int x, int y)  /* WRONG */ 

  { 

   int temp; 

   temp = x; 

   x = y; 

   y = temp; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 180

  }  

Because of call by value, swap can't affect the arguments a and b in the routine 

that called it. The function above swaps copies of a and b.  

The way to obtain the desired effect is for the calling program to pass pointers to 

the values to be changed:  

  swap(&a, &b); 

Since the operator & produces the address of a variable, &a is a pointer to a. In 

swap itself, the parameters are declared as pointers and the operands are 

accessed indirectly through them.  

  void swap(int *px, int *py)  /* interchange *px and *py */ 

  { 

   int temp; 

   temp = *px; 

   *px = *py; 

   *py = temp; 

  } 

 Pictorially:  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 181

 

Pointer arguments enable a function to access and change objects in the function 

that called it. As an example, consider a function getint that performs free-format 

input conversion by breaking a stream of characters into integer values, one integer 

per call. getint has to return the value it found and also signal end of file when there 

is no more input. These values have to be passed back by separate paths, for no 

matter what value is used for EOF, that could also be the value of an input integer.  

One solution is to have getint return the end of file status as its function value, while 

using a pointer argument to store the converted integer back in the calling function. 

This is the scheme used by scanf as well. 

The following loop fills an array with integers by calls to getint:  

  int n, array[SIZE], getint(int *); 

  for (n = 0; n < SIZE && getint(&array[n]) != EOF; n++) 

  ; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 182

Each call sets array[n] to the next integer found in the input and increments n. 

Notice that it is essential to pass the address of array[n] to getint. Otherwise 

there is no way for getint to communicate the converted integer back to the 

caller.  

Our version of getint returns EOF for end of file, zero if the next input is not a 

number, and a positive value if the input contains a valid number.  

 #include <ctype.h> 

 int getch(void); 

 void ungetch(int); 

 /* getint:  get next integer from input into *pn */ 

 int getint(int *pn) 

 { 

  int c, sign; 

  while (isspace(c = getch()))   /* skip white space */ 

          ; 

  if (!isdigit(c) && c != EOF && c != '+' && c != '-') { 

   ungetch(c);  /* it is not a number */ 

   return 0; 

  } 

  sign = (c == '-') ? -1 : 1; 

  if (c == '+' || c == '-') 

   c = getch(); 

  for (*pn = 0; isdigit(c), c = getch()) 

  *pn = 10 * *pn + (c - '0'); 

  *pn *= sign; 

  if (c != EOF) 

   ungetch(c); 

  return c; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 183

 } 

Throughout getint, *pn is used as an ordinary int variable. We have also used 

getch and ungetch so the one extra character that must be read can be pushed 

back onto the input. 

1.12.5 Pointers and Arrays 

In C, there is a strong relationship between pointers and arrays, strong enough 

that pointers and arrays should be discussed simultaneously. Any operation 

that can be achieved by array subscripting can also be done with pointers. The 

pointer version will in general be faster but, at least to the uninitiated, 

somewhat harder to understand.  

 The declaration  

  int a[10]; 

 defines an array of size 10, that is, a block of 10 consecutive objects 

named a[0], a[1], ...,a[9].  

 

The notation a[i] refers to the i-th element of the array. If pa is a pointer to an 

integer, declared as  

  int *pa; 

 then the assignment  

  pa = &a[0]; 

 sets pa to point to element zero of a; that is, pa contains the address of 

a[0].  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 184

 

 Now the assignment  

  x = *pa; 

 will copy the contents of a[0] into x.  

If pa points to a particular element of an array, then by definition pa+1 points 

to the next element, pa+i points i elements after pa and pa-i points i elements 

before. Thus, if pa points to a[0],  

  *(pa+1) 

 refers to the contents of a[1], pa+i is the address of a[i] and *(pa+i) is the 

contents of a[i].  

 

These remarks are true regardless of the type or size of the variables in the 

array a. The meaning of ``adding 1 to a pointer,'' and by extension, all pointer 

arithmetic, is that pa+1 points to the next object, and pa+i points to the i-th 

object beyond pa.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 185

The correspondence between indexing and pointer arithmetic is very close. By 

definition, the value of a variable or expression of type array is the 

address of element zero of the array. Thus after the assignment  

  pa = &a[0]; 

 pa and a have identical values. Since the name of an array is a synonym 

for the location of the initial element, the assignment pa=&a[0] can also be 

written as  

  pa = a; 

Rather more surprising, at first sight, is the fact that a reference to a[i] can also 

be written as *(a+i). In evaluating a[i], C converts it to *(a+i) immediately; the 

two forms are equivalent. Applying the operator & to both parts of this 

equivalence, it follows that &a[i] and a+i are also identical: a+i is the address of 

the i-th element beyond a. As the other side of this coin, if pa is a pointer, 

expressions might use it with a subscript; pa[i] is identical to *(pa+i). In short, 

an array-and-index expression is equivalent to one written as a pointer and 

offset.  

