
1

 BCA SEM-I Paper: BCAB1104T

PROGRAMMING FUNDAMENTALS USING C

UNIT No.1

C
e
n
te

r
fo

r
D
is
ta

n
c
e
 a

n
d
 O

n
li
n
e

E
d
u
c
a
ti
o
n
,

P
u
n
ja

b
iU

n
iv

e
rs

it
y
,P

a
ti

a
la

(A

llC
o
p
y
ri
g
h
ts

a
re

R
e
se

rv
e
d
)

Lesson No:

1. Problem Analysis

2. Introduction to C Language and Program Development

3. Identifiers, Keywords, Data Types and Type Conversion

4. Performing Input Output Operations

5. Operators and Expressions

6. Sequential and Conditional Control Statements

7. Iterative Control Statements

8. Functions

2

(Syllabus)

BCAB1104T Programming Fundamentals Using C

Max Marks: 75 Maximum Time: 3 Hrs.
Min Pass Marks: 35%

Instructions for the paper setter
The question paper will consist of three sections: A, B & C. SECTIONs A & B will
have four questions each from the respective sections of the syllabus carrying 15
marks for each question. SECTION C will have 5-10 short-answer type questions
carrying a total of 15 marks, which will cover the entire syllabus uniformly.

Instructions for the candidates
Candidates are required to attempt two questions each from the sections A & B of
the question paper and the entire section C.

Section - A
Programming Process: Problem definition, Algorithm development, Flowchart,
Coding, Compilation and debugging.
Basic structure of C program: History of C, Structure of a C program, Character
set, Identifiers and keywords, constants, variables, data types.
Operators and expressions: Arithmetic, Unary, Logical, Relational operators,
assignment operators, Conditional operators, Hierarchy of operations type
conversion.
Control statements: branching statements (if, if else, switch), loop statements (for,
while and do-while), jump statements (break, continue, goto), nested control
structures.
Functions: Library functions and user defined functions, prototype, definition and
call, formal and actual arguments, local and global variables, methods of parameter
passing to functions, recursion.
I/O functions: formatted & unformatted console I/O functions

Section - B

Storage Classes: automatic, external, static and register variables.
Arrays: One dimensional and two dimensional arrays declaration, initialization,
reading values into an array, displaying array contents
Strings: input/output of strings, string handling functions (strlen, stropy, strcmp,
strcat & strrev), table of strings.
Structures and unions: using structures and unions, comparison of structure
with arrays and union.

Pointers: pointer data type, pointer declaration, initialization, accessing values
using pointers, pointers and arrays.
Introduction to Files in C: opening and closing files, Basic 1/0 operation on files.

Reference Books:

1. E. Balagurusamy, Programming in C, Tata McGraw-Hil.
2. Kernighan and Ritchie, The C Programming Language, PHI.
3. Byron Gotfried, Programming in C.
4. Kamathane, Programming in C, Oxford University Press.

3

BCA PART-1 (SEM-1) PAPER : BCAB1104T

PROGRAMMING FUNDAMENTALS USING C

LESSON NO. 1 AUTHOR : DR. KANWAL PREET SINGH

 CONVERTED INTO SLM BY: DR. VISHAL SINGH

PROBLEM ANALYSIS

1.1 Objectives

1.2 Introduction

1.3 Problem Analysis

1.4 Algorithms

1.5 Flow Charts

1.6 Sample Flowcharts

1.7 Summary

1.8 Keywords

1.9 Short Answer Type Questions

1.10 Long Answer Type Questions

1.11 Suggested Readings:

1.1 Objectives

 In this lesson, we will discuss how to analyse the problem for which we want to

write the program. You will also see how to write an algorithm and draw a flowchart for

a given problem.

1.2 Introduction

 A computer is a machine that receives instructions and produces a result after

performing an appropriate assignment. Since it is a machine, it expects good and

precise directives in order to do something. The end result depends on various factors

ranging from the particular capabilities of the machine, the instructions it received,

and the expected result. As a machine, the computer cannot figure out what you want.

The computer doesn't think and therefore doesn't make mistakes.

 Computer programming is the art of writing instructions (programs) that

asks the computer to do something and give a result. A computer receives

instructions in many different forms, four of which are particularly important.

 The first set of instructions is given by the manufacturers of various hardware

parts such as the microprocessor, the motherboard, the floppy and the CD-ROM drives,

etc. These parts are usually made by different companies setting different and various

goals that their particular part can perform. The instructions given to the

microprocessor, for example, tell it how to perform calculations, at what speed and

under which circumstances. The instructions given to the motherboard allows

information to flow from one section of the computer to another.

 Once the instructions given to the hardware parts are known, software

engineers use that information to give the second set of instructions to the computer.

These instructions, known as an operating system are usually written by one company.

These second instructions tell the computer how to coordinate its different components

so the result will be a combination of different effects. This time, the computer is

instructed about where the pieces of information it receives are coming from, what to

4

do with them and then where to send the result. Some of the operating systems in the

market are: Microsoft Windows XP, Apple Macintosh, Red Hat Linux etc. A particular

OS (for example Microsoft Windows XP) depending on a particular processor (for

example Intel Dual Core) is sometimes referred to as a platform. Some of the computer

languages running on Microsoft Windows operating systems are C,C++, Java and their

variants.

 The actual third set of instructions is given to the computer by you, the

programmer, using one or more of the languages that the operating system you are

planning to use can understand. Your job is going to consist of writing applications. As

a programmer, you write statements such as telling the computer, actually the

operating system, that "If the user clicks this, do the following, but if he clicks that, do

something else. If the user right clicks, display this; if he double-clicks that, do that."

To write these instructions, called programs, you first learn to "speak" one of the

languages of the OS. Then, you become more creative. Some of the application

programs in the market are Microsoft Word, Microsoft Excel, Adobe Acrobat, etc.

 The last instructions are given by whoever uses your program, or your

application. For example, if you had programmed Microsoft Word, you would have told

the computer that "If a user clicks the New button on the Standard toolbar, I want you

to display a new empty document. But if the user clicks File -> New..., I want you to

'call' the New dialog and provide more options to create a new document. If the same

user right-clicks on any button on any of the toolbars, I want you to show, from a

popup menu, all the toolbars available so she can choose which one she wants. But if

she right-clicks on the main document, here is another menu I want you to display."

Your interest here is on the computer languages, since you are going to write programs.

There are various computer languages, for different reasons, capable of doing different

things. Fortunately, the computer can distinguish between different languages and

perform accordingly. These instructions are given by the programmer who is using

compilers, interpreters, etc, to write programs. Examples of those languages are C,

C++, Java, etc.

1.3 Problem Analysis

 A computer can be used to solve a problem by following a set of stored

instructions called the program. The problem solving process needs initial data, the

operations that are to be performed and results in the form of output. The following

steps are required for problem solving:

Define the problem:

 The first step is to give a clear concise problem statement. The problem

definition should clearly specify the desired input and output. This step demands that

user should have full knowledge of the background of the problem. A stated goal will

help in the organization of the remaining steps.

Examples of simple problems can be:

 To find average of two numbers.

 To determine a student’s final grade and indicate whether it is passing or

 failing. The final grade is calculated as the average of four marks.

Develop an Algorithm:

 The next step is to devise and describe a precise plan of what you want the

computer to do. This plan, expressed as a sequence of steps to be taken or operations

5

to be performed is called an algorithm. The algorithm works by breaking the process

into a number of steps which are smaller and simpler than the entire process. Further

the sub-algorithms can themselves be broken into a number of steps.

Write a code based on the algorithm using a programming language:

 The computer cannot understand the above written algorithm. It must be

written in a programming language which can be understood by the computer. Once

the program is ready, it can be translated into machine code using a compiler or

interpreter. When the machine code version of the program is ready, it can be executed

on a computer.

Testing the Program:

 If the program compiles correctly, use a simple set of test values to verify that

the result is what you expected. If the results seem valid, test the program with a

variety of real data sets. The mistakes if encountered in a program are called bugs and

debugging the code may take longer than writing the code.

1.4 Algorithms

 An algorithm is a detailed sequence of simple steps that are needed to

solve a problem. It is an effective procedure for solving a problem in a finite number of

steps. It is effective, which means that an answer is found and it finishes, that is it has

a finite number of steps. A well-designed algorithm will always provide an answer, it

may not be the answer you want but there will be an answer. A well-designed algorithm

is also guaranteed to terminate.

 The computers lack intuition or common sense to realize the full procedure for

solving a problem. Therefore the programmer must describe the step by step procedure

for solving a problem to the computer minutely. This sequence of steps written in a

simple language, form an algorithm. The characteristics of a good algorithm are:

 An algorithm should have zero or more input.

 An algorithm should exhibit at least one output.

 An algorithm should be finite.

 Each instruction in an algorithm should be defined clearly.

 Each instruction used in an algorithm should be basic and easy to

 perform.

Following are some simple examples of algorithms:

Problem1: Write an algorithm to find the average of two numbers.

Algo 1:

1. Input the first value in x.

2. Input the second value in y.

3. Add the two numbers and put result in sum.

4. Divide sum by 2 and put the result in average.

5. Output value of average.

 This is simple problem. So we write the complete algorithm in one go. But the

problems may be complex also. In that case, we will first write an initial algorithm and

then we refine that algorithm further. The second algorithm is a bit more complex and

we use three stages to write the final algorithm.

Problem2: Write an algorithm for withdrawing money for a bank ATM.

Algo 2:

Stage1:

6

1. Display a message asking how much money is to be withdrawn

2. Input the withdrawal amount

3. Deduct the withdrawal amount from the balance

4. Give withdrawal amount of cash

5. Stop

Stage2:

1. Display a message asking how much money is to be withdrawn

2. Input the withdrawal amount

3. If the withdrawal amount is greater than the balance then

 Print "Insufficient funds."

 Otherwise

 Deduct the withdrawal amount from the balance

4. Give withdrawal amount of cash

5. Endif

6. Stop

Stage3:

1. Repeat

2. Display a message asking how much money is to be withdrawn

3. Input the withdrawal amount

4. If the withdrawal amount is greater than the balance then

 Output "Insufficient funds."

 Otherwise

 Deduct the withdrawal amount from the balance

5. Give withdrawal amount of cash

6. Endif

7. End Repeat

8. Stop

Different ways of stating algorithms

 One way of stating an algorithm has already been shown above. Let us call this

the Step-Form. There can be three different ways of stating algorithms:

1. Step-Form

2. Pseudocode

3. Flowchart

 The first two are written forms. The above algorithms are in Step-Form and as

you saw with the Step-Form (SF) the written form is just normal language. A problem

with human language is that it can seem to be imprecise. In terms of meaning, what I

write may not be the same as what you read. Pseudocode is also human language but

tends toward more precision by using a limited vocabulary. The last one is graphically-

oriented, that is it uses symbols and language to represent sequence, decision and

repetition. We will be discussing only the Step-Form and the Flow Charts here.

1.5 Flow Charts

 A flowchart is a graphical representation of an algorithm. A flowchart

illustrates the steps in a process. By visualizing the process, a flowchart can quickly

help identify bottlenecks or inefficiencies where the process can be streamlined or

improved. A flowchart is a diagrammatic representation that illustrates the sequence of

operations to be performed to get the solution of a problem. Flowcharts are generally

7

drawn in the early stages of formulating computer solutions. Flowcharts facilitate

communication between programmers and business people. These flowcharts play a

vital role in the programming of a problem and are quite helpful in understanding the

logic of complicated and lengthy problems. Once the flowchart is drawn, it becomes

easy to write the program in any high level language. Often we see how flowcharts are

helpful in explaining the program to others. Hence, it is correct to say that a flowchart

is a must for the better documentation of a complex program. A flowchart can be

compared to the blueprint of a building. As we know a designer draws a blueprint

before starting construction on a building. Similarly, a programmer prefers to draw a

flowchart prior to writing a computer program. As in the case of the drawing of a

blueprint, the flowchart is drawn according to defined rules and using standard

flowchart symbols prescribed by the American National Standard Institute (ANSI).

