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I. Introduction

Definition : A non empty set R, together with two binary compositions + and [/ is
said to form a Ring if the following axioms are satisfied:

(ja+t(b+c)=(a+b)+cforalla,b,ceR

(i)a+b=b+afora,beR

(iii) 3 some element O(called zero) in R, s.t., a+0=0+a=aforallaeR

(iv) for each a € R, 3 an element (-a) e R, s.t., a+ (-a)=(-a) +a=0

(v)a. (b.c)=(a.b).cforalla,b,ceR

(vija.(b+c)=a.b+a.c

(b+c).a=b.a+c.aforalla,b,ceR

Remarks : (a) Since we say that + and || are binary compositions on R, it is
understood that the closure properties w.r.t. these hold in R. In other words, for all
a, b e R,a+ b and a. b are unique in R.
(b) One can use any other symbol instead of +and ., but for obvious reasons, we
use these two symbols.
(c) Axiom (v) is named associativity w.r.t (.) and axiom (vi) is referred to as
distributivity (left and right) w.r.t + and (.
(d) Axioms (i) to (iv) could be restated by simply saying that < R, + > forms an
abelian group.
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(e) Since O in axiom (iii) is identity w.r.t +, it is clear that this element is unique.
Definition (Commutative ring) : A ring R is called a commutative ring if
ab = ba for all a, b € R. Again if 3 an element e € R s.t.,

ae=ea=aforallaeR
We say, R isa ring with unity. Unity is generally denoted by 1. (It is also called unit
element or multiplicative identity )
Note : If unity exists in a ring then it must be unique.
Remark : We recall that in a group by a? we meant a. a where '.' was the binary
composition of the group. We continue with the same notation in rings as well. In
fact, we also introduce similar notation for addition, and write na to mean a + a +
..... + a (n times), n being an integer.
Example 1 : Sets of real numbers, rational numbers, integers form rings w.r.t
usual addition and multiplication. These are all commutative rings with unity.
Example 2 : Set E of all even integers forms a commutative ring, without unity
(under usual addition and multiplication).

Example 3 : (a) Let M be the set of all 2 x 2 matrices over integers under matrix

10
addition and matrix multiplication. It is easy to see M forms a ring with unity {0 1} ,

but is not commutative.

a b
(b) Let M be set of all matrices of the type [O O} over integers under matrix addition

and multiplication. Then M forms a non commutative ring without unity.
Example 4 : The set Z, = {0, 1, 2, 3, 4, 5, 6} forms a ring under addition and
multiplication modulo 7. (In fact, we could take n in place of 7).

Example 5: The set R = {0, 4, 6} under addition and multiplication modulo 6
forms a commutative ring with unity. The composition tables are

@|0(2]4 0|jo0]2]4
0]0f[2]4 0OfO0fO0]O
2121410 2101412
4141012 4101214

Since 0 U 4=0,20 4=2,4 0 4, we notice 4 is unity of R.
Example 6 : Let F be the set of all continuous functions f: R - R, where R = set

of real numbers. Then F forms a ring under addition and multiplication defined by:
For any f,geF
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(f+ g)x = f(x) +g(x), forallx e R
(f g)x = f(x) g(x) for all x € R
Example 7 : Let R = {0, a, b, ¢}, Define + and . on R by

0

+ 0 b
0 0 b
a a c
b b 0
C c a

o | |O

o o |O |»

o |o|O |T

O |10 |O |6

C

(e} Jol (o} le)

0]

0

0]
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Then one can check that R forms a non commutative ring without unity. In fact it is

an example of the smallest non commutative ring.
Theorem 1 : In a ring R, the following results hold
(a.0=0.a=0forallaeR
(ii) a(-b) = (-a)
(iii) (~a)(-b) =ab Va, b e R
(ivfa(lb-c)=ab-ac.Va,b,ceR
Proof : (ija. 0=a. (0 +0)
=—a.0=a.0+a.0
=a.0+0=a.0+a.0
= 0 = a. 0 (using cancellation w.r.t + in the group < R, + >)
(ii)a. 0=0
=a(-b+b)=0
=a(-b)+ab=0
= a(-b) = - (ab)
Similarly (-a)b = —ab.

(ii) (-a)(=b) = -[a(-b)] = -[-ab] = ab

(iv) a(b — c) = a(b + (-c)
= ab + a(-c)

—ab foralla, b e R

Remarks : (i) If R is a ring with unity and 1 = O, then since foranya e R, a=a.l =

a.0 = 0, we find R = {0} which is called the trivial ring. We generally exclude this case

and thus whenever, we say R is a ringh with unity, it will be understood that 1 # 0 in

R.

(ii) If m, n are integers and a, b are elements of ring, then

n(a + b) =na + nb
(n + m)a = na + ma

(hm)a = na + ma

(hm)a = n(ma)
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am gn = gm'n
(am)e = am
Problem 1 : Let <R, +, .> be a ring where the group <R, +> is cyclic. Show that R is
a commutative ring:
Solution : Let <R, + > be generated by a. Let X, y € R be any two elements,. then
X = ma, y = na for some integers m, n.
Now xy = (ma)(na)
=(at+ta+..tajlata+...+a)
m times n times
= (mn)a? = (nm)a? = (na)(ma) = yx
II. Zero Divisor and Integral Demain
We have many times used this property that whenever ab = O then either a = 0 or b
= 0 that may not always be true. Indeed in the ring of integers (or reals or rationals)
this property holds. But if we consider the ring of 2 x 2 matrices over integers, we
notice, we can have two non zero elements

0 1 2 0
A, Bs.t, AB=0, but A=0 B = 0. In fact, take A:{O O}ande{o 0}then A#0,B=#

00
0. But AB= [O O} . In continuation to this, we define.

Definition (Zero-Divisor) : Let R be a ring. An element O # a € R is called a
zero-divisor, if 3 an element O #b € R s.t., ab = 0 or ba = 0.

Definition (Integral Domain) : A commutative ring R is called an Integral
domain if ab = 0 in R = either a = 0 or b = 0. In other words, a commutative ring R is
called an integral domain if R has no zero divisors.

An obvious example of an integral domain is <Z, +, .> the ring of integers whereas
the ring of matrices, talked about above is an example of a ring which is not an
integral domain. Again, Z x Z will not be an integral domain.

Theorem 2 : A commutative ring R is an integral domain iff for all a, b, ¢, c € R (a
#0)ab =ac=b=c.

Proof : Let R be an integral domain

Let ab = ac (a = 0)
Then ab-ac=0

= alb-c)=0

= a=0orb-c=0

since a=#0, wegetb=c.
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Conversely, let the given condition hold.

i.e. a, b € R be any elements with a # 0.

Suppose ab=0

then ab=a.0

= b = 0 using given condition
Hence ab = 0 = b = 0 whenever a # 0 or that R is an integral domain.
Remark : A ring R is said to satisfy left concellation law if for all a, b, ¢ € R,
(a#0),ab=ac =>b=c.
Similarly we can talk of right concellation law. It might, of course, be noted that
cancellation is of non zero elements only.
Definition (Unit) : An element a in a ring R with unity, is called invertible (or a
unit) w.r.t. multiplication if 3 some b € R such that ab = 1 = ba.
Note that, unit and unit element (unity) are different concepts and should not be
confused with each othen.
III. Division Ring and Field :
Definition (Division Ring): A ring R with unity is called a Division ring or a
skew field if non zero elements of R form a group w.r.t multiplication.
In other words, a ring R with unity is a Division ring if non zero elements of R have
multiplicative inverse.
Definition (Field) : A commutative division ring is called a field.
Real numbers form a field, whereas integers do not, under usual addition and
multiplication.
Since a division ring (field) forms groups w.r.t two binary compositions, it must
contain two identity elements O and 1 (w.r.t. addition and multiplication) and thus a
division ring (field) has at least two elements.

Example 1: A division ring which is not a field. Let M be the set of all 2 x 2

a b

matrices of the type {—E 5} where a, b are complex numbers and 3,b are their

10
conjugates, i.e., if a = x + iy, then g = x—1iy. Then M is a ring with unity {O 1}under

matrix addition and matrix multiplication.

X +1iy u+iv}

Any non zero element of M will be {_ (u-iv) x-iy

where x, y, u, v are not all zero.
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X-ly  u+iv
k k

One can check that the matrix (u—iv) X +1iy
k k

where k = x2 + y2 + u? + v?, will be multiplicative inverse of the above non zero

matrix, showing that M is a division ring. But M will not be a field as it is not

commutative as

0

1
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Example 2 : Consider

D=fa+bi+cj+dk| a,b,c,deR withi?=j2=
Two elements a + bi + ¢cj + dkand a' + b'i + ¢'j + dk are equal iff a=a', b=D', c
d=4d"

Addition and multiplication of D are defined by

(@a+bi+cj+dk)+ (@ +bi+cj+dk)=(a+a)+(b+b)i+(c+c)j+(d+d)kand
(a+bi+cj+dk)(a"+bi+cj+dk)=(aa"-bb' —cc'-dd) + (ab'+ ba'+cd -dc')i+
(ac' — bd' + ca' — db')j + (ad' + bc' — ab' + da') k

The symbol + in the elements of D is just a notation and is not to be confused with

2 =

-1, then D forms a ring.

=C,

addition in real nmumbers. We identify element o + 1i + oj + ok by i and so on
i=0+1i+0j+0k

j=0+0i+1j+ 0k
We have ij = k, ji = -k, etc., In fact that shows that D is non commutative. D has
unity 1 =1+ 0i+ 0j + Ok
If a + bi + ¢j + dk be any non zero element of D (i.e., at least one of a, b, ¢, d is non

Thus since

Zero)

(a—bi-cj-dk)

=1
a? +b? +c? +d?

then (a + bi + ¢j + dk)

Hence D is a division ring but not a field.
The elements of D can also be written as quadruples (a, b, c, d)
This ring D is called the ring of quaternions.

Theorem 3 : A field is an integral domain.
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Proof : Let <R, +, . > be a field, then R is a commutative ring.

Let ab = 0 in R. We want to show either a = 0 or b = 0. Suppose a # 0, then a™! exists
(definition of field)

Thus ab=0
=a'l(ab)=a'0
= b=0

which shows that R is an integral domain.
Remark : Similarly we can show that a division ring is an integral domain and
thus has no zero divisions.

Theorem 4 : A non zero finite integral domain is a field.

Proof : Let R be a non zero finite integral domain.

Let 'R' be the subset of R containing non zero elements of R.

Since associativity holds in R, it will hold in R'. Thus R' is a finite semi group.

Again cancellation laws hold in R (for non zero elements) and therefore, these hold

in R'.

Hence R' is a finite semi group w.r.t multiplication in which cancellation laws hold.
<R', .> forms a group. Note that closure property holds in R' as R is an integral

domain.