There is one difference between an array name and a pointer that must be kept in 

mind. A pointer is a variable, so pa=a and pa++ are legal. But an array 

name is not a variable; constructions like a=pa and a++ are illegal.  

When an array name is passed to a function, what is passed is the location of 

the initial element. Within the called function, this argument is a local variable 

and so an array name parameter is a pointer, that is, a variable containing an 

address. We can use this fact to write another version of strlen, which 

computes the length of a string.  

 /* strlen:  return length of string s */ 

 int strlen(char *s) 

 { 

  int n; 

  for (n = 0; *s != '\0', s++) 

   n++; 

  return n; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 186

 } 

Since s is a pointer, incrementing it is perfectly legal; s++ has no effect on the 

character string in the function that called strlen, but merely increments 

strlen's private copy of the pointer. That means that calls like  

 strlen("hello, world");   /* string constant */ 

 strlen(array);            /* char array[100]; */ 

 strlen(ptr);              /* char *ptr; */ 

  all work.  

 As formal parameters in a function definition,  

  char s[]; 

 and  

  char *s; 

are equivalent; we prefer the latter because it says more explicitly that the 

variable is a pointer. When an array name is passed to a function, the function 

can at its convenience believe that it has been handed either an array or a 

pointer and manipulate it accordingly. It can even use both notations if it seems 

appropriate and clear.  

It is possible to pass part of an array to a function, by passing a pointer to the 

beginning of the subarray. For example, if a is an array,  

  f(&a[2]) 

 and  

  f(a+2) 

both pass to the function f the address of the subarray that starts at a[2]. 

Within f, the parameter declaration can read  

  f(int arr[]) { ... } 

 or  

  f(int *arr) { ... } 

So as far as f is concerned, the fact that the parameter refers to part of a larger 

array is of no consequence.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 187

If one is sure that the elements exist, it is also possible to index backwards in 

an array; p[-1], p[-2] and so on are syntactically legal and refer to the elements 

that immediately precede p[0]. Of course, it is illegal to refer to objects that are 

not within the array bounds. 

1.12.6 Address Arithmetic 

We can perform certain arithmetic operations on pointer variables themselves. 

If p is a pointer to some element of an array, then p++ increments p to point to 

the next element, and p+=i increments it to point i elements beyond where it 

currently does. Note that, p++ causes p to point to the next element, not to the 

next memory location. These and similar constructions are the simples forms of 

pointer or address arithmetic.  

C is consistent and regular in its approach to address arithmetic; its integration of 

pointers, arrays, and address arithmetic is one of the strengths of the language. Let 

us illustrate by writing a rudimentary storage allocator. There are two routines. The 

first, alloc(n), returns a pointer to n consecutive character positions, which can be 

used by the caller of alloc for storing characters. The second, afree(p), releases the 

storage thus acquired so it can be re-used later. The routines are ``rudimentary'' 

because the calls to afree must be made in the opposite order to the calls made on 

alloc. That is, the storage managed by alloc and afree is a stack or last-in, first-out. 

The standard library provides analogous functions called malloc and free that have 

no such restrictions.  

The easiest implementation is to have alloc hand out pieces of a large character 

array that we will call allocbuf. This array is private to alloc and afree. Since 

they deal in pointers, not array indices, no other routine need know the name of 

the array, which can be declared static in the source file containing alloc and 

afree, and thus be invisible outside it. In practical implementations, the array 

may well not even have a name; it might instead be obtained by calling malloc 

or by asking the operating system for a pointer to some unnamed block of 

storage.  