Flowchart Symbols

 Flowcharts are usually drawn using some standard symbols; however, some

special symbols can also be developed when required. Some standard symbols, which

are frequently required for making flowcharts are shown below:

 Flow Lines

 Connector

1. Terminal: The terminal symbol is used to begin and end each flow chart. The

starting terminator has the word start while the ending terminator usually has

the word stop.

2. Process: A processing symbol is used to represent arithmetic and data

movement instructions. Hence, all the arithmetic processes of addition,

subtraction, multiplication and division are shown by this symbol. Any type of

assignment is also done in this box.

3. Input/Output: This box shows interaction with an outside entity. This may

represent data being input into the algorithm or information being displayed to

an outside entity.

4. Decision or Condition: This box is used to indicate a point at which decision

has to be made, and a branch to one of the two or more alternative points is

possible. The following figure shows the decision box with three alternative

paths:

Terminal Process Input/Output

Decision

http://www.edrawsoft.com/flowchart-symbols.php

8

 Depending on the condition one of the three paths will be followed i.e if the value

generated by decision box is less than 0, the left path will be followed, if the

value generated by decision box is greater than 0, the right path will be followed

and if the value generated by decision box is equal to 0, the down path will be

followed.

5. Connectors: A connector is used as a link between parts of a flowchart if a

flowchart is large and cannot fit in a single page. We can also use it to represent

a point at which the flowchart connects with another process. The name or

reference for the other process should appear within the symbol.

6. Flow Lines: Flow lines with arrow heads are used to indicate the flow of

operation, that is, the exact sequence in which the instructions are to be

executed. The normal flow of flowchart is from top to bottom and from left to

right.

Guidelines for Drawing a Flowchart

The following are some guidelines in flowcharting:

a. In drawing a proper flowchart, all necessary requirements should be listed out

in logical order.

b. The flowchart should be clear, neat and easy to follow. There should not be any

room for ambiguity in understanding the flowchart.

c. The usual direction of the flow of a procedure or system is from left to right or

top to bottom.

d. Only one flow line should come out from a process symbol.

 or

e. Only one flow line should enter a decision symbol, but two or more flow lines,

one for each possible answer, should leave the decision symbol.

f. Only one flow line is used in conjunction with terminal symbol.

h. If the flowchart becomes complex, it is better to use connector symbols to reduce

the number of flow lines. Avoid the intersection of flow lines if you want to make

it more effective and better way of communication.

i. Ensure that the flowchart has a logical start and finish.

j. It is useful to test the validity of the flowchart by passing through it with a

simple test data.

1.6 Sample Flowcharts

9

Example 1: Draw a flowchart to find the average of two numbers.

We have already written the algorithm for this problem. The flowchart is as follows:

Decisions (Switching logic)

 Switching logic consists of two components - a condition and a goto command

depending on the result of the condition test. The computer can determine the truth

value of a statement involving one of six mathematical relations symbolized in the table

below:

Symbol Meaning

= = Equals

!= Not Equal

< Less Than

<= Less Than Equal to

> Greater Than

>= Greater Than Equal to

In practice, the computer is presented not with a true/false statement, but with a

question having a "Yes" or "No" answer, for example if A = 10, B = 20, K = 5 and SALES

= 10000, then:

Condition (Question) "Answer"

 Is A == B? No

Input x

Input y

Sum = x + y

Average = sum/2

Output

Average

Start

Stop

10

 Is B > A? Yes

 Is K <= 25? Yes

 Is SALES >= Rs.5000.00? Yes

 With each question, the computer can be programmed to take a different course

of action depending on the answer. A step in an algorithm that leads to more than

one possible continuation is called a decision. In flowcharting, the diamond-shaped

symbol is used to indicate a decision. The question is placed inside the symbol and

each alternative answer to the question is used to label the exit arrow which leads to

the appropriate next step of the algorithm. The decision symbol is the only symbol that

may have more than one exit.

Example 2: Draw a flowchart to find the larger of two numbers.

Loops

 Most programs involve repeating a series of instructions over and over until

some event occurs. This process of repeating a certain part of the program again and

again until some condition is satisfied is called looping. For example, if we wish to read

ten numbers and compute the average, we need a loop to count the number of

numbers we have read. Consider the following figure:

Yes/True No/False

Start

Enter value of

A and B

Is A>B

A is largest B is largest

Stop

11

 This figure shows how we can implement loops in a flowchart. Note that the

sequence is followed by a decision box and one branch of the decision box leads to the

top of the sequence.

 So, till the condition stated in decision box remains false, the control will be

shifted to the top of the sequence and the sequence will be executed again and again.

Example 3: Write an algorithm and draw a flowchart to input ten numbers and find

their average.

Algo 3:

1. Set count=0.

2. Input a number

3. Increment count by one.

4. If count<10

 Goto step 2

Else

 Goto step 5

5. Add the ten numbers and put the answer in sum.

6. Divide sum by ten and put the result in average.

7. Output Average.

 In the above algorithm, we set value of count to zero. Every time you input a

number, the value of count is incremented by one. Step 4 checks whether the value of

count is less than 10 or not. If count<10, then the control moves back to step 2 and

when the value of count becomes 10, the control moves to step 5. Therefore, the steps 2

through 4 are repeated until value of count becomes 10. In this way, we can implement

a loop.

The flowchart of the above algorithm is as follows:

12

1.7 Summary:

 A computer is a machine that receives instructions and produces a result after

following those instructions. A computer can be used to solve a problem by following a

set of stored instructions called the program. The problem solving process consists of

defining the problem, developing an appropriate algorithm, writing a code based on the

algorithm using a programming language and then testing the program. An algorithm

is a detailed sequence of simple steps that are needed to solve a problem. There can be

different ways of stating algorithms. One way of representing an algorithm is a

flowchart. A flowchart is a diagrammatic representation of an algorithm that illustrates

the sequence of operations to be performed to get the solution of a problem.

1.8 Keywords:

Computer: A computer is an electronic device that takes input from the user, stores,

processes data and generates an output after processing the instructions given to it by

the user.

Program: Set of instructions given to the computer to solve a particular problem in a

language that is understood by the computer.

Start

Set count=0

Set sum=0

Input number n

count = count +1

sum = sum + n

Is count<10?

average = sum/10

Output average

Stop

Yes

No

13

Algorithm: An algorithm is a detailed sequence of simple steps that are needed to

solve a problem.

Flowchart: A flowchart is a diagrammatic representation of an algorithm that

illustrates the sequence of operations to be performed to get the solution of a problem.

1.9 Short Answer Type Questions:

1. What is a computer?

2. Define an algorithm. What are the different ways of stating an algorithm?

3. What is a flowchart? Name some important symbols used in a flowchart.

1.10 Long Answer Type Questions:

1. Explain the problem solving process in detail.

2. Explain the guide lines for drawing a flowchart. Also explain how you can

implement different programming strategies (simple sequence, decision making

and looping) in a flowchart.

3. Draw a flow chart for stage 3 algo of problem 2 given in the lesson.

4. Write an algorithm and draw a flowchart to input numbers of a student in 6

subjects and to find the total marks obtained and his grade.

1.11 Suggested Readings:

1. Computer Fundamentals Pradeep K. Sinha, Preeti Sinha

2. Windows Based Computer Courses Gurvinder Singh, Rachhpal Singh

14

BCA Part-1 (Sem-1) Paper: BCAB1104T

 PROGRAMMING FUNDAMENTALS USING C

Lesson No. 2 Author: Dr. DharamVeer Sharma

 Converted into SLM by: Dr. Vishal Singh

Introduction to C Language and Program Development

1. Objectives
2. Introduction
3. Origin of C Language

4. Types of languages
5. Feature of C Language
6. Structure of a C Program
7. Stages in Program Development
8. Summary
9. Short Answer Type Questions
10. Long Answer Type Questions
11. Suggested Books

1. Objectives

In this lesson we shall learn about the origination and features of the C language.

Let us begin with a quick introduction to C. Our aim is to show the essential

elements of the language in real programs, but without getting bogged down in

details, rules, and exceptions. At this point, we are not trying to be complete or

even precise (save that the examples are meant to be correct). One needs to

concentrate on the basics: variables and constants, arithmetic, control flow,

functions, and the rudiments of input and output for starting to learn programming

in any language. Some topics like pointers, structures, most of C's rich set of

operators, several control-flow statements, and the standard library have not been

touched upon in this lesson to keep the learning of the balanced in terms of

complexity.

2. Introduction

Computer can understand language of 0s and 1s only, therefore, to interact with

computer we should know the binary language, which is extremely difficult to learn

and implement, because one wrong combination of 0s and 1s can mean entirely

different thing. Human being, on the other hand can converse in their own

language which is not directly understandable to computers. Therefore, some inter-

mediate or translator is required to facilitate communication between humans and

computers. These translators should be able to convert human language to

computer language and vice-versa. Computer language and human language are

two extremes in the hierarchy of languages. What we speak, at times, may mean

15

differently for different persons. The same word or sentence may have different

meaning. This is called ambiguity. Ambiguous languages constructs can not be

correctly understood by computers. Therefore some language is required which is

unambiguous, close to human language, whose words or sentences may be

translated and represent precisely one meaning. Such languages are called

programming languages. C is one such language, used extensively by programmers

around the globe for writing computer programs, which are translated to binary

language for computers' understanding and functioning.

3. Origin of C Language

The C language was developed in 1970s at Bell Laboratories by a system

programmer named Dennis Ritchie. It derives its name from the fact that it is based

on a language B, developed by Ken Thompson, another system programmer at Bell

Laboratories.

C is a general-purpose programming language. It has been closely associated with

the UNIX operating system where it was developed, since both the system and most

of the programs that run on it are written in C. The language, however, is not tied

to any one operating system or machine; and although it has been called a "system

programming language" because it is useful for writing compilers and operating

systems, it has been used equally well to write major programs in many different

domains.

Many of the important ideas of C stem from the language BCPL (Basic Combined

Programming Language), developed by Martin Richards. The influence of BCPL on

C proceeded indirectly through the language B, which was written by Ken

Thompson in 1970 for the first UNIX system on the DEC PDP-7.

BCPL and B are "typeless" languages, means data type of variable need not be

declared in advance. By contrast, C provides a variety of data types. The

fundamental types are characters, and integers and floating point numbers of

several sizes. In addition, there is a hierarchy of derived data types created with

pointers, arrays, structures and unions. Expressions are formed from operators

and operands; any expression, including an assignment or a function call, can be a

statement. Pointers provide for machine-independent address arithmetic.

4. Types of languages

In order to understand the features of C programming language we need to know

the various types of programming languages and their features. The programming

language can be divided into two categories:

i. Low level languages
ii. Middle Level Languages
iii. High level languages
i. Low level languages: These are the languages which are closer to the

machine languages. These languages permit the efficient use of the machine.
But these languages are hardware dependent, means programs written in

16

one language may not run on other machines. Moreover, learning these
languages is not an easy task. For learning the language programmers need
to possess thorough knowledge of the hardware. These languages include
machine languages and assembly languages, though assembly language is
also referred to as middle level languages in some language literature.

ii. Middle Level Languages: These are the languages which are neither close to
machine language nor near to human understandable languages. These are
actually symbolic languages. Symbols representing, operations are the main
building blocks. The symbols are mnemonics or acronyms of the operations
to be performed. Programs written in middle level languages are very cryptic.
Assembly language falls under this category. High level languages are
sometimes converted to middle level languages before further translation to
low level languages. In C language we can even write code in middle level
language but in that case the middle level language code is translated by the
respected language compiler, which needs to be installed in the machine and
C environment must be configured to use that compiler.

iii. High level languages: These are the languages which are closer to the
human understandable languages and include FORTRAN, BASIC, PASCAL,
COBOL, PL/1 etc. These languages have been designed for better
programming efficiency and have the following advantages:

 The syntax is like English language. This enables the programmer to easily
learn the language. Additionally, the programs written in these languages
are easily understandable.