In other words <R, +, .> is field (being commutative as it is an integral domain)

Aliter : LetR = fa,, a,, ...... , a_} be a finite non zero integral domain. Let O # a € R be
any element then aa , aa,, ....... ,aa_are all in R and if aa, = aa for some i # j, then by
cancellation, we get a, = a, which is not true. Hence aa , aa,, ..... , aa_ are distinct

members of R.
Since a € R, a = aa, for some i
Let x € R be any element, then x = aa, for some j
Thus ax = (aa)x = a(ax)
i.e., X = aXx
Hence, using commutativity we find
X = ax = Xa,
or that a, is unity of R. Let a, = 1
Thus for 1 € R, since 1 = aa,_ for some k
We find a, is multiplicative inverse of a. Hence any non zero element of R has
multiplicative inverse or that R is a field.

For Example : An infinite integral domain which is not a field is the ring of
integers.

Definition : A ring R is called a Boolean ring if x> = x for all x eR.

For Example : The ring {0, 1} under addition and multiplication mod 2 forms a

Boolean ring.
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Problem 2 : Show that a Boolean ring is commutative.
Solution : Let a, b € R be any elements

Then a + b € R (closure)

By given condition
(@a+b)2=a+hb

= a?+b2+ab+ba=a+hb

= a+tb+ab+ba=a+b

= ab+ba=0

= a(ab) = — ba ..(1)
= a(ab) = a(-ba)

= a’b = —aba

= ab = —aba ...(2)

Again (1) gives
(ab)a = (-ba)a
= aba = -ba? = —-ba ..-(3)
(2) and (3) give
ab = ba (= —aba)
or that R is commutative.
Problem 3 : Ifin a ring R, with unity , (xy)? = x2y2 for all x, y € R then show that R is
commutative.
Solution : Let x, y € R be any elements
then y+leRasleR
By given condition
(x(y +1))? = x*(y + 1)°

= (xy + x)? = x*(y + 1)2

= (xy)? + x2 + xyx + xxy = X3(y2 + 1 + 2y)

= x%y? + x2 + xyx + xxy = X%y? + x2 + 2x%y

= XyX = X%y ...(1)

Since (1) holds for all x, y in R, it holds for x + 1, y also. Thus replacing x by x + 1, we
get

(x+1)yx+1)=(x+1)%

=> &y +y)x+1)=(x*+1+2x)y

=>XyX+Xy+yx+y=x%+y+2xy

= yx = xy using (1)
Hence R is commutative.

IV. Subrings
Definition : A non empty subset S of a ring R is said to be a subring of R if S forms

a ring under the binary compositions of R.



B.A. Part-III 9 Mathematics : Paper I

For Example : The ring <z, +, .> of integers is a subring of the ring <R, +, .> of real
numbers.
Remarks : 1. The subring of a integral domain will be an integral domain.
2. If R is a ring, then {0} and R are always springs of R, called trivial subrings of
R.
Theorem 5 : A non empty subset S of a ring R is a subring of Riffa, b € S = ab, a
-b e S.
Proof : Let S a subring of R

then a,b eS = ab e S (closure)

a,beS=>a-beS

as < S, + > is a subgroup of <R, +>.
Conversely, since a, b e S =>a-b € S, we find < S, + > forms a subgroup of <R, +>.
Again for any a, be S, since ScR

a,beR
—>a+b=b+a

and so we find S is abelian.
By a similar argument, we find that multiplicative associativity and distributivity
hold in S. In other words, S satisfies all the axioms in the definition of ring.
Hence S is a subring of R.
Definition (Subfield) : A non empty subset S of a field F is called a subfield, if S
forms a field under the operations in F. Similarly, we can define a subdivision ring
of a division ring.
One can prove that S will be a subfield of Fiffa,beS, b0 =a-b, ab'leS.
We may also notice here that a subfield always contains at least two elements,
namely O and 1 of the field.
Sum of Two Subrings

Definition : Let S and T be two subrings of a ring R. We define
S+T={s+t|seS,teT}
then clearly S + T is a non void subset of R. Indeed 0 =0+ 0 € S + T.
Note : Sum of two subrings may not be a subring.
Take the ring M of 2 x 2 matrices over integers.

a 0
Let S = set of all matrices of the type {b 0} a, b integers, and

T = set of all matrices of the type [8 )(jjx an integer.
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Then S and T are subrings of M.

a O 0 x
Also, S + T would have members of the type [b O}{O O}

a c
i.e., matrices of the type [b 0}

That S + T does not form a subring follows from the fact that closure w.r.t.
multiplication does not hold, as

1 11|12 2 4 2
= ¢S+T
1 0|2 O 2 2
Definition : Let S be a subset of a ring R, then the smallest subring of R containing
S is called the subring generated by S.
Since intersection of subrings is a subring, it is clear that the subring generated by

a subset S of R will be the intersection of all subrings of R, containing S. We denote
it by < S>. Clearly then <S> = {0} if S = ¢ . One can show that

<S> = {Znixlx2....xn In, e Z,x; € S}

In particular if x € R be an element, then the subring generated by x is the smallest
subring of R containing x. It will be the intersection of all subrings of R, containing

finite .
x. This is denoted by <x>. One can show that' <X >:{ D, mx |m; e Z}
i=0

V. Centre of the Ring

Definition : Let R be a ring, the set
Z(R) ={x e R|xr =rxforallr € R}
is called centre of the ring.
One can easily show that Z(R) is a subring of R.
Problem 4 : Find centre of the quaternion ring D.

Solution : Let a = bi + ¢j + dk € Z(D) be any element. Then it commutes with all
elements of D. Thus
(@+bi+cj+dk)O+ 1i + 0j + Ok) = (0O + 1i + 0j + Ok)(a + bi + cj + dk)
=>-b+ai+tdj-ck=-b+ai-dj+ck
or 0+0i+di-ck=0+0i-dj+ck
or c=0andd=0
Therefore, a+bi+cj+dk=a+bi+0j+0k
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Now (a+bi+0j+0k)(O+0i+ 1j+0k)=(0+0i+ 1j + Ok)(a + bi + Oj + Ok)
=0+0i+aj+bk=0+0i+aj-bk
Which gives b=-bie.,b=0

Thus a+bi+cj+dk=a+0i+0j+0k

Which shows that Z(D) c{a + 0i + 0j + Ok| a is real number}

Also a + 0i + 0j + Ok commutes with every element of D as a is a real
number.

Hence Z(D) ={a + 0i + 0j + Ok|a is real number}

or that Z(D) ={a, 0,0,0)|a e R}

Problem 5 : If R is a division ring then show that the centre Z(R) of R is a field.
Solution : Z(R) is a ring (as it is a subring).

Z(R) is commutative by its definition.

Z(R) has unityas 1. x=x. 1 =xforallx € R.
Thus we need to show that every non zero element Z(R) has multiplicative inverse

(in Z(R)).
Let x € Z(R) be any non zero element
Then x € R and since R is a division ring, x! € R
Let y € R be any non zero element, then y! € R. Now
xly=(y'x)"
= (xy ) =yxt
= x! commutes with all non zero elements of R.
Again as x1.0=0.x'=0
we find xl, r=r.x!forallr eR
=>x'eZR)

Showing that Z(R) is a field.
VI. Characteristic of a Ring
Definition : Let R be a ring. If there exists a positive integer n such that

na = 0 for all a € R then R is said to have finite characteristic and also the smallest
such positive integer is called the characteristic of R.

t 1+1+....... +1=0 in R.

Thus it is the smallest positive integer n such that ;]

If no such positive integer exists then R is said to have characteristic zero (or infinity).
Characteristic of R is denoted by char R or ch R.
For Example : (a) Rings of integers, even integers, rationals, reals, complex
numbers are all of ch zero.

(b) Consider R = {0, 1} mod 2

then ch R =2 as
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2.1=1®1=0

2.0=0®©0=0
Thus 2 is the least +ve integer s.t., 2a = O for all a € R.
Note 1.1=1=%0

(c) If R is a (non zero) finite ring, then ch R # 0. Let o(R) = m > 1. Since <R,+>is a

group, ma = 0 Va € R. Hence ch R #0
Notice ch R = 1 if R = {0}.
(dchZ =n
By(c)jchZ #0.LetchZ =m
Thenma=0VaeZ,
i.e, m.1=0

1®1@....... ®1=0

Le., (mtimes)

orthatm =ng=n|m=m=>n
Butna=0VaeZ aso(Z)=n
and thusch Z_<n.
i.e., m <n giving m = n.
Theorem 6 : Let R be a ring with unity. If 1 if of additive order n then ch R = n. If
1 is of additive order infinity then ch R is O.
Proof : Let additive order of 1 be n. (By this, we mean, order of 1 in the group (R, +)
is n). Then n . 1 = 0 and n is such least +ve integer.
Now for any x € R
nx=x+x+..+x=1x+1.x+...+1.x
=(1+1+..... +1)x=0x=0
Showing that ch R = n.
It 1 has infinite order under addition then 3 no. n s.t., n. 1 = 0 and thus
ch R =0.
Remark : The above result can also be stated as
If Ris ring with unity then R has ch n > 0 iff n is the smallest positive integer s.t., n.
1=0
Theorem 7 : If D is an integral domain, then characteristic of D is either zero or a
prime number.
Proof : If ch D is zero, we have nothing to prove. suppose D has finite characteric,
then 3 a +ve integer m, s.t., ma = O for all a € D.
Let k be such least +ve integer then ch D = mk. We show k is a prime.
Suppose k is not a prime, then we can write
k=rs,1<r,s<k
Now ka = 0 for alla € D
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= (rs)a2=0VaeD
D a?t+a?+ ... +a? =0 (rs times)

at+a+t.... +al)la+a+....+a)=0
=

rtimes stimess

= (ra) (sa)=aVaeD
=ra=0orsa=0VaeD  (See next problem)

Paper

In either case it will be a contradiction as r, s < k, and k is the least +ve integer s.t.,

ka = 0.
Hence k is a prime.

Problem 6 : If D is an integral domain and if na = O for some 0 # a € D and some

integer n # O then show that the characteristics of D is finite.
Solution : Since na =0
(na)x = 0 for all x € D
=>(a+a+..+ta)x=0

S axtax -+ ... + ax = 0 (n times)
=ax+x+ ... +xX)=0forallxeD
=>x+x+ ... +x=0forallxeDasa=%#0

=>nx=0forallxeD,n=#0
= ch D is finite.

VII. Idempotent and Nilpotent elements.
Definitions : An element e in a ring R is called idempotent if e? = e.

An element a € R is called nilpotent if a® = O for some integer n.