The other information needed is how much of allocbuf has been used. We use a 

pointer, called allocp, that points to the next free element. When alloc is asked 

for n characters, it checks to see if there is enough room left in allocbuf. If so, 

alloc returns the current value of allocp (i.e., the beginning of the free block), 

then increments it by n to point to the next free area. If there is no room, alloc 

returns zero. afree(p) merely sets allocp to p if p is inside allocbuf.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 188

 

#define ALLOCSIZE 10000 /* size of available space */ 

static char allocbuf[ALLOCSIZE]; /* storage for alloc */ 

static char *allocp = allocbuf;  /* next free position */ 

char *alloc(int n)    /* return pointer to n characters */ 

{ 

 if (allocbuf + ALLOCSIZE - allocp >= n) {  /* it fits */ 

  allocp += n; 

  return allocp - n; /* old p */ 

 } else      /* not enough room */ 

  return 0; 

} 

 

void afree(char *p)  /* free storage pointed to by p */ 

{ 

 if (p >= allocbuf && p < allocbuf + ALLOCSIZE) 

  allocp = p; 

} 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 189

In general a pointer can be initialized just as any other variable can, though normally 

the only meaningful values are zero or an expression involving the address of previously 

defined data of appropriate type. The declaration  

  static char *allocp = allocbuf; 

defines allocp to be a character pointer and initializes it to point to the 

beginning of allocbuf, which is the next free position when the program starts. 

This could also have been written  

  static char *allocp = &allocbuf[0]; 

 since the array name is the address of the zeroth element.  

 The test  

  if (allocbuf + ALLOCSIZE - allocp >= n) {  /* it fits */ 

checks if there's enough room to satisfy a request for n characters. If there is, 

the new value of allocp would be at most one beyond the end of allocbuf. If the 

request can be satisfied, alloc returns a pointer to the beginning of a block of 

characters (notice the declaration of the function itself). If not, alloc must return 

some signal that there is no space left. C guarantees that zero is never a valid 

address for data, so a return value of zero can be used to signal an abnormal 

event, in this case no space.  

Pointers and integers are not interchangeable. Zero is the sole exception: the 

constant zero may be assigned to a pointer, and a pointer may be compared 

with the constant zero. The symbolic constant NULL is often used in place of 

zero, as a mnemonic to indicate more clearly that this is a special value for a 

pointer. NULL is defined in <stdio.h>. We will use NULL henceforth.  

 Tests like  

  if (allocbuf + ALLOCSIZE - allocp >= n) {  /* it fits */ 

 and 

  if (p >= allocbuf && p < allocbuf + ALLOCSIZE) 

show several important facets of pointer arithmetic. First, pointers may be compared 

under certain circumstances. If p and q point to members of the same array, then 

relations like ==, !=, <, >=, etc., work properly. For example,  

 p < q 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 190

is true if p points to an earlier element of the array than q does. Any pointer can 

be meaningfully compared for equality or inequality with zero. But the behavior 

is undefined for arithmetic or comparisons with pointers that do not point to 

members of the same array. (There is one exception: the address of the first 

element past the end of an array can be used in pointer arithmetic.)  

Second, we have already observed that a pointer and an integer may be added 

or subtracted. The construction  

  p + n 

means the address of the n-th object beyond the one p currently points to. This is 

true regardless of the kind of object p points to; n is scaled according to the size of 

the objects p points to, which is determined by the declaration of p. If an int is four 

bytes, for example, the int will be scaled by four.  

Pointer subtraction is also valid: if p and q point to elements of the same array, 

and p<q, then q-p+1 is the number of elements from p to q inclusive. This fact 

can be used to write yet another version of strlen:  

/* strlen:  return length of string s */ 

int strlen(char *s) 

{ 

 char *p = s; 

 while (*p != '\0') 

  p++; 

 return p - s; 

} 

In its declaration, p is initialized to s, that is, to point to the first character of the 

string. In the while loop, each character in turn is examined until the '\0' at the end is 

seen. Because p points to characters, p++ advances p to the next character each time, 

and p-s gives the number of characters advanced over, that is, the string length. (The 

number of characters in the string could be too large to store in an int. The header 

<stddef.h> defines a type ptrdiff_t that is large enough to hold the signed difference of 

two pointer values. If we were being cautious, however, we would use size_t for the 

return value of strlen, to match the standard library version. size_t is the unsigned 

integer type returned by the sizeof operator.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 191

Pointer arithmetic is consistent: if we had been dealing with floats, which 

occupy more storage that chars and if p were a pointer to float, p++ would 

advance to the next float. Thus we could write another version of alloc that 

maintains floats instead of chars, merely by changing char to float throughout 

alloc and afree. All the pointer manipulations automatically take into account 

the size of the objects pointed to.  

The valid pointer operations are assignment of pointers of the same type, 

adding or subtracting a pointer and an integer, subtracting or comparing two 

pointers to members of the same array and assigning or comparing to zero. All 

other pointer arithmetic is illegal. It is not legal to add two pointers or to 

multiply or divide or shift or mask them, or to add float or double to them or 

even, except for void *, to assign a pointer of one type to a pointer of another 

type without a cast. 