 The programs written in these languages are portable, means the programs
are not hardware dependent.

The C language stands between these two types of languages. It has some features

of the low level languages along with the features of high level languages. The C

language has capability of directly interacting with the hardware.

A program written in high level language needs to be compiled for checking syntax

or grammatical errors. If the program is free of error then it is translated to low

level language which can be directly executed on the computer.

5. Feature of C Language

C provides the fundamental control-flow constructions required for well-structured

programs: statement grouping, decision making (if-else), selecting one of a set of

possible values (switch), looping with the termination test at the top (while, for) or

at the bottom (do), and early loop exit (break).

C language is case sensitive. 'A' and 'a' mean differently in the language.

Functions may return values of basic types, structures, unions, or pointers. Any

function may be called recursively. Local variables are typically ``automatic", or

created anew with each invocation. Function definitions may not be nested but

variables may be declared in a block-structured fashion. The functions of a C

program may exist in separate source files that are compiled separately. Variables

may be internal to a function, external but known only within a single source file,

or visible to the entire program.

17

A preprocessing step performs macro substitution on program text, inclusion of

other source files, and conditional compilation.

C is a relatively "low-level" language. This characterization is not pejorative; it

simply means that C deals with the same sort of objects that most computers do,

namely characters, numbers, and addresses. These may be combined and moved

about with the arithmetic and logical operators implemented by real machines.

C provides no operations to deal directly with composite objects such as character

strings, sets, lists or arrays. There are no operations that manipulate an entire

array or string, although structures may be copied as a unit. The language does not

define any storage allocation facility other than static definition and the stack

discipline provided by the local variables of functions; there is no heap or garbage

collection. Finally, C itself provides no input/output facilities; there are no READ or

WRITE statements, and no built-in file access methods. All of these higher-level

mechanisms must be provided by explicitly called functions. Most C

implementations have included a reasonably standard collection of such functions.

Similarly, C offers only straightforward, single-thread control flow: tests, loops,

grouping, and subprograms, but not multiprogramming, parallel operations,

synchronization, or co-routines.

Although the absence of some of these features may seem like a grave deficiency,

("You mean I have to call a function to compare two character strings?"), keeping

the language down to modest size has real benefits. Since C is relatively small, it

can be described in small space, and learned quickly. A programmer can

reasonably expect to know and understand and indeed regularly use the entire

language.

For many years, the definition of C was the reference manual in the first edition of

The C Programming Language. In 1983, the American National Standards Institute

(ANSI) established a committee to provide a modern, comprehensive definition of C.

The resulting definition, the ANSI standard, or "ANSI C", was completed in late

1988. Most of the features of the standard are already supported by modern

compilers.

The standard is based on the original reference manual. The language is relatively

little changed; one of the goals of the standard was to make sure that most existing

programs would remain valid, or, failing that, that compilers could produce

warnings of new behavior.

For most programmers, the most important change is the new syntax for declaring

and defining functions. A function declaration can now include a description of the

arguments of the function; the definition syntax changes to match. This extra

information makes it much easier for compilers to detect errors caused by

mismatched arguments; in our experience, it is a very useful addition to the

language.

18

There are other small-scale language changes. Structure assignment and

enumerations, which had been widely available, are now officially part of the

language. Floating-point computations may now be done in single precision. The

properties of arithmetic, especially for unsigned types, are clarified. The

preprocessor is more elaborate. Most of these changes will have only minor effects

on most programmers.

A second significant contribution of the standard is the definition of a library to

accompany C. It specifies functions for accessing the operating system (for

instance, to read and write files), formatted input and output, memory allocation,

string manipulation, and the like. A collection of standard headers provides

uniform access to declarations of functions in data types. Programs that use this

library to interact with a host system are assured of compatible behavior. Most of

the library is closely modeled on the ``standard I/O library" of the UNIX system.

This library was described in the first edition, and has been widely used on other

systems as well. Again, most programmers will not see much change.

Because the data types and control structures provided by C are supported directly

by most computers, the run-time library required to implement self-contained

programs is tiny. The standard library functions are only called explicitly, so they

can be avoided if they are not needed. Most can be written in C, and except for the

operating system details they conceal, are themselves portable.

Although C matches the capabilities of many computers, it is independent of any

particular machine architecture. With a little care it is easy to write portable

programs, that is, programs that can be run without change on a variety of

hardware. The standard makes portability issues explicit, and prescribes a set of

constants that characterize the machine on which the program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking has

been strengthened. The original definition of C frowned on, but permitted, the

interchange of pointers and integers; this has long since been eliminated, and the

standard now requires the proper declarations and explicit conversions that had

already been enforced by good compilers. The new function declarations are

another step in this direction. Compilers will warn of most type errors, and there is

no automatic conversion of incompatible data types. Nevertheless, C retains the

basic philosophy that programmers know what they are doing; it only requires that

they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have the

wrong precedence; some parts of the syntax could be better. Nonetheless, C has

proven to ben an extremely effective and expressive language for a wide variety of

programming applications.

6. Structure of a C Program

The only way to learn a new programming language is by writing programs in it.

The first program to write is the same for all languages:

19

Print the words

hello, world

This is a big hurdle; to leap over it you have to be able to create the program text

somewhere, compile it successfully, load it, run it, and find out where your output

went. With these mechanical details mastered, everything else is comparatively

easy.

In C, the program to print ``hello, world" is

#include <stdio.h>

main()

{

 printf("hello, world\n");

}

To run this program first it needs to be compiled and translated to machine level

language, which we shall discuss in the next section.After executing the program it

will print

hello, world

Now, for some explanations about the program itself. A C program, whatever its

size, consists of functions and variables. A function contains statements that

specify the computing operations to be done, and variables store values used

during the computation. C functions are like the subroutines and functions in

Fortran or the procedures and functions of Pascal. Our example is a function

named main. Normally you are at liberty to give functions whatever names you like,

but ``main" is special - your program begins executing at the beginning of main.

This means that every program must have a main somewhere.

main will usually call other functions to help perform its job, some that you wrote,

and others from libraries that are provided for you. The first line of the program,

#include <stdio.h>

tells the compiler to include information about the standard input/output library;

the line appears at the beginning of many C source files. The standard library is

described in following lessons.

One method of communicating data between functions is for the calling function to

provide a list of values, called arguments, to the function it calls. The parentheses

after the function name surround the argument list. In this example, main is

defined to be a function that expects no arguments, which is indicated by the

empty list ().

20

#include <stdio.h> include information about standard library

main() define a function called main that received

 no argument values statements of main are

{ enclosed in braces main calls library

printf("hello, world\n"); function printf to print this sequence

 of characters \n represents the

 newline character

 }

The first C program

The statements of a function are enclosed in braces { }. The function main contains

only one statement,

printf("hello, world\n");

A function is called by naming it, followed by a parenthesized list of arguments, so

this calls the function printf with the argument "hello, world\n". printf is a library

function that prints output, in this case the string of characters between the

quotes.

A sequence of characters in double quotes, like "hello, world\n", is called a

character string or string constant. For the moment our only use of character

strings will be as arguments for printf and other functions.

The sequence \n in the string is C notation for the newline character, which when

printed advances the output to the left margin on the next line. If you leave out the

\n (a worthwhile experiment), you will find that there is no line advance after the

output is printed. You must use \n to include a newline character in the printf

argument; if you try something like

printf("hello, world

 ");

the C compiler will produce an error message.

printf never supplies a newline character automatically, so several calls may be

used to build up an output line in stages. Our first program could just as well have

been written

#include <stdio.h>

main()

{

21

 printf("hello, ");

 printf("world");

 printf("\n");

}

to produce identical output.

Notice that \n represents only a single character. An escape sequence like \n

provides a general and extensible mechanism for representing hard-to-type or

invisible characters. Among the others that C provides are \t for tab, \b for

backspace, \" for the double quote, \a for producing a bell sound and \\ for the

backslash itself.

7. Stages in Program Development
The following are the various stages involved in development of computer program

ready to be executed on the computer:

i. Developing the program: The first and fore most task for develop the
program for a particular problem is to understand the problem in hand to be
solved. Analysis of the problem will reveal the input required and output
produced by the problem solution. Some input is clearly visible from the
problem statement itself and some other input may be hidden which is
revealed while developing the solution. Output to be produced by the
program is clearly stated by the problem it self. Some auxiliary output may
also be produced, however, which may or may not be of some use. The next
step is to prepare a detailed list of steps required to be carried out for solving
the problem, which is called the algorithm. Once input, output and
algorithm have been clearly defined, the next step is to translate these steps
in a computer program using any high level language. The program in high
level language is called the source code and is stored in a disk file. This
program contains the logic or steps for solving the problem.

ii. Compile the program: The next step is to compile the program for checking
syntax errors and translation. This is done by the C compiler. The output of
compilation is the object code, if no syntax errors are reported by the
compiler. The following figure shows the compilation process.

22

Figure 1: Stages in Compilation of a C program

C compiler has in-built pre-processor. The pre-processor processes the

source code before it is passed to the compiler for compilation. Pre-processor

commands, also known as directives, tell the pre-processor how to process

the source code. Depending on the pre-processor directives, the pre-

processor processes the source code and produces the expanded version of

source code. The C complier takes expanded version of the source code as its

input and if there are no errors in the source code, it produces a machine

code (object code) version of the program which is saved on the disk file.

If there are some errors during compilation phase, known as syntax errors,

then the compiler reports these errors in the form of diagnostic messages,

which tell the cause and origin of errors and compilation process terminates.

Having corrected the reported errors the source code is compiled again as

shown in figure 1.

iii. Linking the program: After the compilation stage, the machine code version

of the program but it can not be directly executed, as it may contain

references to the library functions or user defined functions in other object

23

modules which are compiled separately. In order to produce an executable

code, these object codes are to be linked together and also with the system

library. The process of linking is shown in figure 2 below:

Figure 2: Linking of object code(s) with system libraries

Once the linking process is over, another disk, with the same name as of the

program file, with extension exe is produced. This is the file that contains

the code which can be directly executed on the computer.

iv. Debugging the program: The next stage in the program development is

debugging of the program to make sure that the program is free of bugs and

produces the desired outputs for all possible inputs. In this stage the

program is executed with all possible values of input data for which result is

known or can be computed manually. The program is declared correct if the

output of the program matches the expected results. If the output does not

match the expected results then the program is said to be semantically or

logically incorrect and needs to be corrected by scanning the logic used in

the source code. The logical or semantic errors are removed and the program

is compiled and linked again.

v. Documenting the program: The final stage in the development of a program

is documentation. The term documentation means recording the important

information regarding the program. The documentation enables other users

or programmers to understand the logic and purpose of the program. This

facilitates maintenance and upgradation of the program.

Some compilers, like Turbo C, have integrated development environment (IDE),

which facilitates program writing (editing), compilation, linking and execution of the

program from one place. But in some other systems like in UNIX we need separate

tools for editing, compilation, linking and execution of the program.

8. Summary
The C language was developed in Bell Laboratories by Dennis Ritchie and his

24

associates. It is a refined version of BCPL with enhanced features. The C language

is a high level language with capabilities of low level language as well. It has defined

data types and program constructs like sequential, conditional and iterative flows.

A program written in C language is first check for syntax correctness and then

converted to object code, thereafter it is linked with other libraries and finally an

executable file is produced.