If R is a ring with unity, then O and 1 are idempotent elements. Alos O is nilpotent

element of R.
Problem 7 : A non zero idempotent cannot be nilpotent.
Solution : Let x be non zero idempotent, then x> = x.
If x is also nilpotent then 3 integer n > 1 s.t.,
x* =0
But x?=x=x3=x?=x
S>xt=x2=x
= x" =X = x = 0 a contradiction.

Problem 8 : In an integral domain R (with unity) the only idempotents are the zero

and unity.
Solution : Let x € R be any indempotent
Then x2=x=>x*-x=0
=>x(x-1)=0
= x=0o0rx=1as Ris an integral domain.
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Remark : A field which is a Boolean ring has only two elements.

Problem 9 : If R is a ring with no non zero nilpotent elements then show that for
any idempotent e, ex = xe for all x € R and thus e € Z(R).
Solution : e idempotent = e*> = ¢
Let x € R be any element, then
(exe — ex)? = exeexe — €Xe€eX — exXexXe + exex

= 0 (using €2 = ¢)

= exe — ex is nilpotent.
By given condition, exe —ex = 0 = exe = ex
Similarly, we get exe = xe
Hence ex = Xe.

VIII. Product of Rings

Let R, and R, be two rings.
Let R = {(a, b)|a € R, b € R}, then it is easy to verify that R forms a ring under
addition and multiplication defined by

(@, b)) * (8, b,) = (a, + a,,b, + b))

(a,, b)) (a,, b,) = (a,a,, b,b,)
i.e., under the usual compositions of component wise addition nd multiplication.
This ring is called the direct product of R, and R,. One can similarly extend the
definition to product of more than two rings. R, and R, are called the component

rings of the direct product.

IX. Self Check Exercise

1. Show that a ring R is commutative iff
(a+b)2=a?+b2+2abforalla,beR.
2. Let R be a commutative ring with unity. Show that

(i) a is a unit iff a is a unit.
(ii) a, b are units iff ab is a unit.

3. Give an example of a non commutative ring R in which (xy)? = x?y? for all
X,y €eR.

4. Show that a finite commutative ring R without zero divisors has unity .

5. Show that intersection of two subrings (subfields) is a subring (subfield).

6. Give an example to show that union of two subrings may not be a subring.
Prove that union of two subrings is a subring iff one of them is contained in the other.

7. Prove that centre of a ring is a subring.

8. Show that a field of characteristic zero is infinite.

9. If S be a subring of a division ring R, show that ab = 0 in S = either a =
Oorb=0.

10. In a ring without unity, show that every indempotent is a zero divisor
but nor nilpoten.
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I. Ideals

Definition : A non empty subset I of a ring R is called a right ideal of R is
(a,bel=a-bel
(ijael,rer=>arel
I is called a left ideal of R if
ijja,bel=a-bel
(ijjael,reR=racel
I is called a two side or both side ideal of R, if it is both left and a right ideal.
In fact, if we say I is an ideal of R, it would mean, I is two sided ideal of R.
Example 1 : In a ring R, {0} and R are always both sided ideals.
Any ideal except these two is called a proper ideal or non trivial ideal.
Example 2 : Let < Z, +, . > be the ring of integers. Then
E = set of even integers is an ideal of Z
a,beE=a=2n,b=2m
Thus a-b=2n-m)ekE
Again, if 2n € E, r € Z then as
(2n)r or r(2n) are both in E, E is an ideal.

Example 3 : Let R = ring of 2 x 2 matrices over integers.

b
Let A= {[2 O} | a,bintegers}

Then A is right ideal of R as

15
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a bl [c d| [a-c b-d
- = eA
0 0] |0 O 0 0

a b|[x y| [ax+bz ay+ba A
0 0llz u | o o |°

But A is not a left ideal of R as

0 o]fo 2] _[o o]
But 11 0Jlo o] |0 2
a 0 .
Example 4 : In the same ring as above, one can check that B = b 0 |a,b integers

forms a left (but not right) ideal of R.
Remark : An ideal is always a subring. Let I be an ideal of a ring R. To show that I
is a subring we need to show that for a, b € I, ab € I.

Now a,bel=acl,belcR

= ab eI (def. of ideal)

Hence I is a subring.
But a subring may not be an ideal.
We know that < Z, +, . > is a subring of < Q, +, [|> where Z = integers, Q = rationals.

Now, 3eZ,%eQ. But s.éez

Thus Z is not an ideal.

We have talked about intersection and union of subgroups, subrings etc. Similar
results hold in case of ideals.

What can we say about intersection of a left and a right ideal? Will it be an ideal?
The answer is given by the following example:

If we consider the ideals in example 3, 4, we find A N B will have members of the

a O .
type Yo o | a,aninteger
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1 0|1 1 11
Since {0 0“1 J{o o}eAmB
We notic A n B is not a right ideal.
Problem 1 : Let S be a non empty subset of a ring R. Show that
r(s) = x € R|Sx = 0} and I(s) = {x € R|xS = 0} are rspectively right and left ideals of R.
Solution : r(x) # ¢ as Oe r(s)
Again, X,yer(s)=>sx=0,sy=0
Now S(x-y)=Sx-Sy=0-0=0
=>x-yer(s)
Again, if r € R be any element then
S(xr) = (Sx)r=0,r=0
= Xr € 1(s)
Hence r(s) is a right ideal. Similarly, [(s) will form a left ideal.
r(s) and [(s) are called right and left annihilators of S, respectively.
Both r(s) and [(s) will be ideals of R if S in an ideal. (Verify!)
Problem 2 : Let R be a ring such that every subring of R is an ideal of R. Further,
ab=0in R=a=0orb=0. Show that R is commutative.
Solution : Let 0 # a € R be any element.
Then N(a) = {x € R.|xa = ax} is a subring of R and, therefore, an ideal of R.
Let r € R be any element. Since a € N(a), r € R we find ra € N(a) (Def. of ideal)

Also then, a(ra) = (ra)a

and so (ar-ra)a=0

= ar—ar=0asa=0

Thus ar=raVreR,VOzaeR

and as O.r = r.0 = 0 we find
ar=raVa,reR
Hence R is commutative.

II. Sum of Two Ideals
Let A and B be two ideals of a ring R. We define A + B to be the set
{fa+b| a €A, be B} called sum of the ideals A and B.

Theorem 1 : If A and B are two ideals of R then A + B is an ideal of R, containing

both A and B.
Proof :A+B#¢p as0=0cA+B
Again, X,ye€A+B

=>x=a +b

y=a,+b,forsomea,a,eA;b,b,eB
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Since x-y=(a +b)-(a,+Db)
= (a1 - az) + (b1 - bz)
we find Xx-yeA+B

Letx=a+b eA+ B, r €Rbe any elements then
Xr=(a+Db)r=ar+br € A+ BasA, Bare ideals
rs=r(a+tb)=ra+rbeA+B

Thus A + B is an ideal of R.

Again for any a € A, since a = a + 0 € A + B and for any b € B, since
b=0+beA+B
We find AcA+ B

BcA+B
Remarks : (i) We can show that A is an ideal of A + B
a,a, e A=a —a, eAis an ideal of R. Again, if a € A and s € A + B be any elements
then s =a, + b, for somea, €A, b B

also as = afa, +b))
=aa tab €A
as a,a €eA=aa €A

aceA,beBcR=ab €A

= aa, +abeA
Similarly, sa € A. Showing that A is an ideal of A + B.
(ii) If A is a left ideal and B, a right ideal of R then A + B may not be an ideal of R.
Considering the same ideals as in examples 3, 4, we find

a b
A + B will have members of the type L O}

12 2] [+ 4], 4
andas |} gllo 2| |2 2

A + B is not an ideal of R.
Definition : Let S be any subset of a ring R. An ideal A of R is said to be generated
by S if

i) ScA

(ii) for any ideal I of R, ScI = A c L
We denote if by writing A = <S > or A = (S)
In fact < S > will be intersection of all ideals of R that contain S, and is the smallest
ideal containing S. If S is finite, we say A = < S > is finitely generated.
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If S = ¢ then as {0} is an ideal of R containing S = ¢, < S > < {0} and so < S > = {0}
If S = {a} then we denote < S> by < a > or (a). By definition, a € < a > and as it is an
ideal, elements of the type ra, as, r, as, naarein <a >, wherer, r, s, s, e Randn is
an integer. Such an ideal is called a principal ideal generated by a.
Theorem 2 : If A and B be two ideals of a ring R. then
A+B=<AnB.
Proof : We have already proved that A + B is an ideal of R, containing A and B,
thus A + B is an ideal containing A U B.
Let I be any ideal of R, s.t., AuB 1
Let x e A+ B be any element
Then x=a+bforsomeacA,beB
Since acAcAuBCclI
acBcAuBCclI
we find a=b eI as I is an ideal
=> xelorthat A+ Bcl
which proves the theorem.
Thus A + B is the smallest ideal of R, containing A and B. One can, of course, talk
about sum of more than two ideals in the same manner.
Problem 3 :Ifa € Rbe an element and I = aR = {ar |r € R} where R is a commutative
ring, then I is as ideal of R.
Solution : I12pas0=a.0¢l
x,yel=>x=ar,y=ar, for some r,r,eR
>x-y=alr,-ry) el
again if x = ar, e [ and r € R be any elements
then x r = (ar,)r = a(r, r) € [ shows that [ is a right ideal. R being commutative, it will
be both sided ideal.
Remark : If the ring is not commutative, one can show that aR is a right ideal and
Ra = {ra|r € R} is a left ideal of R.
aR is always contained in < a >. If R is a commutative ring with unity then aR = Ra =
(a).
Now, we understand the difference between aR and < a > through the following
example.
Example : Let < E, +, > be the ring of even integers. It is commutative ring without
unity. Leta =4 € E
Then <4 >={4n + (2m) 4|n, m € Z}
={4n + 8m|n, m € Z}
Whereas 4E = {4(2k) |k € Z} = {8k |k € Z}
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We notice then, <4 >#4E as 4 € <4 > but 4 ¢ 4E.
Problem 4 : If A is an ideal of a ring R with unity such that 1 € A then show that A
=R.
Solution : Since A c R always, all we need to show is that R c A.
Let r € R be any element.
Since 1 € A and A is an ideal.

r=1.reA

=>RcAorthatA=R.
Problem 5 : Determine all the ideals of the ring of integers < Z, +, .>.
Solution : LetIbe anyideal of < Z, +,. >thenasa,bel=a-b el, we notice <I,
+ > is a subgroup of < Z, + >
Since < Z, + > is a cyclic group generated by 1, I will be a cyclic group generated by
a multiple of 1, say n.
Thus any ideal of < Z, + . > is of the type < n >, ie., multiple of some integer.
Conversely it is easy to see that < n > for any integer n is an ideal.
III. Product of Two Ideals
Let A, B be two ideals of a ring R. We define the product AB of A and B by

AB = {Z ab, |a, € A, b, € B}

where summation is finite.