1.12.7 Character Pointers and Functions 

 A string constant, written as  

  "I am a string" 

is an array of characters. In the internal representation, the array is terminated 

with the null character '\0' so that programs can find the end. The length in 

storage is thus one more than the number of characters between the double 

quotes.  

Perhaps the most common occurrence of string constants is as arguments to 

functions, as in  

  printf("hello, world\n"); 

When a character string like this appears in a program, access to it is through a 

character pointer; printf receives a pointer to the beginning of the character 

array. That is, a string constant is accessed by a pointer to its first element.  

String constants need not be function arguments. If pmessage is declared as  

  char *pmessage; 

 then the statement  

  pmessage = "now is the time"; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 192

assigns to pmessage a pointer to the character array. This is not a string copy; 

only pointers are involved. C does not provide any operators for processing an 

entire string of characters as a unit.  

 There is an important difference between these definitions:  

  char amessage[] = "now is the time"; /* an array */ 

  char *pmessage = "now is the time"; /* a pointer */ 

amessage is an array, just big enough to hold the sequence of characters and 

'\0' that initializes it. Individual characters within the array may be changed 

but amessage will always refer to the same storage. On the other hand, 

pmessage is a pointer, initialized to point to a string constant; the pointer may 

subsequently be modified to point elsewhere, but the result is undefined if you 

try to modify the string contents.  

 

We will illustrate more aspects of pointers and arrays by studying versions of two 

useful functions adapted from the standard library. The first function is strcpy(s,t), 

which copies the string t to the string s. It would be nice just to say s=t but this copies 

the pointer, not the characters. To copy the characters, we need a loop. The array 

version first:  

/* strcpy:  copy t to s; array subscript version */ 

void strcpy(char *s, char *t) 

{ 

 int i; 

 i = 0; 

 while ((s[i] = t[i]) != '\0') 

  i++; 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 193

} 

 For contrast, here is a version of strcpy with pointers:  

/* strcpy:  copy t to s; pointer version */ 

void strcpy(char *s, char *t) 

{ 

 int i; 

 i = 0; 

 while ((*s = *t) != '\0') { 

  s++; 

  t++; 

 } 

Because arguments are passed by value, strcpy can use the parameters s and t 

in any way it pleases. Here, they are conveniently initialized pointers, which are 

marched along the arrays a character at a time, until the '\0' that terminates 

when has been copied into s.  

In practice, strcpy would not be written as we showed it above. Experienced C 

programmers would prefer  

/* strcpy:  copy t to s; pointer version 2 */ 

void strcpy(char *s, char *t) 

{ 

 while ((*s++ = *t++) != '\0'); 

} 

This moves the increment of s and t into the test part of the loop. The value of 

*t++ is the character that t pointed to before t was incremented; the postfix ++ 

doesn't change t until after this character has been fetched. In the same way, 

the character is stored into the old s position before s is incremented. This 

character is also the value that is compared against '\0' to control the loop. The 

net effect is that characters are copied from t to s, up and including the 

terminating '\0'.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 194

As the final abbreviation, observe that a comparison against '\0' is redundant, 

since the question is merely whether the expression is zero. So the function 

would likely be written as  

 /* strcpy:  copy t to s; pointer version 3 */ 

 void strcpy(char *s, char *t) 

 { 

 while (*s++ = *t++) ; 

 } 

Although this may seem cryptic at first sight, the notational convenience is 

considerable, and the idiom should be mastered, because you will see it 

frequently in C programs.  

The strcpy in the standard library (<string.h>) returns the target string as its 

function value.  

The second routine that we will examine is strcmp(s,t), which compares the 

character strings s and t, and returns negative, zero or positive if s is 

lexicographically less than, equal to, or greater than t. The value is obtained by 

subtracting the characters at the first position where s and t disagree.  

/* strcmp:  return <0 if s<t, 0 if s==t, >0 if s>t */ 

int strcmp(char *s, char *t) 

{ 

 int i; 

 for (i = 0; s[i] == t[i]; i++) 

  if (s[i] == '\0') 

   return 0; 

 return s[i] - t[i]; 

} 

 The pointer version of strcmp:  

/* strcmp:  return <0 if s<t, 0 if s==t, >0 if s>t */ 

int strcmp(char *s, char *t) 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 195

{ 

 for ( ; *s == *t; s++, t++) 

  if (*s == '\0') 

   return 0; 

 return *s - *t; 

} 

 Since ++ and -- are either prefix or postfix operators, other combinations of * and 

++ and -- occur, although less frequently. For example,  

  *--p 

decrements p before fetching the character that p points to. In fact, the pair of 

expressions  

  *p++ = val;  /* push val onto stack */ 

  val = *--p;  /* pop top of stack into val */ 

are the standard idiom for pushing and popping a stack.  