9. Short Answer Type Questions

1. What are the various types of programming languages?

2. What are the various types of errors?

3. Name any four high level programming languages?

10. Long Answer Type Questions

1. Discuss in detail the origin of C language.

2. What are the various features of C programming language?

3. What are various parts of a C program?

4. What are various stages of program development using C language?

11. Suggested Books

1. Application Programming in C R. S. Salaria

2. C Programming using Turbo C Robert Lafore

25

BCA Part-1 (Sem-1) Paper: BCAB1104T

 PROGRAMMING FUNDAMENTALS USING C

Lesson No. 3 Author: Dr. DharamVeer Sharma

 Converted into SLM by: Dr. Vishal Singh

Identifiers, Keywords, Data Types and Type Conversion

1. Objectives
2. Introduction
3. Character Set

4. Identifiers
5. Keywords
6. Data Types
7. Type Conversion
8. Variables and constants
9. Summary
10. Short Answer Type Questions
11. Long Answer Type Questions
12. Suggested Books

1. Objectives
In this lesson we will learn about the basic concepts used in the C programming

language, which include, identifiers, variables and constants, keywords, data types

and type conversion.

2. Introduction
Identifiers and data types are the basic building blocks of a programming language.

A C program starts with the declaration of data types of the various identifiers to be

used in the program. Then the behaviour of the identifiers also needs to be defined

that whether these are variables or constants. Study of type conversion

methodology is also important as it facilitates safe programming.

3. Character Set
The character set used to form words, numbers and expressions depend upon the

computer on which the program runs. The characters in C are classified in the

following categories:

i. Letters

ii. Digits

iii. White spaces

iv. Special characters

The C language character set is listed in the following table:

26

Letters A to Z, a to Z

Digits 0 to 9

White Spaces Blank, Horizontal tab, Vertical tab, new line, form

feed

Special characters All other characters available on standard

keyboard.

4. Identifiers
Every program element must be named to distinguish it from other elements. The

name assigned to the element should be meaningful, though it is not necessary,

but it facilitates easy understanding of the program. Identifier is the name given to

some program element. The program element is then identified by that name. The

element may be some variable, constant, data structure, program block, function,

pointer, file etc. The identifier naming rules are as follows:

a. Identifier name should begin with an alphabet or underscore (_) but never
with a digit.

b. The following characters may be any combination of alphabets, digits and
special symbol (underscore) but two consecutive underscores are not
permitted.

c. In some C language compilers identifier length is restricted to some limit
which varies from 32 to 48.

d. No other symbol or special character is permitted.

The following are valid C identifiers:

sum, factorial, number, first_name, permanent_address.

However, sum, SUM and Sum are different identifier because C language is case

sensitive.

The following are invalid C identifiers:

5thdigit (first letter should be alphabet or underscore)

first name (Identifier can’t contain spaces)

char (It is a reserve word, discussed in next section)

It's wise to choose identifier names that are related to the purpose of the identifier,

and that are unlikely to get mixed up typographically. We tend to use short names

for local variables, especially loop indices, and longer names for external variables.

5. Keywords
There is a set of words whose meaning is predefined in the C language and these

words can not be used as identifier. These words are also called reserve words. The

27

following is the set of words used as reserve words in the C language.

void int char float double long short signed

for do while If else break continue goto

static auto extern case switch default return struct

sizeof enum typedef const volatile register unsigned union

6. Data Types
Since, the C language is a strongly typed language therefore data type of all the

variables need to be declared in advance. There are only a few basic data types in

C:

Char a single byte, capable of holding one character in the local character set

Int an integer, typically reflecting the natural size of integers on the host

machine

Float single-precision floating point

double double-precision floating point

In addition, there are a number of qualifiers that can be applied to these basic

types. short and long apply to integers:

 short int sh;

 long int counter;

The word int can be omitted in such declarations, and typically it is. The intent is

that short and long should provide different lengths of integers where practical; int

will normally be the natural size for a particular machine, short is often 16 bits

long, and int either 16 or 32 bits. Each compiler is free to choose appropriate sizes

for its own hardware, subject only to the the restriction that shorts and ints are at

least 16 bits, longs are at least 32 bits, and short is no longer than int, which is no

longer than long.

The qualifier signed or unsigned may be applied to char or any integer, unsigned

numbers are always positive or zero, and obey the laws of arithmetic modulo 2n,

where n is the number of bits in the type. So, for instance, if chars are 8 bits,

unsigned char variables have values between 0 and 255, while signed chars have

values between -128 and 127 (in a two's complement machine.) Whether plain

chars are signed or unsigned is machine-dependent, but printable characters are

always positive.

28

The type long double specifies extended-precision floating point. As with integers,

the sizes of floating-point objects are implementation-defined; float, double and

long double could represent one, two or three distinct sizes.

The standard headers <limits.h> and <float.h> contain symbolic constants for all of

these sizes, along with other properties of the machine and compiler.

Data type Size (in bytes) Range Format String

char 1 -128 to 127 %c

unsigned char 1 0 to 255 %c

short or int 2 -32768 to 32767 %i or %d

unsigned int 2 0 to 65535 %u

long 4 -2147483648 to 2147483647 %ld

unsigned long 4 0 to 4294967295 %lu

float 4 3.4 e-38 to 3.4 e+38 %f or %g

double 8 1.7 e-308 to 1.7 e+308 %lf

long double 10 3.4 e-4932 to 1.1 e+4932 %lf

7. Type Conversion
Some times data type of values needs to be modified. For example, if two integer

values are divided then the result may be required in float but since the variable

are of type integer, the result produced will also be of type integer.

If a = 5 and b = 2 and both a and b are integer then

result = a/b;

will store 2 in result irrespective of the data type of variable result. However to

obtain float value we need to modify the data type of the argument variables of the

expression, which can be done as follows:

result = (float)a/b; and value of result will be 2.5

this is called type casting and is done explicitly. Implicit data type conversion is

also done while evaluating expression containing mixed types of variable. This is

called coercion. In this case the data type of the lower sized or ranged variable is

converted to the upper sized or ranged variable, for example, if b is float in the

above example then the value of result will be 2.5.

When an operator has operands of different types, they are converted to a common

type according to a small number of rules. In general, the only automatic

29

conversions are those that convert a ``narrower'' operand into a ``wider'' one

without losing information, such as converting an integer into floating point in an

expression like f + i. Expressions that don't make sense, like using a float as a

subscript, are disallowed. Expressions that might lose information, like assigning a

longer integer type to a shorter, or a floating-point type to an integer, may draw a

warning, but they are not illegal.

A char is just a small integer, so chars may be freely used in arithmetic

expressions. This permits considerable flexibility in certain kinds of character

transformations. One is exemplified by this naive implementation of the function

atoi, which converts a string of digits into its numeric equivalent.

 /* atoi: convert s to integer */

 int atoi(char s[])

 {

 int i, n;

 n = 0;

 for (i = 0; s[i] >= '0' && s[i] <= '9'; ++i)

 n = 10 * n + (s[i] - '0');

 return n;

 }

The expression

 s[i] - '0'

gives the numeric value of the character stored in s[i], because the values of '0', '1',

etc., form a contiguous increasing sequence.

Another example of char to int conversion is the function lower, which maps a

single character to lower case for the ASCII character set. If the character is not an

upper case letter, lower returns it unchanged.

 /* lower: convert c to lower case; ASCII only */

 int lower(int c)

 {

 if (c >= 'A' && c <= 'Z')

 return c + 'a' - 'A';

 else

30

 return c;

 }

This works for ASCII because corresponding upper case and lower case letters are a

fixed distance apart as numeric values and each alphabet is contiguous -- there is

nothing but letters between A and Z. This latter observation is not true of the

EBCDIC character set, however, so this code would convert more than just letters

in EBCDIC.

The standard header <ctype.h>, defines a family of functions that provide tests and

conversions that are independent of character set. For example, the function

tolower is a portable replacement for the function lower shown above. Similarly, the

test

 c >= '0' && c <= '9'

can be replaced by

 isdigit(c)

We will use the <ctype.h> functions from now on.

There is one subtle point about the conversion of characters to integers. The

language does not specify whether variables of type char are signed or unsigned

quantities. When a char is converted to an int, can it ever produce a negative

integer? The answer varies from machine to machine, reflecting differences in

architecture. On some machines a char whose leftmost bit is 1 will be converted to

a negative integer (``sign extension''). On others, a char is promoted to an int by

adding zeros at the left end, and thus is always positive.

The definition of C guarantees that any character in the machine's standard

printing character set will never be negative, so these characters will always be

positive quantities in expressions. But arbitrary bit patterns stored in character

variables may appear to be negative on some machines, yet positive on others. For

portability, specify signed or unsigned if non-character data is to be stored in char

variables.

Relational expressions like i > j and logical expressions connected by && and ||

are defined to have value 1 if true, and 0 if false. Thus the assignment

 d = c >= '0' && c <= '9'

sets d to 1 if c is a digit, and 0 if not. However, functions like isdigit may return any

non-zero value for true. In the test part of if, while, for, etc., ``true'' just means

``non-zero'', so this makes no difference.

Implicit arithmetic conversions work much as expected. In general, if an operator

like + or * that takes two operands (a binary operator) has operands of different

31

types, the ``lower'' type is promoted to the ``higher'' type before the operation

proceeds. The result is of the integer type.

If there are no unsigned operands, however, the following informal set of rules will

suffice:

 If either operand is long double, convert the other to long double.
 Otherwise, if either operand is double, convert the other to double.
 Otherwise, if either operand is float, convert the other to float.
 Otherwise, convert char and short to int.
 Then, if either operand is long, convert the other to long.

Notice that floats in an expression are not automatically converted to double; this is

a change from the original definition. In general, mathematical functions like those

in <math.h> will use double precision. The main reason for using float is to save

storage in large arrays, or, less often, to save time on machines where double-

precision arithmetic is particularly expensive.

Conversion rules are more complicated when unsigned operands are involved. The

problem is that comparisons between signed and unsigned values are machine-

dependent, because they depend on the sizes of the various integer types. For

example, suppose that int is 16 bits and long is 32 bits. Then -1L < 1U, because

1U, which is an unsigned int, is promoted to a signed long. But -1L > 1UL because

-1L is promoted to unsigned long and thus appears to be a large positive number.

Conversions take place across assignments; the value of the right side is converted

to the type of the left, which is the type of the result.

A character is converted to an integer, either by sign extension or not, as described

above.

Longer integers are converted to shorter ones or to chars by dropping the excess

high-order bits. Thus in

 int i;

 char c;

 i = c;

 c = i;

the value of c is unchanged. This is true whether or not sign extension is involved.

Reversing the order of assignments might lose information, however.

If x is float and i is int, then x = i and i = x both cause conversions; float to int

causes truncation of any fractional part. When a double is converted to float,

whether the value is rounded or truncated is implementation dependent.

32

Since an argument of a function call is an expression, type conversion also takes

place when arguments are passed to functions. In the absence of a function

prototype, char and short become int, and float becomes double. This is why we

have declared function arguments to be int and double even when the function is

called with char and float.

Finally, explicit type conversions can be forced (``coerced'') in any expression, with

a unary operator called a cast. In the construction

 (type name) expression

the expression is converted to the named type by the conversion rules above. The

precise meaning of a cast is as if the expression were assigned to a variable of the

specified type, which is then used in place of the whole construction. For example,

the library routine sqrt expects a double argument, and will produce nonsense if

inadvertently handled something else. (sqrt is declared in <math.h>.) So if n is an

integer, we can use

 sqrt((double) n)

to convert the value of n to double before passing it to sqrt. Note that the cast

produces the value of n in the proper type; n itself is not altered. The cast operator

has the same high precedence as other unary operators, as summarized in the

table at the end of this chapter.