Theorem 3 : The product AB of any two ideals A and B of a ring R is an ideal of R.
Proof : AB-¢pas 0=0.0 c AB

Let x, y € AB be any two members
then x=ab +ab,+.... +ab

n

y=ab, +...+a,b

for some a;,ajea,b;,b;eB

x-y=(ab, ... +ab)- (a'lb'1 ot a'mb‘m)

Which clearly belongs to AB, as the R.H.S. can be written as

XY, FXY, t + Xy, (k =n + m)
where x, e A,y, €B
Again, foranyx=ab +....... +ab e€eABandreR.
rx=r(ab, +...... +ab )
= (ra )b, + (ra)b, + ..... +(ra )b e AB

because ra, € A as a, € A,r € R, and A is an ideal.
Similarly xr € AB
showing thereby that AB is an ideal of R.
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IV. Simple Ring

Definition : A ring R # {0} is called a simple ring if R has no ideals except R and
{0}

Theorem 4 : A division ring is a simple ring.

Proof : Let R be a division ring. Let A be any ideal of R s.t., A € {0} then 3 at least

one a € A s.t., a # 0. R being a division ring, a! € R and aa? = 1.
Since acA,al! eR, aa! € A (def. of ideal)
=1e€A
=A=R

i.e., only ideals that R can have are R and {0} or that R is a simple ring.

Problem 6 : Let R be a ring with unity, such that R has no right ideals except {0}
and R. Show that R is a division ring.

Solution : To prove : Non zero elements of R form a group under multiplication.
Let 0 # a € R be any non zero element.
Let aR={ar |[r e R}
Then aR is a right ideal.
By given condition, then
aR=R
or aR = {0}
ButaR#{0}asa=0anda=a.l € aR
Hence aR =R
NowleR=1ecaR=3b eR,s.t. 1 =ab=bisrightinverse of a (w.r.t multiplication).
Thus < R - {0}. > forms a group or that R is a division ring.
Problem 7 : Let R be a ring having more than one element such that aR = R, for all
o # a € R. Show that R is a division ring.
Solution : We first show that xy =0 =x=0ory =0inR.
So let xy = 0 and suppose x #0,y #0
Then xR=yR =R
Also (xy)R =x(yR) =xR =R
=>R={0}asxy=0
contradicting that R has more than one element.
Hence our assertion is proved
Again, as R # {0}, 3 0 # a € R and by given condition then aR = R
=>dJeeRs.t.,,ae=a (e #0 as a=0)
= ae? = ae
= ale2-¢€e)=0
—>el=easa=0
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We claim e is right unity of R.
If e is not right unity of R, then 3y e Rs.t.,,ye=y
But (ye—y)e=ye?-ye=ye —-ye =0
= either ye = y or e = 0, a contradiction
= e is right unity of R.
Let O # a € R be any element then aR = R
Now eeR,aR =R,
—>ecaR=3beR, s.t.,e=ab
or that b is right inverse of a.
= every non zero element of R has right inverse.
Hence R is a division ring.

V. Self Check Exereice :

1. Show that intersection of two ideals in an ideal.
2. Give an example to show that union of two ideals may not be an ideal.
3. Prove that union of two ideals is an ideal iff one of them is contained

in the other.

4. Let R be the ring of 2 x 2 matrices over integers, If 8 = [é ;} €R then
show that aR is not a left ideal of R.

5. Let R be a non commutative ring with unity. Show that Z(R), the centre
of R is not an ideal of R. [Hint : Z(R) is properly contained in R].

6. If F is a field, prove that its only ideals are {0} and F.

7. Show that if an ideal A of a ring R with unity contains a unit of R then
A=R.

8. Let A, B be two subrings of a ring R such that for all a € A, b € B, ab,

ba € A then show that
(i) A + Bis a subring of R.
(i) A is an ideal of A + B.
(iii) A N B is an ideal of B.
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II. Ring Homomorphisms
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VI. Second Theorem of Isomorphism

VII. Embedding of Rings
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I. Quotient Rings
Let R be a ring and let I be an ideal of R. Since a, b e 1 =>a-b €I, Solis a subgroup
of < R, + >. Again as < R, + > is abelian, I will be a normal subgroup of R and we can

R
talk of 1 the quotient group

R
T° {r+1|reR} = set of all cosets of I in R (clearly left or right cosets are equal)

We know R/I forms a group under 'addition' defined by
(r+D)+(s+)=(r+s)+1
We now define a binary composition (product) on R/I by
(r+I)(s+)=rs+1
We show this product is well defined
Let r+l=r+landS+I1=5s"+1,

=>r-r'elands-s'el
=>r-r'=aands-s'=b for some a,bel
=>r=r'+a,s=s+b

=rs=(a+r')(b+s’) 23
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:>rs+I:(ab+as'+r'b+r's')+1:r's'+I

(using x+1=T1iff x el

Hence the multiplication is well defined.

Since (a+I)[(b+I)(c+I)]=(a+I)(bc+I)
=a(bc)+I
=(ab)c+I
=(ab+I)(c+I)

:[(a+l)(b+1)](c+1)

Associativity holds w.r.t this product.

Again, as(a+I)[(b+I)+(c+I)]:(a+I)(b+c+I)
=a(b+c)+I
=(ab+ac)+I
=(ab+1)+(ac+1I)

=(a+I)+(b+I)+(a+I)(c+I)

Mathematics :

Paper

We find left distributivity holds. Similarly one can check that right distributivity
also holds in R/I and hence R/I forms a ring, called the quotient ring or factor ring

or residue class ring of R by I.

We look at it from another angle. Let R be a ring and I an ideal of R. Define, for

a,beR,a=b (modl)if a —bel.Itis easy tocheck that this relation is an equivalence

relation on R. Thus it partitions R into equivalence classes. Let for any a e R,cl(a) be

the corresponding equivalence class of a.

Then Cl(a):{r+R|r:a(modI)}

={reR|r-acl)

{
{
{
{

={reR|r-a=xforsomex el)}

={reR|r=a+xforsomex eI)}
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=a+1

R
Thus, the quotient ring T is nothing but the ring of all equivalence classes as

defined above.
In fact, the binary compositions defined can be stated as:

cl(a)+cl(b)=cl(a+Db) a,beR
cl(a).cl(b)=cl(ab)

One can verify that R/I froms a ring. In fact, if R has unity 1 then cl(1) will be unity
of R/I.

R/I is therefore also called quotient ring of R modulo I.

Remarks : (i) It may be noticed that R/I is defined only when I is an ideal of R. If is
only a subring of R, then R/I may not form a ring as the multiplication rule may not

be valid. Suppose I is only a subring of R (and is not an ideal), let reR,a els.t,,

arel
Then (a+I)(r+I)=ar+I
gives (O+I)(r+I)=ar+l as aclea+I=1=0+I
i.e, O.r + I = ar + I or that ar eI which is not true.

R
(ii) If I = R then R/I is isomorphic to the zero ring {0} and if I = {O} there T =R,

Example : Let H, ={4n|neZ}, where < Z, +, .> is the ring of integers. Then

Z
H, is are ideal of Z and thus H. is a quotient ring and is given by
4

HL:{H4,H4 +1,H, +2,H, + 3}

4

This example also shows us that quotient ring of an integral domain may not be an
integral domain.

4

On the other hand if we cosider
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R= {0,2,4,8,10} mod 12

S={0,6} mod12
then R is not an integral domain whereas R/S is an integral domain.

We have R/S={S,S+2,S+4}
Since (S+2)(S+2)=S+2,(S+2)(S+4)=S+8=5S+2

and (S+4)(S+4)=(S+16)=S+4, we find

R
Ehas no zero divisors.

II. Ring Homomorphisms
Let <R, +, U >, < R', *, 0> be two rings. A mapping 6 : R - R'is called a homomorphism
ir

0(a+ b) =6(a)*6(b)

0(ab)=6(a)ob(b) a,beR

Since we prefer to use the symbols + and U for the binary compositions in a ring,
the above definition can be simplified by saying that a mapping 0=R — R'is called

a homomorphism if
6(a+b)=6(a)+(b)
0(ab) = 0(a).(b)
Similarly, we can talk about isomorphism in rings as a one-one onto homomorphism.

Example : Consider the map f:C —C,s.t,,
f(a+ib)=a-ib
then f is a homomorphism, where C = complex numbers,
as f[(a+ib)+(c+id)]:f((a+c)+i(b+d))
=(a+c)-i(b+d)
=(a—ib)+(c—id)
= f(a + ib) + f(c + id)
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and f[(a +ib)(c+id)]=f((ac-bd)+i(ad + bc))

=(ac—bd)—i(ad +bc)

(a—ib)c—id(a—ib)
=(a—-ib)(c—-id)

=f(a+ib)f(c+id)

Mathematics :

Paper

Theorem 1:1If 9:R —» R'be a homomorphism, then (i)0(0)=0", (ii)6(-a)=-6(a); where

0,0' are zeros of the rings R, R' respectively.
Proof : (i) Since 0+ 0=0

we have 0(0+0)=6(0)

= 6(0)+6(0)=6(0)+0"
=6(0)=0'

(ii) Again, as a + (-a) = 0
0(a +(-a))=0(0)

=0(a)+6(-a)=6(0)=0

= -0(a)=0(-a)

Cor.: It is clear that

9(a—b)=6(a+(—b))

=6(a)-6(b)

Remark : The terminolgy of epimorphism, monomorphism etc, is extended to

rings also in the same way as in groups.
III. Kernel of a Ring Homomorphirm

Definition : Let f: R » R' be a homomorphism, we define Kernel of f by

Ker f={xeR|f(x)=O'}

where 0'is zero of R'.

The following two theorems are easy to prove and left as an exercise for the reader.

Iff: R > R'is a homomorphism then
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Theorem 2 : Ker fis an ideal of R.
Theorem 3 : Ker f = (0) iff f is one-one.

Problem 1 : If R is ring with unity and f: R - R' is a homomorphism where R' is an
integral domain such that Ker f # R thens show that f(1) is unity of R'.