The header <string.h> contains declarations for the functions mentioned in this 

section, plus a variety of other string-handling functions from the standard 

library. 

1.12.8 Pointer Arrays; Pointers to Pointers 

Since pointers are variables themselves, they can be stored in arrays just as 

other variables can.  

If we have to deal with lines of text, which are of different lengths, and which, 

unlike integers, can't be compared or moved in a single operation, we need a 

data representation that will cope efficiently and conveniently with variable-

length text lines.  

This is where the array of pointers enters. If the lines to be sorted are stored 

end-to-end in one long character array, then each line can be accessed by a 

pointer to its first character. The pointers themselves can be stored in an array. 

Two lines can be compared by passing their pointers to strcmp. When two out-

of-order lines have to be exchanged, the pointers in the pointer array are 

exchanged, not the text lines themselves.  



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 196

 

This eliminates the twin problems of complicated storage management and high 

overhead that would go with moving the lines themselves.  

  char *lineptr[MAXLINES];  /* pointers to text lines */ 

 The main new thing is the declaration for lineptr:  

  char *lineptr[MAXLINES] 

says that lineptr is an array of MAXLINES elements, each element of which is a 

pointer to a char. That is, lineptr[i] is a character pointer and *lineptr[i] is the 

character it points to, the first character of the i-th saved text line.  

Since lineptr is itself the name of an array, it can be treated as a pointer in the 

same manner as in our earlier examples and writelines can be written instead 

as  

 /* writelines:  write output lines */ 

 void writelines(char *lineptr[], int nlines) 

 { 

  while (nlines-- > 0) 

   printf("%s\n", *lineptr++); 

 } 

Initially, *lineptr points to the first line; each element advances it to the next 

line pointer while nlines is counted down.  

1.12.9 Pointers to Functions 

In C, a function itself is not a variable, but it is possible to define pointers to 

functions, which can be assigned, placed in arrays, passed to functions, 

returned by functions and so on.  

Example 

 #include <stdio.h> 

 #include <conio.h> 

 main() 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 197

 { 

  int show(); /*Function prototype*/ 

  int (*p)(); /*Pointer to function declaration*/ 

 p=show; /*Assigning address of show to p*/ 

 (*p)();  /Function call using pointer*/ 

 printf("%u",show); /*Displays address of function*/ 

 } 

 int show() 

 { 

  clrscr(); 

  printf("Inside show function whose address is -> ") 

 } 

In the above program the variable p is pointer to function. Address of show() is 

assigned to pointer p. Using function pointer, the function show() is invoked. 

The output of the program is as under: 

 Inside show function whose address is -> 554 

1.12.10  Summary 

C Language facilitates direct access to memory through pointers. A pointer 
store the address of the variable of type for which pointer is defined. C language 
also provide parameter passing by address for modifying the values of the 
actual parameters while making the function calls. Arrays and pointers have 
strong relation between themselves. Use of pointers makes the programs run 
faster. Pointer are of great help but should be used very cautiously. If some 
memory has been allocated to a pointer then it must be freed if it is no longer 
required because otherwise the memory allocated will not be available for other 
uses. It will be available only after rebooting of the system. C language does not 
support string data type but character pointers can solve the purpose. Each 
string must be terminated by a null otherwise there will be overlapping in the 
memory read using a character pointer.   

1.12.11   Short Answer Type Questions 

1. What is the difference between int *A[20] and int (*A)[10]; 

2. What is the difference between array and pointer? 



B.A. PART-II (SEMESTER-III)  PAPER : BAP-201 198

3. What do you mean by pointer arithmetic? 

4. What is the data type of a pointer variable? 

1.12.12   Long Answer Type Questions 

1. What is the relation between pointer and addressing? Explain. 

2. What is the difference between parameter passing by address and by  
 value? 

3. What is the relation between pointer and array? 

4. Write the code for string copy and string comparison functions using  
 arrays? 

1.12.13  Suggested Books 

1. Application Programming in C  R. S. Salaria 

2. C Programming using Turbo C  Robert Lafore 

3. Programming with ANSI and Turbo C   Ashok N. Kamthane 

4. Programming using C   E. Balagurusamy 

5. Let Us C     Yashwant Kantekar 

Web Resources  

 www.tutorialspoint.com/cprogramming/ 

www.learn-c.org 

 www.cprogramming.com/tutorial/c-tutorial.html 

 www.programiz.com/c-programming 

 

Type  Setting 
 Department of Distance Education, Punjabi University, Patiala   