If arguments are declared by a function prototype, as the normally should be, the

declaration causes automatic coercion of any arguments when the function is

called. Thus, given a function prototype for sqrt:

 double sqrt(double)

the call

 root2 = sqrt(2)

coerces the integer 2 into the double value 2.0 without any need for a cast.

8. Variables and constants
Variables and constants are the basic data objects manipulated in a program.

Declarations list the variables to be used, and state what type they have and

perhaps what their initial values are. Operators specify what is to be done to them.

Expressions combine variables and constants to produce new values. The type of

an object determines the set of values it can have and what operations can be

performed on it.

Declaring variables:

The declaration of all variables to be used in a function should be declared in the

variable declaration part of the function. All the variables must be declared before

they can be used. A declaration specifies a type, and contains a list of one or more

33

variables of that type. It also provides a variable name to the compiler and tells the

data type of the variable which helps in determining the memory requirements for

the variable. The syntax for variable declaration is as follows:

data_type variable_name

Example

int rollno;

char c;

float amount;

double d;

Commas in the variable declaration separate the variables of the same type, as in

 int lower, upper, step;

 char c, line[1000];

Variables can be distributed among declarations in any fashion; the lists above

could well be written as

 int lower;

 int upper;

 int step;

 char c;

 char line[1000];

The latter form takes more space, but is convenient for adding a comment to each

declaration for subsequent modifications.

A variable may also be initialized in its declaration. If the name is followed by an

equals sign and an expression, the expression serves as an initializer, as in

 char esc = '\\';

 int i = 0;

 int limit = MAXLINE+1;

 float eps = 1.0e-5;

If the variable in question is not automatic, the initialization is done once only,

conceptionally before the program starts executing, and the initializer must be a

constant expression. An explicitly initialized automatic variable is initialized each

time the function or block it is in is entered; the initializer may be any expression.

34

External and static variables are initialized to zero by default. Automatic variables

for which is no explicit initializer have undefined (i.e., garbage) values.

Declaring constants:

The qualifier const can be applied to the declaration of any variable to specify that

its value will not be changed. For an array, the const qualifier says that the

elements will not be altered.

 const double e = 2.71828182845905;

 const char msg[] = "warning: ";

The const declaration can also be used with array arguments, to indicate that the

function does not change that array:

 int strlen(const char[]);

The result is implementation-defined if an attempt is made to change a const.

An integer constant like 1234 is an int. A long constant is written with a terminal l

(ell) or L, as in 123456789L; an integer constant too big to fit into an int will also be

taken as a long. Unsigned constants are written with a terminal u or U, and the

suffix ul or UL indicates unsigned long.

Floating-point constants contain a decimal point (123.4) or an exponent (1e-2) or

both; their type is double, unless suffixed. The suffixes f or F indicate a float

constant; l or L indicate a long double.

The value of an integer can be specified in octal or hexadecimal instead of decimal.

A leading 0 (zero) on an integer constant means octal; a leading 0x or 0X means

hexadecimal. For example, decimal 31 can be written as 037 in octal and 0x1f or

0x1F in hex. Octal and hexadecimal constants may also be followed by L to make

them long and U to make them unsigned: 0XFUL is an unsigned long constant with

value 15 decimal.

A character constant is an integer, written as one character within single quotes,

such as 'x'. The value of a character constant is the numeric value of the character

in the machine's character set. For example, in the ASCII character set the

character constant '0' has the value 48, which is unrelated to the numeric value 0.

If we write '0' instead of a numeric value like 48 that depends on the character set,

the program is independent of the particular value and easier to read. Character

constants participate in numeric operations just as any other integers, although

they are most often used in comparisons with other characters.

Certain characters can be represented in character and string constants by escape

sequences like \n (newline); these sequences look like two characters, but

represent only one. In addition, an arbitrary byte-sized bit pattern can be specified

by

35

 '\ooo'

where ooo is one to three octal digits (0...7) or by

 '\xhh'

where hh is one or more hexadecimal digits (0...9, a...f, A...F). So we might write

 #define VTAB '\013' /* ASCII vertical tab */

 #define BELL '\007' /* ASCII bell character */

or, in hexadecimal,

 #define VTAB '\xb' /* ASCII vertical tab */

 #define BELL '\x7' /* ASCII bell character */

The complete set of escape sequences is

 \a alert (bell) character \\ backslash

 \b backspace \? question mark

 \f formfeed \' single quote

 \n newline \" double quote

 \r carriage return \ooo octal number

 \t horizontal tab \xhh hexadecimal number

 \v vertical tab

The character constant '\0' represents the character with value zero, the null

character. '\0' is often written instead of 0 to emphasize the character nature of

some expression, but the numeric value is just 0.

A constant expression is an expression that involves only constants. Such

expressions may be evaluated at during compilation rather than run-time, and

accordingly may be used in any place that a constant can occur, as in

 #define MAXLINE 1000

 char line[MAXLINE+1];

or

 #define LEAP 1 /* in leap years */

 int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31];

36

A string constant, or string literal, is a sequence of zero or more characters

surrounded by double quotes, as in

 "I am a string"

or

 "" /* the empty string */

The quotes are not part of the string, but serve only to delimit it. The same escape

sequences used in character constants apply in strings; \" represents the double-

quote character. String constants can be concatenated at compile time:

 "hello, " "world"

is equivalent to

 "hello, world"

This is useful for splitting up long strings across several source lines.

Technically, a string constant is an array of characters. The internal representation

of a string has a null character '\0' at the end, so the physical storage required is

one more than the number of characters written between the quotes. This

representation means that there is no limit to how long a string can be, but

programs must scan a string completely to determine its length. The standard

library function strlen(s) returns the length of its character string argument s,

excluding the terminal '\0'. Here is our version:

 /* strlen: return length of s */

 int strlen(char s[])

 {

 int i;

 while (s[i] != '\0')

 ++i;

 return i;

 }

strlen and other string functions are declared in the standard header <string.h>.

Be careful to distinguish between a character constant and a string that contains a

single character: 'x' is not the same as "x". The former is an integer, used to

37

produce the numeric value of the letter x in the machine's character set. The latter

is an array of characters that contains one character (the letter x) and a '\0'.

There is one other kind of constant, the enumeration constant. An enumeration is a

list of constant integer values, as in

 enum boolean { NO, YES };

The first name in an enum has value 0, the next 1, and so on, unless explicit

values are specified. If not all values are specified, unspecified values continue the

progression from the last specified value, as the second of these examples:

 enum escapes { BELL = '\a', BACKSPACE = '\b', TAB = '\t',

 NEWLINE = '\n', VTAB = '\v', RETURN = '\r' };

 enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,

 JUL, AUG, SEP, OCT, NOV, DEC };

 /* FEB = 2, MAR = 3, etc. */

Names in different enumerations must be distinct. Values need not be distinct in

the same enumeration.

Enumerations provide a convenient way to associate constant values with names,

an alternative to #define with the advantage that the values can be generated for

you. Although variables of enum types may be declared, compilers need not check

that what you store in such a variable is a valid value for the enumeration.

Nevertheless, enumeration variables offer the chance of checking and so are often

better than #defines. In addition, a debugger may be able to print values of

enumeration variables in their symbolic form.

9. Summary
Character set of a language specifies the valid set of characters using which words

of the language are formed for identifier declaration.

Identifier is the name given to some program element. The element may be some

variable, constant, data structure, program block, function, pointer, file etc.

Identifier is the name given to some program element.

There is a set of words whose meaning is predefined in the C language and these

words can not be used as identifier. These words are also called reserve words.

Since, the C language is a strongly typed language therefore data type of all the

variables need to be declared in advance. The qualifier signed or unsigned may be

applied to char or any integer, unsigned numbers are always positive or zero, and

obey the laws of arithmetic modulo 2n, where n is the number of bits in the type.

38

Type conversion facilitates the conversion of data type of the result of expression. It

may be explicit, called type casting or implicit, called conversion.

Variables and constants are the basic data objects manipulated in a program.

Declarations list the variables to be used, and state what type they have and

perhaps what their initial values are. Operators specify what is to be done to them.

Expressions combine variables and constants to produce new values. The type of

an object determines the set of values it can have and what operations can be

performed on it.

10. Short Answer Type Questions

1. What are valid characters in the C character set?

2. What do you mean by an identifier?

3. What do you mean by a reserve word?

4. What is the need of declaring the type of a variable?

5. What do you mean by type conversion?

6. What is the difference between variable and constant?

11. Long Answer Type Questions

1. Discuss the various identifier naming rules.

2. Write any 24 reserve words of C language.

3. What are the basic data types available in C language? What is the size of

each data type?

4. What are the various types of constant declarations? Explain giving

examples.

12. Suggested Books

Programming with ANSI and Turbo C Ashok N. Kamthane

C Programming E. Balagurusamy

Application Programming in C R. S. Salaria

39

BCA Part-1 (Sem-1) Paper: BCAB1104T

 PROGRAMMING FUNDAMENTALS USING C

Lesson No. 4 Author: Dr. DharamVeer Sharma

 Converted into SLM by: Dr. Vishal Singh

Performing Input Output Operations

1. Objectives
2. Introduction
3. Unformatted Input Statements

4. Formatted Input - scanf
5. Unformatted Output Statements
6. Formatted Output – printf
7. Escape Sequence
8. Summary
9. Short Answer Type Questions
10. Long Answer Type Questions
11. Suggested Books

1. Objectives
In this lesson we will discuss the role, types and usage of input and output

statements.

2. Introduction
Input output statements facilitate interaction between program and the users.

Through input statements user provide input to the program and through the

output statements prompts and results are displayed. The following are the input

output functions which we shall discuss in this lesson.

40

3. Unformatted Input Statements

Input and output are not part of the C language itself, so we have not emphasized

them in our presentation thus far. Nonetheless, programs interact with their

environment in much more complicated ways than those we have shown before. In

this lesson we will describe the standard library, a set of functions that provide

input and output, string handling, storage management, mathematical routines,

and a variety of other services for C programs. We will concentrate on input and

output

The ANSI standard defines these library functions precisely, so that they can exist

in compatible form on any system where C exists. Programs that confine their

system interactions to facilities provided by the standard library can be moved from

one system to another without change.

The properties of library functions are specified in more than a dozen headers; we

have already seen several of these, including <stdio.h>, <string.h>, and <ctype.h>.

We will not present the entire library here, since we are more interested in writing

C programs that use it.

Standard Input

As we said in, the library implements a simple model of text input and output. A

text stream consists of a sequence of lines; each line ends with a newline character.

If the system doesn't operate that way, the library does whatever necessary to make

it appear as if it does. For instance, the library might convert carriage return and

linefeed to newline on input and back again on output.

The simplest input mechanism is to read one character at a time from the standard

input, normally the keyboard, with getchar:

 int getchar(void)

getchar returns the next input character each time it is called, or EOF when it

encounters end of file. The symbolic constant EOF is defined in <stdio.h>. The

value is typically -1, bus tests should be written in terms of EOF so as to be

independent of the specific value.

In many environments, a file may be substituted for the keyboard by using the <

convention for input redirection: if a program prog uses getchar, then the command

line

 prog <infile

causes prog to read characters from infile instead. The switching of the input is

done in such a way that prog itself is oblivious to the change; in particular, the

string ``<infile'' is not included in the command-line arguments in argv. Input

switching is also invisible if the input comes from another program via a pipe

mechanism: on some systems, the command line

41

 otherprog | prog

runs the two programs otherprog and prog, and pipes the standard output of

otherprog into the standard input for prog.

Following are the unformatted input functions

a. getchar(): This function reads character type data from the standard input.

It reads one character at a time till the user presses the enter key.

b. getch() and getche(): These functions read any character from the standard

input device. The character entered is not displayed or echoed by getch()

function. These functions are included in conio.h header file.

c. gets(): This function is used for accepting any string through stdin

(keyboard) until enter key is pressed. The header file stdio.h is needed for

implementing this function.