Solution : Let a' € R' be any element. We show
f(1) a' = a'f(1) = a'
Now f(1)a'-f(1)a'=0'
=f(l.1)a'-f(1)a' =0’
=1f(1) f(1)a' - f(1)a' ="
= f(1) [f(1) a' - a']= 0’
= eiter f(1) =0'or f(1) a'—a' = 0' as R' is an integral domain.
f(1) = 0' = 1 € Ker f = Ker f = R which is not true.
Hence f(1) a'—a' = 0'
= f(1) a' = a'
Similarly, we can show a' = a'f(1).
Problem 2 : Let f: R - R' be an onto homomorphism, where R is a ring with unity.
Show that (1) is unity of R".
Solution : Let a' € R' be any element.
Since f is onto, 3a € R, s.t., f(a) = a'
Now a'. f(1) = f(a). f(1) = f(a. 1) = f(a) = a'
Similarly f(1), a' = a'.
Showing, thereby that f(1) is unity of R'.
Problem 3 : Show by an example that we can have a homomorphism f:R »>R',
such that f (1) is not unity of R', where 1 is unity of R.
Solution : Consider the map f: Z > Z', s.t.,
f(x) =0 forallx € Z
where Z = ring of integers
then fis a homomorphism (verify)
Again (1) = 0, but O is not unity of Z.
Thus although Z (on R.H.S.) has unity but the unity is not equal to f(1).
Remarks : (i) If we take the map f: Z —» E, where E = ring of even integers, defined
by f (x) = O for all x, we find , E does not have unity, whereas 1 is unity of Z.
(ii) The map f : Z —» E, s.t., f(x) = 2x is a group isomorphism. Thus Z and E are
isomorphic as groups whereas Z and E are not isomorphic as rings. Indeed, Z has
unity but E does not possess unity. In fact, f will not be a ring homomorphism.

Problem 4 : Show that 2Z is not isomorphic to 3Z as rings. What can be said

about isomorphism between mZ and nZ, where m, n are positive integers?
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Solution : Suppose 27 ~ 37 and let f: 2Z — 3Z be the isomorphism.

As 2¢e€2Z,f(2)=3n for some n € Z
Now f(4)=1f(2+2)=1(2) +{(2) =6n
f(4) = £f(2.2) = £f(2).f(2) = (3n)?
Thus 6n = 3n? or that 2 = 3n
But this is not possible for any n € Z
Hence f is not an isomorphism.
Suppse now f : mZ — nZ is any ring isomorphism

Then f(nrﬁi;er?r....+m)=f(m)+f(m)+ ..... + f(m)
= mf(m)

£ (mm) - o (m)
= f(m)f(m)=mf(m)=f(m)=m .. (1)
Again as f is onto and nenZ,imremZ
st., f(mr)=n or f(m)f(r)=n
= f(m)|n
Again as memZ,f(m)enZ
= f(m) = nk for some k

=n|f(m)
and hence f(m)=n
or that m = n from (1)
so if mZ = nZ, then m = n. The converse is obviously true.
Hence we conclude : mZ = nZ as rings if and only if m = n.
Problem 5 : Let Z be the ring of integers. Show that the only homomorphisms
from Z — Z are the identity and zero mappings.
Solution : Let f; Z - Z be a homomorphism
Since (f(1))% = f(1) f(1) = f(1.1) = (1)
f(1) [f(1) -1] =0
= f(1)=0or f(1)=1

If f1)=0 then f(x)=0V integers x
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as f(x) = f(1.x) = f(1)f(x) = 0.f(x) = OVx
Thus in this case f is the zero homomorphism.

if f(1) = 1, then for any x € Z
f(x)=f(1+1+...+1)=xf(1)=x (x>0)

f(x):f(—y):—f(y):—[f(1+1+...+1)]:—yf(l):xf(l):x

(x<0,y =—x)
f(0) =0
So in this case f is identity map, which proves the result.
Probelm 6 : Let R and S be two commutative rings with unity and let f: R - S be
an onto homomorphism. If ch R # 0, show that ch S divides ch R.

Solution : Suppose ch R = n, then n is least +ve integer such that na=0VaeR

So nl =0 and n is least

=1+1+ ...+ 1=0 and so additive order of 1 is n.
Again as f is onto, f(1) is unity of S and so ch S is additive order of f(1)
As o(f(1)) | o(1), we find ch S|ch R.

Problem 7 : Show that the ring D of quaternions is isomorphic to the ring

s o]

Solution : Let a+bi+cj+dkeD.

Then a+bi+cj+dk =(a+bi)+(c+di)]
Define 0:D—>M,s.t.,
. a+bi c+di
0 (a+bi+cj+dk)= ~(c—di) a-bi

Then 6 is a ring homomorphism.
0 preserves addition verify.

Consider 0((a+bi+cj+dk)(a+b'i+c'j+d'k))
:9[((a+bi)+(c+di)j) ((a'+b'i)+(c'+d'i)j)]

=0[(a+bi)(a+b'i)+(a+bi)(c'+d"i)]
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IV.

+(c+di)(a=b'i)j+(c+di) (—c+d"i)i]

:{(a+bi)(a'+b'i)+(c+di)(—c'+d'i) (a+bi)(c'+di)+(c+di)(a'-b'i)
(-c+di)(a+b'i)+(a—-bi)(—c'+d'i) (a-bi)(a'-=b'i)+(c+di)(c+d'i)

—c+di a-bi||-c'+d'i a'-b'i

_{a+bi c+diHa'+b'i c'+d‘i}
If is not difficult to check that 0 is one-one and onto. So, 0 is an isomorphism.
Hence D =M.

Fundamental Theorem of Ring Homomorphism

Theorem 4 : If f = R —» R' be an onto homomorphism, then R' is isomorphic to a

R

'~

quotient ring of R. In fact, Kerf -

Proof : Let f: R > R' be onto homomorphism

R
; :—— > R',st,,
Define ¢ Kerf

¢(x+I)=f(x) for all x € R where I = Ker f

then ¢ is well defined as

x+Il=y+1

—x-yel=Ker f
= f(x-y)=0

= f(x)-f(y)=0

= f(x) =1f(y)

= o(x+1I)= oy +1)
Retracing the steps backwards we prove ¢ is 1-1.

Again, as

(p[(x+1)+(y+l)]:(p((x+y)+l):f(x+y):f(x)+f(y)
=o(x+I)+o(y+I])

(p[(x +1)+(y +I)] = (xy +I)=f(xy) = f(x)f(y)
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=o(x+I)+o(y+I)
= ¢ is a homomorphism.
Now if r' € R' be any element then as f : R > R'is onto, 3r € R, s.t., f(r) = r' for this r,
aso(r +I) =1f(r) =1
We find r + I is required pre-image of r' under ¢ showing thereby that ¢ is onto and

hence an isomorphism.

_ R

Thus =R'. By symmetry R’ Ker f

R
Kerf
V. First Theorem of Isomorphism
Theorem 7 : Let Bc A be two ideals of a ring R. Then

R R/B

A A/B

1

R R
Proof : Define a mapping f:E —>Xs.t.,

f(r+B)=r+A
then f is an onto homomorphism (Prove!)
R _R/B

By fundamental theorem, A Kerf

Again, since r+BeKerfof(r+B)=A

oSr+A=A
oreA
<:>r+Beé
B

we find Ker f=A|B

B~R|B
Hence A_A|B

VI. Second Theorem of Isomorphism
Theorem 8 : Let A, B be two ideals of a ring R, then

A+B_ B
A ANB
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A+B
Proof : Define a mapping f:B —

s.t.,

f(b)=b+AforallbeB

Then f is a well defined homomorphism

Again if x+Ae be any element then

XxeA+B=>x=a+b,acAbeB
So, x+A=(a+b)+A=(b+a)+A=b+(a+A)=b+A
thus x+A=b+A=1(b)
i.e., b is the pre-image of x + A under f or that f is onto.

A+B_ B
By fundamental theorem then A  Kerf

Now x e Kerfef(x)=A
ox+A=Ac xeA

&xeAnB (x eKerfc B)

Hence Kerf=AnNnB

A+B B
h ~
and thus A ANB
Remark :  Clearly then 20D 2
emark : early then ——=-——
Z 57
Problem 8 : Show that 5> "10Z2°

Solution : Take A =<2>B=<5>=52Z, the ideals of Z.
Then A+B=<d>, whered =g.c.d (2, 5) =1
ANnB=<1> where l= lLc.m (2, 5) = 10
So A+B=<1>=7Z

ANnB=<10>=10Z

: Paper I
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Hence using the above result that

A+B B zZ S5Z
= we get = —
A ANnB

<2> 10Z°

VII. Embedding of Rings
Let R and R' be two rings. A one-one homomorphism 6 from R to R' is called an
embedding (imbedding) mapping and in that case R' is called extension ring or
overring of R.
Embedding of a ring into a ring with unity.
Let R be any ring and let Z be the ring of integers.
Consider RxZ={r,n)| reR,neZ
We show R x Z forms a ring with unity, under addition and multiplication defined by

(r,n)+(s,m)=(r+s,n+m) r,seR,nmeZ

(r,n).(s,m)=(rs +ns + mr, nm)
Addition is well-defined as
Let (r,n)=(r',n")and (s,m)=(s',m’)
Then r'=r',n=n'ands=s',m=m'
=>r+s=r+s’,n+m=n'+m'
=(r+s,n+m)=(r'+s’,n'+m’)

Similarly one can show that multiplication is well defined.
Associativity : (r, n) + [(s, m) + (t, k)] = (r, n) + (s + t, m + k)

:(r+(s+t),n+(m+k))

= (r+s)+t,(n+m)+k)

=[(r,n)+(s+ m)] +(t,k)

Commutativity follows as above.

Again it is clear that (0, O) will be the zero element and (-r, —n) will be additive
inverse of (r, n), where of course, —r is inverse of r in R and -n is —ve of n in Z.

It is easy to check that associativity w.r.t. multiplication and distributive properties
also hold.
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Again, as (r, n) (0, 1) = (r. 0 + n.0 + 1r, n.1)

= (r, n)
(0, 1) will be unity and hence R x Z forms a ring with unity.
We show R can be imbedded into R x Z

Define a mapping 6:R >R xZ,s.t,

6(r)=(r,0)
then 0 is clearly well defined mapping
Also 0(r)=6(s)
=(r,0)=(s,0)=r=s
shows 0 is one-one.

Again 0(r+s)=(r+s,0)=(r,0)+(s,0)=6(r)+6(s)

6(rs)=(rs,0)=(r,0)(s,0)=6(r) 6(s)
Thus 0 is a homomorphism and therefore, an embedding mapping.
Hence we get

Theorem 9 : Any ring can be embedded into a ring with unity.

Embedding of a ring into a ring of endomorphisms

We recall that a homomorphism from A to A is called an endomorphism.

Let < V, + > be any additive abelian group. We denote by Hom (V, V) the set of all
homomorphisms from V to V (i.e. it is set of all endomorphisms of V).

We show now Hom (V, V) forms a ring with unity under the operations defined by

(f+g)x=f(x)+g(x) xeV

(fg)x = f(g(x)) xeV
where f,g € Hom (V, V).

Clossure : Let f,g e Hom (V, V)

Then (f+g)(x+y)=f(x+y)+g(x+y)
=(f(x)+£(y))+(e(x) +&(v))

(F(x)+&(x)+(f(v) +&(v)

:(f+g)x+(f+g)y



B.A. Part-III 36 Mathematics : Paper I

= f+ gis an endomorphism of V

i.e., f+geHom (V, V)

Again (fe) (x+y)=f(g(x+v))
=f(g(x)+&(v))
=f(e(x))+f(g(y))

=(fg)x +(fg)y

= fg « Hom (V, V)
Associativity : [f+(g+h)]x=f(x)+[(g+h)x]

=f(x)+(g(x) + h(x))

(£(x) +(g(x)) +h(x)

(f+g)x+h(x)

:[(f+g)+h]xforallx

=f+(g+h)=(f+g)+h
Commutativity follows as above.

Let O:V —> V be defined by

O(X):O forallxeV
Then O is easily seen to be a homomorphism.

Also since (f+0)x=f(x)+0(x)=f(x)+0=f(x)

=0+f(x)=0(x)+f(x)=(0+f)x for all x
we have
f+O0=f=0+f
or that O is zero of Hom (V, V).
Again for any fe Hom (V, V), define a map
- :V-oV,s.t,

(-f) x = —f (x)
then (-f) is a homomorphism and f + (-f) = O = (-f) + f
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Showing thereby that (-f) is inverse of f. Associativity and distributivity can be proved
easily, establishing that Hom (V, V) is a ring. The map i: V - V s.t., i(x) = x for all x
€ V will act as unity of this ring.

Hence Hom (V, V) forms a ring with unity for any additive abelian group V.
Theorem 10 : An integral domain can be embedded into a field.

Prof. Try Yourself.

VIII. Self Check Exercise

1. Show that the relation of isomorphism is rings is an equivalence
relation.
2. Show that homomorphic image of a commutative ring is commutative.

Prove also that the converse may not hold.

3. Let I be an ideal of a ring R. Show that
(a) if R is commutative then so is R/I
(b) If R has unity 1 then 1 + I is unity of R/I
(c) converse of (a) and (b) does not hold.

a b 0 x
[Hint : Take R = ring of matrices of the type {0 0} and I of type {0 0}

over integers.]
4. Let f: R > R' be a homomorphism and let A be an ideal of R. Show that
flA)={x eR' | 3a € A, x = f(a)} is an ideal of {f(R).
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I. Maximal Ideals

Definition : Let R be a ring. An ideal M # R of R is called a maximal ideal of R it
whenever A is an ideal of R s.t., Mc A cR then either A=MorA=R.

For Example : 1. A field F has only two ideals F and {0}. It is easy to see then
that {0} is the only maximal ideal of F.

2. Let <E, +, . > be the ring of even integers.
Let H, = {4n|n an integer}

then H, is an ideal of E and as 2¢H,,H, #E .
Let A be any ideal of E, s.t., H, c AcE
Suppose H, # A. We show A=E.

Since H, c A,3 some xeAst.,xeH,

By division algorithm, we can write
x=4q+rwhere0<r<4

Note r = 0 would mean x=4qeH,.Butx¢H, sor=0. Again, r = 1, 3 would imply x is
odd which is not true. Hence the only value that r can have is 2.

Thus X=4q+2=>2=x-4q€A

asxeA,4qgeH, cA=>x-4qecA
38
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2e A= members ofthetype2 +2,2+2+2, ..... ,0-—2areallin A

=EcA.But AcE
Hence A = E and H, is, therefore, a maximal ideal of E.
Problem 1 : Let R = Z[i] = {a +ib|a, b € Z}. Let M = < 2 + i > then show that M is a

maximal ideal of R.

Solution : Let Mc<a+bi>cR

Then

So

If

Thus,

If
Thus

2+i=(a+Dbi)(c+di)
2-i=(a-Dbi)(c—di
5=(a’+b’)(c*+d?)
a’+b?=1,thena=+1b=0ora=0,b=+1

a+bi=+xlor i In each case, a + bi is a unit, so <a + bi > = R.
c?+d?=1,thenc=21,d=0o0orc=0,d= %1

2 +1i=1 (a+ bi)or (£i) (a + bi)

= (a+bi)= (il)f1 (2+i)or (il)fl (2+1)

In each case a+bie<2+i>

So

<a+bi>c<2+i>=Mc<a+bi>

=M=<a+bi>

Hence M is a maximal ideal of R.
Theorem 1 : Let R be a commutative ring with unity. An ideal M of R is maximal

ideal of R iff %is a field.

R
Proof : Let M be maximal ideal of R. Since R is commutative ring with unity, M is

also a commutative ring with unity. Thus all that we need prove is that non zero

R
element of Mhave multiplicative inverse.

R
Let x+Me M be any non zero element
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then Xx+M#M=x¢M
Let xR ={xr|reR}

It is easy to verify that xR is an ideal of R. Since sum of two ideals is an ideal, M + xR
will be an ideal of R.

Again as x=0+x]JeM+xR and x ¢ M we find
McM+xRcR
M maximal = M+xR =R

Thus IeR=1eM+xR

—=1=m+ xr for some meM,reR

=1+M=(m+xr)+M
=(m+M)+(xr+M)=xr+M
=(x+M)(r+M)

= (r+M) is multiplicative inverse of x + M

R
H —i field.
ence ris a fie

R
Conversely, let M be a field.

Let I be any ideal of R s.t., McIcR

then 3 some aeclst,agM

R
Now agM=>a+M#M=a+M is a non zero element of M which being a field,

means a + M has multiplicative inverse. Let b + M be its inverse. Then

(a+M)(b+M)=1+M

=ab+M=1+M
= ab-1eM
=ab-1=m for some m € M
= 1=ab-mel(using def. of ideal)
—1=R (iedal containing unity, equals the ring)

Hence M is maximal ideal of R.
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R
Remarks : (i) M being a field contains at least two elements and thus unity and

R
zero elements of M are different i.e., O+ M =1+ Mie, [¢M or that M#R..

(ii) In the converse part of the above theorem we do nto require R to have unity or it

R
to be commutative, i.e., if R is a ring and M is ideal of R s.t., Mis a field then M is

maximal.

Suppose I is an ideal of R s.t., McIcR. Then Jaclst,a¢M

R
Now a¢gM=>a+M#M=a+M is non zero element of Mand therefore has

R R
multiplicative inverse, say, b + M. If ¢ + M be unity of M (Not Mcan have unity

even if R doesn't have unity).

Now (a+M)(b+M)=c+M
= ab+M=c+M
= c—-abeMcl

But acl= abel and so (c—ab) + ab €1

= cel
Let r € R be any element

Then (r+M)(c+M)=r+M
= rc+M=r+M
= r-rceMcl

Since cel,rceland thus (r-rc)+rcel=>rel=>Rcl.

Hence I = R and thus M is maximal ideal of R.

(iii) Again, the condition of commutativity is essential in the theorem is established
by the fact that we can have M, a maximal ideal in R where R/M is not a field and R
is a non commutative ring with unity.

Cor.: A commutative ring R with unity is a field iff it has ano proper (non trivial)
ideals.

If R is a field then it has no proper ideals.
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R
Conversely, if R has no proper ideals then {0} must be a maximal ideal. Thus m isa

field and as — = R,R is a field.

{0

Problem 2 : Let R be the ring of n x n matrices over reals. Show that R has only
two ideals namely {0} and R. Hence show that {0} is maximal ideal of R.

Solution : Let J be a non zero ideal of R. Let A be a non zero matrix in J. Since A

# 0, it has some non zero entry. Suppose A =(aij)and suppose a, =0 in A.

If E, denotes the unit matrix in R whose (i, j)the entry is 1 and O elsewhere

then EyE =0if j=k
-E, if j=k

Now A=aEj  +apEp+. o +a B

Consider E AEy =E; (a;,E\; +a;,E;p +...+a,E ) Eg
=E; (arsErs ) Eg
=a,E Egy

=a E;edJ asAed Vi
So (anE;)(anEy) € d
=>E; ed Vi=12,3,..n

Thus identity matrix I in R can be written as [=E;; +E, +...+E_,€J.

So untiy of R belongs to J or that J = R. Hence {0} and R are the only ideals of R and
so {0} is maximal ideal of R.

R R

Note : Since R= {0} , and R is not a field, we find W is not a field even through

{0} is maximal.

II. Prime Ideal

Definition : An ideal P of a ring R is called a prime ideal if abeP=acPorbeP.
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For Example:1. {0} in the ring Z of integers is a prime ideal as
abe{0}=>ab=0=>a=00rb=0

= a e{0}or be{0}
It is an example of a prime ideal which is not maximal.

2. Hy = {4n |ne Z} which is a maximal ideal in the ring E of even integers.

H,, however, is not a prime ideal as 2.2=4eH, but 2¢H,.

In fact, H, is neither a maximal nor a prime ideal in Z.

R
Theorem 2 : Let R be a commutative ring. An ideal P of R is prime iff Fis an

integral domain.

Proof : Let P be a prime ideal of R
Let (a+P)(b+P)=0+P
Then ab+P=P

=abeP
=aecPorbeP

=a+P=Porb+P=P

thus % is integral domain.

R
Conversely, let Fbe an integral domain.

Let abePthenab+P=P
=(a+P)(b+P)=P
=a+P=Porb+P=P (R/P is an integral domain)
—aecPorbeP
Hence the result.

Theorem 3 : Let R be a commutative ring. An ideal P of R is a prime ideal if and
only if for two ideals A, B of R, AB < P implies either A € Por B ¢ P.

Proof : Let P be a prime ideal of R and let AB < P for two ideal A, B of R.
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Suppose A ¢ P then 3 some element a € A s.t., a ¢ P.
Since AB < P, we get in particular

aBcP

—abePforallbeB

Since P is prime, we get either a € P or b € P but a ¢ P, hence b € P for all
b € B.

=BcP

Conversely, we show P is prime. Let ab € P.
Let A and B be the ideals generated by a and b then A = (a), B = (b). If x € AB is any
element then it is of the type

x=a,b, +a,b, +....... +a,b, a, €A b, eB

n-n 1

=(o,a) (B,b) + (aa) (B,b) +.... + (a,a) (B,b)

for a;,p; eRasa, e A=(a),b, eB=(b)

1

Thus x =(a,B,) (ab) +(a,B,) (ab) +...... +(a,B, ) (ab)
(R is commutative)

x=(ouf, + 0B, +....+ a,B,)ab

Since ab € P, Pis an ideal, all multiplies of ab are in P. Thus x € P
i.e., ABcP
=>AcPorBcP

=(a)cPor(b)cP
= aePorbeP = Pis prime.

Problem 3 : Let R be a non zero commutative ring with unity. If every ideal of R is
prime show that R is a field and conversely.
Solution : To show that R is a field, we need show that every non zero element of

R has multiplicative inverse. We first show that R is an integral domain.

Let a,beRst.,ab=0
Then abe {O} which is an ideal of R and is, therefore, prime ideal

=ae{0}or be{0}

i.e., a=0orb=0
thus R is an integral domain.
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Let now a € Rbe any non zero element and let
a’R = {a2r |re R}

then a’R is an ideal of R (Verify !) and is therefore prime ideal.