4. Formatted Input – scanf
The function scanf is the input analog of printf, providing many of the same

conversion facilities in the opposite direction.

 int scanf(char *format, ...)

scanf reads characters from the standard input, interprets them according to the

specification in format, and stores the results through the remaining arguments.

The format argument is described below; the other arguments, each of which must

be a pointer, indicate where the corresponding converted input should be stored. As

with printf, this section is a summary of the most useful features, not an

exhaustive list.

scanf stops when it exhausts its format string, or when some input fails to match

the control specification. It returns as its value the number of successfully matched

and assigned input items. This can be used to decide how many items were found.

On the end of file, EOF is returned; note that this is different from 0, which means

that the next input character does not match the first specification in the format

string. The next call to scanf resumes searching immediately after the last

character already converted.

There is also a function sscanf that reads from a string instead of the standard

input:

 int sscanf(char *string, char *format, arg1, arg2, ...)

It scans the string according to the format in format and stores the resulting values

through arg1, arg2, etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are used to

control conversion of input. The format string may contain:

 Blanks or tabs, which are not ignored.

42

 Ordinary characters (not %), which are expected to match the next non-
white space character of the input stream.

 Conversion specifications, consisting of the character %, an optional
assignment suppression character *, an optional number specifying a
maximum field width, an optional h, l or L indicating the width of the target,
and a conversion character.

A conversion specification directs the conversion of the next input field. Normally

the result is places in the variable pointed to by the corresponding argument. If

assignment suppression is indicated by the * character, however, the input field is

skipped; no assignment is made. An input field is defined as a string of non-white

space characters; it extends either to the next white space character or until the

field width, is specified, is exhausted. This implies that scanf will read across

boundaries to find its input, since newlines are white space. (White space

characters are blank, tab, newline, carriage return, vertical tab, and formfeed.)

The conversion character indicates the interpretation of the input field. The

corresponding argument must be a pointer, as required by the call-by-value

semantics of C. Conversion characters are shown in following table.

Basic scanf Conversions

Character Input Data; Argument type

D decimal integer; int *

i integer; int *. The integer may be in octal (leading 0) or

hexadecimal (leading 0x or 0X).

o octal integer (with or without leading zero); int *

u unsigned decimal integer; unsigned int *

x hexadecimal integer (with or without leading 0x or 0X); int *

c characters; char *. The next input characters (default 1) are

placed at the indicated spot. The normal skip-over white

space is suppressed; to read the next non-white space

character, use %1s

s character string (not quoted); char *, pointing to an array of

characters long enough for the string and a terminating '\0'

that will be added.

e,f,g floating-point number with optional sign, optional decimal

43

point and optional exponent; float *

% literal %; no assignment is made.

The conversion characters d, i, o, u, and x may be preceded by h to indicate that a

pointer to short rather than int appears in the argument list, or by l (letter ell) to

indicate that a pointer to long appears in the argument list.

As a first example, the rudimentary calculator can be written with scanf to do the

input conversion:

 #include <stdio.h>

 main() /* rudimentary calculator */

 {

 double sum, v;

 sum = 0;

 while (scanf("%lf", &v) == 1)

 printf("\t%.2f\n", sum += v);

 return 0;

 }

Suppose we want to read input lines that contain dates of the form

 25 Dec 1988

The scanf statement is

 int day, year;

 char monthname[20];

 scanf("%d %s %d", &day, monthname, &year);

No & is used with monthname, since an array name is a pointer.

Literal characters can appear in the scanf format string; they must match the same

characters in the input. So we could read dates of the form mm/dd/yy with the

scanf statement:

 int day, month, year;

 scanf("%d/%d/%d", &month, &day, &year);

44

scanf ignores blanks and tabs in its format string. Furthermore, it skips over white

space (blanks, tabs, newlines, etc.) as it looks for input values. To read input whose

format is not fixed, it is often best to read a line at a time, then pick it apart with

scanf. For example, suppose we want to read lines that might contain a date in

either of the forms above. Then we could write

 while (getline(line, sizeof(line)) > 0) {

 if (sscanf(line, "%d %s %d", &day, monthname, &year) == 3)

 printf("valid: %s\n", line); /* 25 Dec 1988 form */

 else if (sscanf(line, "%d/%d/%d", &month, &day, &year) == 3)

 printf("valid: %s\n", line); /* mm/dd/yy form */

 else

 printf("invalid: %s\n", line); /* invalid form */

 }

Calls to scanf can be mixed with calls to other input functions. The next call to any

input function will begin by reading the first character not read by scanf.

A final warning: the arguments to scanf and sscanf must be pointers. By far the

most common error is writing

 scanf("%d", n);

instead of

 scanf("%d", &n);

This error is not generally detected at compile time.

5. Unformatted Output Statements
The function

 int putchar(int)

is used for output: putchar(c) puts the character c on the standard output, which is

by default the screen. putchar returns the character written, or EOF is an error

occurs. Again, output can usually be directed to a file with >filename: if prog uses

putchar,

 prog >outfile

will write the standard output to outfile instead. If pipes are supported,

 prog | anotherprog

puts the standard output of prog into the standard input of anotherprog.

45

Output produced by printf also finds its way to the standard output. Calls to

putchar and printf may be interleaved - output happens in the order in which the

calls are made.

Each source file that refers to an input/output library function must contain the

line

 #include <stdio.h>

before the first reference. When the name is bracketed by < and > a search is made

for the header in a standard set of places (for example, on UNIX systems, typically

in the directory /usr/include).

Following are the unformatted output functions:

a. putchar(): This functions prints one character on the screen at a time which
is read by the standard input.

b. putch(): This function prints any character taken by the standard input
devices.

c. puts(): This function prints the string or character array.

Many programs read only one input stream and write only one output stream; for

such programs, input and output with getchar, putchar, and printf may be entirely

adequate, and is certainly enough to get started. This is particularly true if

redirection is used to connect the output of one program to the input of the next.

For example, consider the program lower, which converts its input to lower case:

 #include <stdio.h>

 #include <ctype.h>

 main() /* lower: convert input to lower case*/

 {

 int c

 while ((c = getchar()) != EOF)

 putchar(tolower(c));

 return 0;

 }

46

The function tolower is defined in <ctype.h>; it converts an upper case letter to

lower case, and returns other characters untouched. As we mentioned earlier,

``functions'' like getchar and putchar in <stdio.h> and tolower in <ctype.h> are

often macros, thus avoiding the overhead of a function call per character.

Regardless of how the <ctype.h> functions are implemented on a given machine,

programs that use them are shielded from knowledge of the character set.

6. Formatted Output - printf
The output function printf translates internal values to characters. We have used

printf informally in previous chapters. The description here covers most typical

uses but is not complete; for the full story, refer the books given at the end of this

lesson.

 int printf(char *format, arg1, arg2, ...);

printf converts, formats, and prints its arguments on the standard output under

control of the format. It returns the number of characters printed.

The format string contains two types of objects: ordinary characters, which are

copied to the output stream, and conversion specifications, each of which causes

conversion and printing of the next successive argument to printf. Each conversion

specification begins with a % and ends with a conversion character. Between the %

and the conversion character there may be, in order:

 A minus sign, which specifies left adjustment of the converted argument.
 A number that specifies the minimum field width. The converted argument

will be printed in a field at least this wide. If necessary it will be padded on
the left (or right, if left adjustment is called for) to make up the field width.

 A period, which separates the field width from the precision.
 A number, the precision, that specifies the maximum number of characters

to be printed from a string, or the number of digits after the decimal point of
a floating-point value, or the minimum number of digits for an integer.

 An h if the integer is to be printed as a short, or l (letter ell) if as a long.

Conversion characters are shown in the following table. If the character after the %

is not a conversion specification, the behavior is undefined.

A width or precision may be specified as *, in which case the value is computed by

converting the next argument (which must be an int). For example, to print at most

max characters from a string s,

 printf("%.*s", max, s);

Basic printf Conversions

Character Argument type; Printed As

d,i int; decimal number

47

o int; unsigned octal number (without a leading zero)

x,X int; unsigned hexadecimal number (without a leading 0x or

0X), using abcdef or ABCDEF for 10, ...,15.

u int; unsigned decimal number

c int; single character

s char *; print characters from the string until a '\0' or the

number of characters given by the precision.

f double; [-]m.dddddd, where the number of d's is given by the

precision (default 6).

e,E double; [-]m.dddddde+/-xx or [-]m.ddddddE+/-xx, where the

number of d's is given by the precision (default 6).

g,G double; use %e or %E if the exponent is less than -4 or

greater than or equal to the precision; otherwise use %f.

Trailing zeros and a trailing decimal point are not printed.

p void *; pointer (implementation-dependent representation).

% no argument is converted; print a %

Along with the conversion characters, precision can also be defined for reserving or

limiting the space for output. Most of the format conversions have been illustrated

in earlier sections. One exception is the precision as it relates to strings. The

following table shows the effect of a variety of specifications in printing ``hello,

world'' (12 characters). We have put colons around each field so you can see it

extent.

:%s: :hello, world:

:%10s: :hello, world:

:%.10s: :hello, wor:

:%-10s: :hello, world:

48

:%.15s: :hello, world:

:%-15s: :hello, world :

:%15.10s: : hello, wor:

:%-15.10s: :hello, wor :

A warning: printf uses its first argument to decide how many arguments follow and

what their type is. It will get confused, and you will get wrong answers, if there are

not enough arguments of if they are the wrong type. You should also be aware of

the difference between these two calls:

 printf(s); /* FAILS if s contains % */

 printf("%s", s); /* SAFE */

The function sprintf does the same conversions as printf does, but stores the

output in a string:

 int sprintf(char *string, char *format, arg1, arg2, ...);

sprintf formats the arguments in arg1, arg2, etc., according to format as before, but

places the result in string instead of the standard output; string must be big

enough to receive the result.

7. Escape Sequences
The printf() and scanf() statements follow the combination of characters called as

escape sequences. The following are the escape sequences with their use and ASCII

value.

Escape Sequence Use ASCII Value

\n New line 10

\b Backspace 8

\f Form Feed 12

\' Single Quote 39

\\ Backslash 92

\0 Null 0

49

\t Horizontal Tab 9

\r Carriage Return 13

\a Alert 7

\" Double Quote 34

\v Vertical Tab 11

\? Question Mark 63

Escape sequences facilitate formatting of output, generating alerts and printing

some characters which can not be directly printed using output functions.

8. Summary
Input and output are not part of the C language itself, so we have not emphasized

them in our previous lessons. Nonetheless, programs interact with their

environment in much more complicated ways than those we have shown before. In

this lesson we have described the standard library, a set of functions that provide

input and output functions.

9. Short Answer Type Questions

1. What are the basic input output functions available in C?

2. What do you mean by formatted I/O?

3. What is the difference between getch() and getche() functions?

4. Why ampersand (&) is used in scanf while reading numeric or character

data types?

10. Long Answer Type Questions

1. Discuss in detail the various types of input and output functions used in C

language. Also discuss the syntax of each of the functions giving examples.

2. Which characters are used for conversion in printf and scanf statements?

3. What are the various escape sequences? Write their use as well.

11. Suggested Books

Programming with ANSI and Turbo C Ashok N. Kamthane

C Programming E. Balagurusamy

Application Programming in C R. S. Salaria

50

BCA Part-1 (Sem-1) Paper: BCAB1104T

 PROGRAMMING FUNDAMENTALS USING C

Lesson No. 5 Author: Dr. DharamVeer Sharma

 Converted into SLM by: Dr. Vishal Singh

Operators and Expressions

1. Objectives
2. Introduction
3. Arithmetic Operators

4. Relational Operators and Logical Operators
5. Bitwise Operators
6. Assignment Operator and Expression Evaluation
7. Conditional Expression
8. Comma Operator
9. Operator Precedence and Associativity
10. Summary
11. Short Answer Type Questions
12. Long Answer Type Questions
13. Suggested Books

1. Objectives
In this lesson we shall discuss the various types of operators available in the C

language. We shall also discuss the method of using these operators, their

precedence and their order of evaluation in expressions.

2. Introduction
In order to perform different types of operations, C uses different kind of operators.

An operator indicates an operation to be performed on data that yields a value.

With the help of various operators available in C language, one can link the

variables and constants. An operand is a data item on which operators perform the

operations. C provides four classes of operators. They are 1) Arithmetic 2)

Relational 3) Logical and 4) bitwise. Along with these operators there are other

operators like unary, conditional, assignment and comma operator.

The following are the various types of operators available in C language:

Type of operator Symbolic representation

Arithmetic +, -, *, / and %

Relational >, >, >=, <=, == and !=

Logical &&, || and !

51

Increment and decrement ++ and --

Assignment =

Bitwise &, |, ^, >>, << and ~

Comma ,

Conditional ? :

3. Arithmetic Operators
The binary arithmetic operators are +, -, *, /, and the modulus operator %. Integer

division truncates any fractional part. The expression

 x % y

produces the remainder when x is divided by y, and thus is zero when y divides x

exactly. For example, a year is a leap year if it is divisible by 4 but not by 100,

except that years divisible by 400 are leap years.

Therefore

 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

 printf("%d is a leap year\n", year);

 else

 printf("%d is not a leap year\n", year);

The % operator cannot be applied to a float or double. The direction of truncation

for / and the sign of the result for % are machine-dependent for negative operands,

as is the action taken on overflow or underflow.

The binary + and - operators have the same precedence, which is lower than the

precedence of *, / and %, which is in turn lower than unary + and -. Arithmetic

operators associate left to right.

Unary Operators

C provides two unusual operators for incrementing and decrementing variables.

The increment operator ++ adds 1 to its operand, while the decrement operator --

subtracts 1. We have frequently used ++ to increment variables, as in

 if (c == '\n')

 ++nl;

The unusual aspect is that ++ and -- may be used either as prefix operators (before

the variable, as in ++n), or postfix operators (after the variable: n++). In both cases,

52

the effect is to increment n. But the expression ++n increments n before its value is

used, while n++ increments n after its value has been used. This means that in a

context where the value is being used, not just the effect, ++n and n++ are different.

If n is 5, then

 x = n++;

sets x to 5, but

 x = ++n;

sets x to 6. In both cases, n becomes 6. The increment and decrement operators

can only be applied to variables; an expression like (i+j)++ is illegal.

In a context where no value is wanted, just the incrementing effect, as in

 if (c == '\n')

 nl++;

prefix and postfix are the same. But there are situations where one or the other is

specifically called for. For instance, consider the function squeeze(s,c), which

removes all occurrences of the character c from the string s.

 /* squeeze: delete all c from s */

 void squeeze(char s[], int c)

 {

 int i, j;

 for (i = j = 0; s[i] != '\0'; i++)

 if (s[i] != c)

 s[j++] = s[i];

 s[j] = '\0';

 }

Each time a non-c occurs, it is copied into the current j position, and only then is j

incremented to be ready for the next character. This is exactly equivalent to

 if (s[i] != c) {

 s[j] = s[i];

 j++;

 }

53

Another example of a similar construction comes from the getline function that we

wrote in lesson 1, where we can replace

 if (c == '\n') {

 s[i] = c;

 ++i;

 }

by the more compact

 if (c == '\n')

 s[i++] = c;

As a third example, consider the standard function strcat(s,t), which concatenates

the string t to the end of string s. strcat assumes that there is enough space in s to

hold the combination. As we have written it, strcat returns no value; the standard

library version returns a pointer to the resulting string.

 /* strcat: concatenate t to end of s; s must be big enough */

 void strcat(char s[], char t[])

 {

 int i, j;

 i = j = 0;

 while (s[i] != '\0') /* find end of s */

 i++;

 while ((s[i++] = t[j++]) != '\0') /* copy t */

 ;

 }

As each member is copied from t to s, the postfix ++ is applied to both i and j to

make sure that they are in position for the next pass through the loop.

4. Relational Operators and Logical Operators

The relational operators are

 > >= < <=

54

They all have the same precedence. Just below them in precedence are the equality

operators:

 == !=

Relational operators have lower precedence than arithmetic operators, so an

expression like i < lim-1 is taken as i < (lim-1), as would be expected.

More interesting are the logical operators && and ||. Expressions connected by &&

or || are evaluated left to right, and evaluation stops as soon as the truth or

falsehood of the result is known. Most C programs rely on these properties. For

example, here is a loop from the input function getline:

 for (i=0; i < lim-1 && (c=getchar()) != '\n' && c != EOF; ++i)

 s[i] = c;

Before reading a new character it is necessary to check that there is room to store it

in the array s, so the test i < lim-1 must be made first. Moreover, if this test fails,

we must not go on and read another character.

Similarly, it would be unfortunate if c were tested against EOF before getchar is

called; therefore the call and assignment must occur before the character in c is

tested.

The precedence of && is higher than that of ||, and both are lower than relational

and equality operators, so expressions like

 i < lim-1 && (c=getchar()) != '\n' && c != EOF

need no extra parentheses. But since the precedence of != is higher than

assignment, parentheses are needed in

 (c=getchar()) != '\n'

to achieve the desired result of assignment to c and then comparison with '\n'.

By definition, the numeric value of a relational or logical expression is 1 if the

relation is true, and 0 if the relation is false.

The unary negation operator ! converts a non-zero operand into 0, and a zero

operand in 1. A common use of ! is in constructions like

 if (!valid)

rather than

 if (valid == 0)

It's hard to generalize about which form is better. Constructions like !valid read

nicely (``if not valid''), but more complicated ones can be hard to understand.

55

5. Bitwise Operators

C provides six operators for bit manipulation; these may only be applied to integral

operands, that is, char, short, int, and long, whether signed or unsigned.

& bitwise AND

| bitwise inclusive OR

^ bitwise exclusive OR

<< left shift

>> right shift

~ one's complement (unary)

The bitwise AND operator & is often used to mask off some set of bits, for example

 n = n & 0177;

sets to zero all but the low-order 7 bits of n.

The bitwise OR operator | is used to turn bits on:

 x = x | SET_ON;

sets to one in x the bits that are set to one in SET_ON.

The bitwise exclusive OR operator ^ sets a one in each bit position where its

operands have different bits, and zero where they are the same.

One must distinguish the bitwise operators & and | from the logical operators &&

and ||, which imply left-to-right evaluation of a truth value. For example, if x is 1

and y is 2, then x & y is zero while x && y is one.

The shift operators << and >> perform left and right shifts of their left operand by

the number of bit positions given by the right operand, which must be non-

negative. Thus x << 2 shifts the value of x by two positions, filling vacated bits with

zero; this is equivalent to multiplication by 4. Right shifting an unsigned quantity

always fits the vacated bits with zero. Right shifting a signed quantity will fill with

bit signs (``arithmetic shift'') on some machines and with 0-bits (``logical shift'') on

others.

The unary operator ~ yields the one's complement of an integer; that is, it converts

each 1-bit into a 0-bit and vice versa. For example

 x = x & ~077

sets the last six bits of x to zero. Note that x & ~077 is independent of word length,

and is thus preferable to, for example, x & 0177700, which assumes that x is a 16-

56

bit quantity. The portable form involves no extra cost, since ~077 is a constant

expression that can be evaluated at compile time.

As an illustration of some of the bit operators, consider the function getbits(x,p,n)

that returns the (right adjusted) n-bit field of x that begins at position p. We

assume that bit position 0 is at the right end and that n and p are sensible positive

values. For example, getbits(x,4,3) returns the three bits in positions 4, 3 and 2,

right-adjusted.

 /* getbits: get n bits from position p */

 unsigned getbits(unsigned x, int p, int n)

 {

 return (x >> (p+1-n)) & ~(~0 << n);

 }

The expression x >> (p+1-n) moves the desired field to the right end of the word. ~0

is all 1-bits; shifting it left n positions with ~0<<n places zeros in the rightmost n

bits; complementing that with ~ makes a mask with ones in the rightmost n bits.

6. Assignment Operator and Expression Evaluation
An expression such as

 i = i + 2

in which the variable on the left side is repeated immediately on the right, can be

written in the compressed form

 i += 2

The operator += is called an assignment operator.

Most binary operators (operators like + that have a left and right operand) have a

corresponding assignment operator op=, where op is one of

 + - * / % << >> & ^ |

If expr1 and expr2 are expressions, then

 expr1 op= expr2

is equivalent to

 expr1 = (expr1) op (expr2)

except that expr1 is computed only once. Notice the parentheses around expr2:

 x *= y + 1

means

57

 x = x * (y + 1)

rather than

 x = x * y + 1

As an example, the function bitcount counts the number of 1-bits in its integer

argument.

 /* bitcount: count 1 bits in x */

 int bitcount(unsigned x)

 {

 int b;

 for (b = 0; x != 0; x >>= 1)

 if (x & 01)

 b++;

 return b;

 }

Declaring the argument x to be an unsigned ensures that when it is right-shifted,

vacated bits will be filled with zeros, not sign bits, regardless of the machine the

program is run on.

Quite apart from conciseness, assignment operators have the advantage that they

correspond better to the way people think. We say ``add 2 to i'' or ``increment i by

2'', not ``take i, add 2, then put the result back in i''. Thus the expression i += 2 is

preferable to i = i+2. In addition, for a complicated expression like

 yyval[yypv[p3+p4] + yypv[p1]] += 2

the assignment operator makes the code easier to understand, since the reader

doesn't have to check painstakingly that two long expressions are indeed the same,

or to wonder why they're not. And an assignment operator may even help a

compiler to produce efficient code.

We have already seen that the assignment statement has a value and can occur in

expressions; the most common example is

 while ((c = getchar()) != EOF)

 ...

The other assignment operators (+=, -=, etc.) can also occur in expressions,

although this is less frequent.

58

In all such expressions, the type of an assignment expression is the type of its left

operand, and the value is the value after the assignment.

7. Conditional Expression
The statements

 if (a > b)

 z = a;

 else

 z = b;

compute in z the maximum of a and b. The conditional expression, written with the

ternary operator ``?:'', provides an alternate way to write this and similar

constructions. In the expression

 expr1 ? expr2 : expr3

the expression expr1 is evaluated first. If it is non-zero (true), then the expression

expr2 is evaluated, and that is the value of the conditional expression. Otherwise

expr3 is evaluated, and that is the value. Only one of expr2 and expr3 is evaluated.

Thus to set z to the maximum of a and b,

 z = (a > b) ? a : b; /* z = max(a, b) */

It should be noted that the conditional expression is indeed an expression, and it

can be used wherever any other expression can be. If expr2 and expr3 are of

different types, the type of the result is determined by the conversion rules

discussed earlier in the previous lesson. For example, if f is a float and n an int,

then the expression

 (n > 0) ? f : n

is of type float regardless of whether n is positive.

Parentheses are not necessary around the first expression of a conditional

expression, since the precedence of ?: is very low, just above assignment. They are

advisable anyway, however, since they make the condition part of the expression

easier to see.

The conditional expression often leads to succinct code. For example, this loop

prints n elements of an array, 10 per line, with each column separated by one

blank, and with each line (including the last) terminated by a newline.

 for (i = 0; i < n; i++)

 printf("%6d%c", a[i], (i%10==9 || i==n-1) ? '\n' : ' ');

59

A newline is printed after every tenth element, and after the n-th. All other

elements are followed by one blank. This might look tricky, but it's more compact

than the equivalent if-else. Another good example is

 printf("You have %d items %s.\n", n, n==1 ? "" : "s");

8. Comma Operator
The comma operator is used to separate two or more expressions. The comma

operator has the lowest priority among all the operators. It is not essential to

enclose the expressions with comma operators within the parenthesis.