Now a.a=za’=a’.Iea’R
=aeca’R
= a=a’bforsomebeR
=a(l-ab)=0

=1l-ab=0asa=#0
= b is multiplicative inverse of a.
Hence R is a field.
Converse follows easily as a field R has no ideals except {0} and R.
Problem 4 : Let R be a commutative ring with unity. Show that every maximal

ideal of R is prime.

. R
Solution : We know that an ideal M of R is maximal iff Mis a field.

R
Thus if M is maximal, then M is a field and hence an integral domain.

= M is a prime ideal (theorem 2).
III. Euclidean and Factorization Domains
In order to understand the concept of Euclidean domains, Principal Ideal Domains
(PIDs) and Unique Factorization domains, we first introduce some basic terms as
discussed in the following.
Definition : Let R be a commutative ring.. a, b € R, a # 0, then we say a |b (a
divides b) if 3¢ € R s.t., b = ac. Aslo then a is called a factor of b.
If a, b € R then an element d € R is called greatest common divisor (or highest
common factor) of a and b if

(ijd | a,d]|b

(ii) whenever c | a, c|b then c |d
and in that case we write d = g.c.d (a, b). In fact sometimes only (a, b) is used to
denote g.c.d of a and b

Remark : One can prove that
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(i) If a|b, b|c thenfalc

(ii) If a|b, a|c then a|b £ ¢

(iii) If a|b then a|bx for all x e R

(iv) If R has unity then 1|x for all xe R and if a is a unit then a|x for all xeR.

For Example : 1. Consider the ring, R = {0, 1, 2, ...... , 7 modulo 8
then since 2®3 =6, 2|6
2®2=4,2|4
Again, if c|4, c|6 then c|6 -4 = c|2
Thus g.c.d. (4,6)=2
Also 6=6®1,4=6®6
we find 6|6and 6|4

Now if c| 6, c|4
then as c| 6, we get g.c.d. (4, 6) = 6. Thus it is possible to have more than one g.c.d
for the same pair of elements.
2. In the ring E of even integers we notice 4 and 6 do not have a g.c.d.
2(the only possibility) is not a g.c.d of 4, 6 as 2 6 in E. Indeed 6 = 2.3 but then
3 ¢ E. Of course, 2 is the unique g.c.d of 4 and 6 in Z, the ring of integers.
Definition : Let R be a commutative ring. A non zero element I € R is called least
common multiple (l.c.m) of two (non zero) elements a, b € R of
(i) all, bl
(ii) if a|x, b|x then [|x
We denote [ by 1.c.m (a, b) = [a, b]
Note that a pair of elements in a ring may not have an l.c.m. and a pair could have
more than one l.c.m.
Definition : Let R be a commutative ring with unity. Then a, b € R are called
associates if b = ua for some unit u in R.
We recall here that by a unit we mean an element which has multiplicative inverse.
The above definition will not be 'complete' unless we show that the relation 'is an
associate of is an equivalence relation. If we denote the relation by ~.
then a~aasa=1l.aandlisaunit
a ~ b = b = ua where u is a unit
=>u'b=a
=b~a
Indeed u™! will be a unit if u is a unit.

Finally a~b,b~c=>b=ua

c = vb for units u, v
Since c =vb =v(ua) = (vu) a
showing c~a
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asuutl=1,vv'!=1= (vu)(vu)'= (vu) (uvl) =1
we notion vu is a unit.

For Example : 3i - 4 is an associate of 4i + 3 in complex nos.

Problem 5 : Let R be an integral domain with unity and a, b € R be non zero
elements such that a/b and b/a, then a and b are associates and conversely.
Solution : a|b = b = xa
b|a = a = yb for some X,y € R
b = xa = x(yb)
=b(l-xy)=0
=1-xy=0asb=0
=y is unit in R and a = yb, and thus a, b are associates
Conversely, if a, b are associates then 3 a unit u, s.t., a = bu (and so au™ = b).
= bla and a|b.
Theorem 4 : Let R be an integral domain with unity. If d, =g.c.d(a, b)in R thend,
is also a g.c.d (a, b) iff d1 and d2 are associates.
Proof : One may remark here that we prove this result only after assuming the
existence of g.c.d.
Let d andd,be both g.c.d (a, b).
Then d,|a,d,|b
and d,|a,d,|b
by definition, we get d, |d, and d,|d,
= d, and d, are associates (using problem 5)
Conversly, let d, = g.c.d. (a, b) and d, be an associate of d,.
Then ud, =d, for some unit u

=d,|d; and as d;|a,d; |b

we find d, |aandd, |b
Let x|a,x|b then x|d;asb;is g.c.d. (a, b)
Also as d, =du’!
d; |dy
and thus x|d,

=d, =gcd(a,b)

Theorem S : Let R be an integral domain with unity. If [, = l.c.m (a, b) in R then [,

is also an l.c.m (a, b) iff [, and [, are associates.
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Proof : Try Yourself.
Problem 6 : Let R be an integral domain with unity. If g.c.d (a, b) = d for
a, b € R then cd and g.c.d (ca, cb) are associates.
Solution : Let g.c.d. (ca, cb) = d'
Since d|a, a = dk
= ac = dkc = cdk

=cd|ca
Similarly cd|cb=cd|d =d' =cdt
Again d'|ca=ca=d's

= ca=d's = cdts
= a=(dt)s=>dt|a

Similarly dt|b
=dt|d=d=dtp=d(1-tp)=0
= 1 =tp =tis aunit
= g.c.d. (ca, cb)=d' =cdt

i..e, cd and d' are associates.

III.(a) Euclidean Domains

Defintion :An integral domain R is called a Euclidean domain (or a Euclidean

ring) if for all a € R, a # O there is defined a non —-ve integer d(a) s.t.,

(i) for all a,beR,a #0,b=0,d(a)<d(ab)

(ii) for all a,beR,a#0,b= 0,3t and r in R s.t.,
a=tb+r

where either r = O or d(r) < d(b).
For Example ¢ Consider the integral domain < Z, +, | /> of integers. Forany 0zacZ,
define d(a) = |a|, then d(a) is non —ve integer.
Again, let a, b € Z be any element s.t., a0, b= 0

then d(a) = |a]|

d(ab) = |ab| = |a]| D]

thus d(a)<d(ab)as|al|<|a]|Db]|

Againleta, b e Z (a, b # 0)
Suppose b > 0, then it is possible to write
a=tb+rwhere0<r<b
t,reZ
Ifr0thenr<b=|r| < |b]
= d(r) < d(b)
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If b<O0,then(-b)>0,

SLadt,reZs.t.

a+(-b)t+r=(-t)b+r

where 0<r<-b

andif r20,r<-b

=|r|<|b]

=d(r)<d(b)
Hence < Z, +, /> is a Euclidean domain.
Remarks : (i) When we say, in the definiton, that 3 a non-ve integer d(a) for any 0O
# a, we mean, 3 a function d from R - {0} to Z* U {0} where Z* is set of ve integers. This
function d is called Euclidean valuation or R. Also the last condition in the definition
is called Euclidean algorithm.

(ii) We can show that the t and r mentioned in the last (Euclidean algorithm) condition
in the definition of Euclidean domain are uniquely determined iff

d(a+b) SMax.{a(a),d(b)}

Let d(a+b)£Max.{d(a),d(b)} and

Suppose a=tbh+r=tb+r
Let r,—-r=0, then b(t-t;)=r —r#0,andsot—t; #0
Now d(b)<d(b(t-t,))

- d(g -1

<Max.{d(r),d(-r)} (given condition)

= Max.{d(rl),d(—r)}

< d(b) which is not possible.
Thus ,-r=0=b(t-t;)=0
or t-t;=0asb=0

= t-t,andr=n
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Conversely, let t, r be uniquely determined and suppose

d(a+b)>Max.{d(a),d(b)} for some a, b (non zero) in R.
Now b=0(a+b)+b=1.(a+b)-a
Also d(-a)=d(a)<d(a+Dh)
and d(b)<d(a+b)
Thus for b1eR3t=0,r=bort, =L, =-ast,b=t.1+r,b=t.1+,
where r#1n (asa+b=0)t#t;, a contradiction to the uniquencess.

Hence d(a+b)<Max. (d (a), d(b)). Note that a Euclidean domain contains unity.
Theorem 6 : Let R be a Euclidean domain and let A be an ideal of R, then
JageAst,A={ayx|xeR}.

Proof : If A = {0}, we can take a = 0.
Suppose A # {0}, then 3 at least one O # a € A.
Let a, € A be such that d(a)) is minimal [Existence is ensured by the well ordering
principle which states that every non empty subset of non —-ve integers has least
element.]
We claim A is generated by this a,.
Let a € A, a # 0 then by definition, 3 t, r € R, s.t.,
a = a,t + r where either r = 0 or d(r) < d(a,)

Suppose r0
Then ageA,teR=>tajecA

acAtageA=>a-tageA

=>reA

But d(a,) is the smallest d-value in A and d(r) < d(a ), which leads to a contradiction.
Hencer =0

= a=ta,
Thus any a € Acan be put in the form ta,
= Ac{apx|xeR}

But {apx|xeRjcAasa,eA=xa,eAforallxeR
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Hence A={apx|xeR}

which proves the theorem.

Definition : Such an ideal A which contains multiples of an element a , including
a,of R is called a Principal Ideal of R, generated by a,. We denote this by
A= (a,).

In other words, the smallest ideal of R which contains a,is called Principal Ideal
generated by a,.

In view of this definition the previous theorem will read as

Theorem 6 : Every ideal in a Euclidean domain is a principal ideal.

Cor.: A Euclidean domain possesses unity.

Proof : Let R be a Euclidean domain then R is its own ideal and, therefore, R is
generated by some element r of R.

Thus each element of R is a multiple of r.

In particular r is a multiple of r,

i.e., 1y =19k for some keR
Now if a €Ris any element then as R=(rp)
a = xr, for some x

hence ak = (xry ) k = x(rpk) =xry = a

i.e., k is unity of R.
III.(b) Principal Ideal Domain
Definition : An integral domain R with unity is called a Principal Ideal Domain
(PID) if every ideal of R is a principal ideal.
In fact, if R happens to be a commutative ring with unity with above condition, we
call it a principal ideal ring.
In view of the previous theorem and cor., we get
Theorem 7 : A Euclidean domain is a PID.
In particular thus, the ring <Z, +, .> of integers is a PID. This result follows
independently from the fact that every ideal in <Z, +, .> is a principal ideal.
Remarks : (i A field F is always a PID as it has only two ideals F and {0}. F is
generated by 1 and {0} by O.
(ii) One can show that there exist PIDs which are not Euclidean domains. IN

particular, 7z|{./—-19 |=!la ++/-19 bla.be Z! where a, b are both odd or both even, is a
la,

PID but not a Euclidean domain.
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Problem 7 : Show that in a PID every non-zero prime ideal is maximal.

Solution : Let P = (p), p # 0, be a non zero prime ideal in a PID R.

Suppose PcQ=(q)cR

Then pePcQ=(q)
=>p=qr
=qreP
=>qePorreP

If q ePthen all multiples of q are in P= QcP
thus Q=P

If rePthenr=pt=>r=qrt
=r(l-qt)=0
=1-qt(r=0)

But qeQ,teR=qteQ=1cQ=0Q=R

Note r = 0 would mean p=q.0=>p=0=P=(0).
Problem 8 : Show that Z[\EJ = {a +2b|a,be Z} is a Euclidean domain.

Solution : It is easy to see that Z[\/EJ is an integral domain. Define a mapping
d:Z[\2]-{0} > Z by

d(a+J§b) —a%-2b?|
then ‘aQ - 2b2‘ >lasa?-2b2=0=2 :% which is not possible.
Again, d[(a++2b)(c+2d)|=d[(ad + 2bd) +2 (ad + be)
~|(ac + 2ba)? - 2(ad + be|

= ‘(a2 - 2b2) (c2 —2d? )‘
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:‘aQ—QbQHCQ—ZdQ‘ (1)
>|a? - 2b°| = d (a+~/2b)
i, d(a+y2b)<d|(a+y2b)(c+v2d)]

Let now a+ J2b and c++/2d be two members of Z(\/E) and suppose c +\/§ d=0,

then

a ++/2b _(a+\/§b)(c—\/§d)_ ac —bd +\/§(bc—ad)

c+\/§d - c? -2d? _c2—2d2 c? -2d?

=m++/2 n(say)
then m and n are rationals.

Now m = [m] + 0 where [m] is the greatest integer not greater than m and 6 is fractional

part of m.
1
1
and if §<6<1,takep=[m]+1

Thus 3 an integer p, s.t.,, |[m-p|<

N | —

Similarly we can find an integer g, s.t., |[n-q|< 1

2

1 1
Put m—pza,n—p=[3,then|a|£§,|[3|£§

Also then :a+\/§b :(p+q)+\/§(q+ﬁ)

c+\/§d

=2 e (o) o )
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:>a+\/§b=(c+\/§d)(p+\/§q)+(c+\/§d)[(m—p)+\/§(n—qﬂ

where, of course, (p +\/§q) eZ [\/EJ as p, q are integers

we can thus write

a+\/§b=(c+\/§d)(p+\/§q)+r
where r=(c++2d)[(m-p)++2(n-q)]
and as r=(a++2b)-(c++2d)(p++2q)
we notice  reZ[2]

Now if r¢0,d(r)=d[(c+\/§d) {(m—p)+(n—q) \EH

-d [(c +\/§d)} [d((m—p) 2 (n—q)ﬂ

Paper

[using (1) one may notice here that in proving (1) we do not essentially require that

a, b, c, d are integers]

= d(r)=|c*-2d?||(m-p)* -2(n-q)’|

2
= c¢?-2d*||(m-p) +2(n-q) |

<|c?-2d?||=+2]
4 4

12‘

<|c? -2d? |=d(c+J§d)
Hence, for a+\/§b,c+\/§deZ[\/§}3p+\/§q,reZ[\/§] st.,
(a+J§b)=(c+J§d)(p+J§d)+r
where either r=0ord(r)<d (c++2d|

showing that Z[\/EJ is a Euclidean domain.
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Theorem 8 : Let a, b be two non zero elements of a Euclidean domain R. If b is not
a unit in R then d(a) < d (ab).
Proof : Let b be not a unit. Then for a, abin R3t, r € R s.t.,
a=tab+r
where either r = 0 or d(r) < d(ab)

If r=0,thena=tab=a(1-tb)=0
= tb =1 or that b is a unit, which is not so.

Thus r#0andd(r)<d(ab)
Now r=a-tab=a(l-tb)
Hence d(a)< d(a (1- tb)) =d(r)<d(ab).

Cor.: If a, b are non zero elements of a Euclidean domain R then d(a) = d(ab) iff b is
a unit.
If b is a unit then 3¢ s.t., bc =1

Now d(a)<d(ab)<d((ab)c)=d(a)

= d(a) = d(ab)

Converse follows from above theorem.
Problem 9 : Show that an element x in a Euclidean domain is a unit of and only if
d(x) = d(1).

Solution : Let d(x) = d(1)
Suppose x is not a unit, then by above theorem
d(1l) <d(l.x) Takinga=1,b=x

i.e., d(1)<d(x)

a contradiction

. X is a unit.

Conversely, let x be a unit in R, then 3y € R s.t.,

xy=1

Now d(x)<d(xy) (by definition)
=d(x)<d(1)

Also d(1)<d(1.x)

=d(1)<d(x)
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Hence d(x) = d(1).
IV. Prime and Irreducible Elements
In an integral domain R with unity, a b (non zero) are said to be co-prime or relatively
prime, if g.c.d. (a, b) is a unit in R.
Definition : Let R be a commutative ring with unity. An element p € R is called a
prime element if

(i) p # 0, p is not a unit.

(ii) Foranya,b eR,ifp | abthenp | aorp | b.
Let R be a commutative ring with unity. An element p € R is called an irreducible
element if
(i) p# 0, p is not a unit.
(ii) whenever p = ab then one of a or b must be a unit. (In other words, p has no
proper factors.)
For example : In the ring < Z, +, || > of integers, every prime number is a prime

element as well as irreducible element.

Problem 10 : Find all the units of Z[J=5].
Solution : Suppose a ++/-5b is a unit in Z[\/E}
Then (a++-5b)(c++v=5d)=1++=5.0 for some ¢, d  Z
So, (a—\/gb)(c—\/gd)zle
giving (a’ +5b) (¢ +5b°) =1in Z
= a’+5b’=1=a=+1,b=0

Thus a ++/-5b==1are the units in Z[\/—S J

Theorem 9 : In a PID an element is prime if and only if it is irreducible.
Proof : Let D be a PID and let p € D be a prime element. We need prove only that

if p = ab, then a or b is a unit.
Solet p=abthenp | ab

=plaorp|b (p is prime)
If p | athen a = px for some x

So p=ab=(px)b

=p(l1-xb)=0
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=1-xb=0asp=#0

= xb =1= bis a unit.

Similarly, if p | b then a will be a unit.

Conversely, let p be irreducible element and suppose p | ab. We show either
plaorp| b.

V.

If p | a, we have nothing to prove.

Suppose pta

Since p, a are elements of a PID thye have a g.c.d., say, d.
We show d is a unit.

Nowd|pandd|a

=3du,vst,p=du,a=dv

If d is not a unit then as p is irreducible and p = du, u will be a unit
= u! exists

= pu'l=d
a =pu 'v= p|a which is not so.

Thus d is a unit.
Again, we know that d can be expressed as

d=2%Aa+pp
which gives dd' =d"Aa+d'up
= b.1=Ad 'ab+ud 'bp

But plab.p|pd'bp
pl (abkd’1 + ud’lbp)

=p|b
Hence the result follows.

Unique Factorization Domains

: Paper I

Definition : Let R be an integral domain with unity then R is called a unique
factorization domain (UFD) if

(i) everynon zero, non unit element a of R can be expressed as a product of finite
number of irreducible elements of R and

(ii) if a=p,p,-..- P,
a=q,q,...-q,



B.A. Part-III 58 Mathematics : Paper I

where p, and q,are irreducible in R then m = n and each p,is an associate of some q;-
For Example : 1. The ring <Z, +, . > of integers is a UFD. We know it is an integral

domain with unity. If n € Z be any non zero, non unit element (i.e., n # 0, £1) of Z
then if n > 0, we can write

n=p" p,”....p,,"" where p, are primes

=n=(pp---P;) (PoPseeo-Py ) oo (P Ds oDy )

or that n is a product of prime (and thus irreducible) elements of Z. Again this
representation of n is unique (by Fundamental theorem of Arithmetic).

In case n < 0, let n = (-m) where m > O then we can express m as product of primes
(therefore, irreducibles) in Z.

say, m=q,q,.--qx

then (-m)=n=(-q,)(q,).(q)

2. A field < F, +, . > is always a UFD as it contains no non zero, non unit
elements.
3. Z[\/—S] is an integral domain which is not a UFD.

46 Z[—\/g} is a non unit, non zero element and we can express it as product

of irreducibles in two ways

46 =2.23

46:(1+3\/3)(1—3\/3)

But 2 is not an associate of 1+ 3+/-5 or 1-3+/-5 . Hence Z[\/—5] is not a UFD.

Theorem 10 : In a UFD R an element is prime iff it is irreducible.

Proof : Let a ¢ R be a prime element, then since R is an integral domain with unity,
a will be irreducible.

Conversely, let a € R be irreducible. Then a is non zero, non unit. Let a | bc then bc

= ak for some k
Case (i) : b is a unit

then c=akb™ :a(kb’l):a|c.

Case (ii) : c is a unit then similarly, a | b.
Case (iii) : b, c are non units
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If k is a unit, then bc = ak
=a=b (ck’l)

Since a is irreducible, either b or ck!is a unit. But b is not a unit. Thus ck'is a
unit.

But that implies ¢ is a unit, which is again not true. Hence k is not a unit.

We can thus express

b=p,p, - Py

c=q4q,....q,
k=rr,...1

as product of irreducibles (by def. of UFD).

So bc = ak becomes
PPy P Q- dy =A% L....T; = X(say)

Then x is an element having two representations as product irreducible elements.
By Def. of UFD each element in one representation is an associate of some element
in the other.

= a is an associate of some p,or some q,

= ua = p,or ua = q,for some unit u

—a|p, oralq,
=alboralc

= a is prime element.

VI. Self Check Exercise

1. Show that intersection of two prime ideals may not be a prime ideal.

2. Let R be a commutative ring. Let I be an ideal of R and let P be a prime
ideal of I. Show that P is an ideal of R.

3. Show that a commutative ring R is an integral domain iff {0} is a prime
ideal.

4. In the ring of integers, show that every ideal if generated by some

integer. Show further that an ideal is maximal iff it is generated by a
prime.
5. Show that every field is a Euclidean domain.

6. In the ring Z[\/—SJ:{a+\/—5b|a,beZ},show that 1+34-5is

irreducible element but is not prime.
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7. Show that in Z[«/—S], 1++/-3 is irreducible but not prime element.
8. Show that Z[ﬁ} = {a ++/3b |a,be Z} is a Euclidean domain.

9. Show that Z[«/—3] is not a UFD.

10. Show thatin a UFD R, every non zero prime ideal (# R) contains a prime
element.