Example:

A=2,b=3,c=5; or (A=2,b=3,c=5;)

are valid statements.

9. Operator Precedence and Associativity
Table 2.1 summarizes the rules for precedence and associativity of all operators,

including those that we have not yet discussed. Operators on the same line have

the same precedence; rows are in order of decreasing precedence, so, for example,

*, /, and % all have the same precedence, which is higher than that of binary + and

-. The ``operator'' () refers to function call. The operators -> and . are used to access

members of structures; they will be covered in lessons 11 and 12, along with sizeof

(size of an object). Lesson 11 discusses * (indirection through a pointer) and &

(address of an object).

Operators

(in order of their

precedence)

Operation Associativity Priority

()

[]

->

 .

Function call

Array expression or square bracket

Structure operator

Structure operator

 left to right 1

!

~

++

--

+

-

Not operator

Ones complement

Increment

Decrement

Unary plus

Unary minus

 right to left 2

60

*

&

(type)

sizeof

Pointer operator

Address operator

Type cast

Size of an object

*

/

%

Multiplication

Division

Modular division

 left to right 3

+

-

Addition

Subtraction

 left to right 4

<<

>>

Left shift

Right shift

 left to right 5

<

<=

 >

 >=

Less than

Less than or equal to

Greater than

Greater than or equal to

 left to right 6

==

!=

Equality

Inequality

 left to right 7

& Bitwise AND left to right 8

^ Bitwise XOR left to right 9

| Bitwise OR left to right 10

&& Logical AND left to right 11

|| Logical OR left to right 12

?: Conditional operator right to left 13

= += -= *= /= %=

&= ^= |= <<= >>=

Assignment operators right to left 14

, Comma operator left to right 15

61

Unary & +, -, and * have higher precedence than the binary forms.

Note that the precedence of the bitwise operators &, ^, and | falls below == and !=.

This implies that bit-testing expressions like

 if ((x & MASK) == 0) ...

must be fully parenthesized to give proper results.

C, like most languages, does not specify the order in which the operands of an

operator are evaluated. (The exceptions are &&, ||, ?:, and `,'.) For example, in a

statement like

 x = f() + g();

f may be evaluated before g or vice versa; thus if either f or g alters a variable on

which the other depends, x can depend on the order of evaluation. Intermediate

results can be stored in temporary variables to ensure a particular sequence.

Similarly, the order in which function arguments are evaluated is not specified, so

the statement

 printf("%d %d\n", ++n, power(2, n)); /* WRONG */

can produce different results with different compilers, depending on whether n is

incremented before power is called. The solution, of course, is to write

 ++n;

 printf("%d %d\n", n, power(2, n));

Function calls, nested assignment statements, and increment and decrement

operators cause ``side effects'' - some variable is changed as a by-product of the

evaluation of an expression. In any expression involving side effects, there can be

subtle dependencies on the order in which variables taking part in the expression

are updated. One unhappy situation is typified by the statement

 a[i] = i++;

The question is whether the subscript is the old value of i or the new. Compilers

can interpret this in different ways, and generate different answers depending on

their interpretation. The standard intentionally leaves most such matters

unspecified. When side effects (assignment to variables) take place within an

expression is left to the discretion of the compiler, since the best order depends

strongly on machine architecture. (The standard does specify that all side effects on

arguments take effect before a function is called, but that would not help in the call

to printf above.)

The moral is that writing code that depends on order of evaluation is a bad

programming practice in any language. Naturally, it is necessary to know what

62

things to avoid, but if you don't know how they are done on various machines, you

won't be tempted to take advantage of a particular implementation.

10. Summary
Operators are the building blocks of expressions. The C language uses different

kind of operators. There are arithmetic, relational, logical, assignment, conditional,

comma and bitwise operators available in C.

11. Short Answer Type Questions

1. What is the precedence of different arithmetic operators?

2. What is a ternary operator?

3. What are the various relational operators?

4. What is the role of comma operator?

12. Long Answer Type Questions

1. What is the difference between precedence and associativity?

2. What are the rule governing the use of logical operators?

3. How bitwise operators are used?

13. Suggested Books

Programming with ANSI and Turbo C Ashok N. Kamthane

Programming using C E. Balagurusamy

Application Programming in C R. S. Salaria

63

BCA Part-1 (Sem-1) Paper: BCAB1104T

 PROGRAMMING FUNDAMENTALS USING C

Lesson No. 6 Author: Dr. DharamVeer Sharma

 Converted into SLM by: Dr. Vishal Singh

Sequential and Conditional Control Statements

1. Objectives
2. Introduction
3. Statements and Blocks
4. if … else Construct

5. else … if
6. Using logical operators in if construct
7. switch … case Construct
8. goto and labels
9. Summary
10. Short Answer Type Questions
11. Long Answer Type Questions
12. Suggested Books

1. Objectives
In this lesson we shall discuss the various conditional control structures available

in the C language. These constructs provide branching with in the program based

on some condition.

2. Introduction
The control-flow of a language specifies the order in which computations are

performed. In C language there are sequential, conditional and iterative control

structures are available for program design. In this lesson we shall discuss the

various conditional control structures and iterative control structure will be

discussed in the next lesson. Conditional constructs are required for making

decision and choosing some execution path based on the satisfied condition.

3. Statements and Blocks
An expression such as x = 0 or i++ or printf(...) becomes a statement when it is

followed by a semicolon, as in

x = 0;

i++;

printf(...);

In C, the semicolon is a statement terminator, rather than a separator as it is in

languages like Pascal.

Braces { and } are used to group declarations and statements together into a

64

compound statement, or block, so that they are syntactically equivalent to a single

statement. The braces that surround the statements of a function are one obvious

example; braces around multiple statements after an if, else, while, or for are

another. (Variables can be declared inside any block) There is no semicolon after

the right brace that ends a block. A block can be created anywhere with in the

program.

Example

main()

{

 int a = 10;

 {

 int a = 20;

printf("Value of a inside the block is -> %d",a);

}

printf("Value of a outside the block is -> %d",a);

return 0;

}

In the above example, for the second declaration of a, a's scope is limited to the

block only and output will be 20 for the first printf statement and for the second

printf the output will be 10.

4. if … else Construct

The if-else statement is used to express decisions. Formally the syntax is

if (expression)

statement1

else

statement2

where the else part is optional. The expression is evaluated; if it is true (that is, if

expression has a non-zero value), statement1 is executed. If it is false (expression is

zero) and if there is an else part, statement2 is executed instead.

Since an if tests the numeric value of an expression, certain coding shortcuts are

possible. The most obvious is writing

if (expression)

65

instead of

if (expression != 0)

Sometimes this is natural and clear; at other times it can be cryptic.

Because the else part of an if-else is optional, there is an ambiguity when an else if

omitted from a nested if sequence. This is resolved by associating the else with the

closest previous else-less if. For example, in

if (n > 0)

if (a > b)

z = a;

else

z = b;

the else goes to the inner if, as we have shown by indentation. If that isn't what you

want, braces must be used to force the proper association:

if (n > 0) {

if (a > b)

z = a;

}

else

z = b;

The ambiguity is especially pernicious in situations like this:

if (n > 0)

for (i = 0; i < n; i++)

 if (s[i] > 0) {

printf("...");

return i;

}

 else /* WRONG */

printf("error -- n is negative\n");

66

The indentation shows unequivocally what you want, but the compiler doesn't get

the message, and associates the else with the inner if. This kind of bug can be hard

to find; it's a good idea to use braces when there are nested ifs.

By the way, notice that there is a semicolon after z = a in

if (a > b)

z = a;

else

z = b;

This is because grammatically, a statement follows the if, and an expression

statement like ``z = a;'' is always terminated by a semicolon.

5. else … if
The construction

if (expression)

statement

else if (expression)

statement

else if (expression)

statement

else if (expression)

statement

else

statement

occurs so often that it is worth a brief separate discussion. This sequence of if

statements is the most general way of writing a multi-way decision. The expressions

are evaluated in order; if an expression is true, the statement associated with it is

executed, and this terminates the whole chain. As always, the code for each

statement is either a single statement, or a group of them in braces.

The last else part handles the ``none of the above'' or default case where none of

the other conditions is satisfied. Sometimes there is no explicit action for the

default; in that case the trailing

else

statement

67

can be omitted, or it may be used for error checking to catch an ``impossible''

condition.

To illustrate a three-way decision, here is a binary search function that decides if a

particular value x occurs in the sorted array v. The elements of v must be in

increasing order. The function returns the position (a number between 0 and n-1) if

x occurs in v, and -1 if not.

Binary search first compares the input value x to the middle element of the array v.

If x is less than the middle value, searching focuses on the lower half of the table,

otherwise on the upper half. In either case, the next step is to compare x to the

middle element of the selected half. This process of dividing the range in two

continues until the value is found or the range is empty.

/* binsearch: find x in v[0] <= v[1] <= ... <= v[n-1] */

int binsearch(int x, int v[], int n)

{

int low, high, mid;

low = 0;

high = n - 1;

while (low <= high) {

mid = (low+high)/2;

if (x < v[mid])

high = mid + 1;

else if (x > v[mid])

low = mid + 1;

else /* found match */

return mid;

 }

 return -1; /* no match */

}

The fundamental decision is whether x is less than, greater than, or equal to the

middle element v[mid] at each step; this is a natural for else-if.

Utmost care should be taken while use conditional construct, as is evident from the

68

following example.

if (day == 1)

 printf("Monday");

if (day == 2)

 printf("Tuesday");

if (day == 3)

 printf("Wednesday");

if (day == 4)

 printf("Thursday");

if (day == 5)

 printf("Friday");

if (day == 6)

 printf("Saturday");

else

 printf("Sunday");

The above use of if is wrong as for any value of day between 1 and 5 it will print the

Sunday as well because in the last if statement it will always printf Sunday if value

of day is not 6. Therefore, in the above example if else if construct should be used,

as given below.

if (day == 1)

 printf("Monday");

else if (day == 2)

 printf("Tuesday");

else if (day == 3)

 printf("Wednesday");

else if (day == 4)

 printf("Thursday");

else if (day == 5)

 printf("Friday");

69

else if (day == 6)

 printf("Saturday");

else

 printf("Sunday");

In this case any condition will be checked only if its previous condition is false.

6. Using logical operators in if construct
Logical operators are indispensable part of if … else construct, but these should be

use with utmost caution. There is a need of understanding the way these are

evaluated.

if (condition1 && condition2)

 statement

In this construct condition2 is evaluated only if condition1 is true, otherwise

condition2 is never reached. Therefore if some calculation is involved in condition2

then that calculation will also not be performed. Therefore, care should be taken

while using && operator.

if (condition1 || condition2)

 statement1

In this construct conditon2 is evaluated only if condition1 is false, otherwise

condition2 is never reached. Therefore the problem is the same as in the case of &&

operator.

7. switch … case Construct
The switch statement is a multi-way decision that tests whether an expression

matches one of a number of constant integer values, and branches accordingly.

switch (expression) {

case const-expr: statements

case const-expr: statements

default: statements

}

Important distinction between use of if and switch construct is that for each switch

construct there is an equivalent if construct available. However, the reverse is not

true. switch can replace only those if constructs where the value of only one

variable is tested for different integer values.

Example

70

if (day == 1)

 printf("Monday");

else if (day == 2)

 printf("Tuesday");

else if (day == 3)

 printf("Wednesday");

else if (day == 4)

 printf("Thursday");

else if (day == 5)

 printf("Friday");

else if (day == 6)

 printf("Saturday");

else

 printf("Sunday");

For this situation where value of day is checked, switch construct is the most

suitable.

switch (day)

{

 case 1: printf("Monday");

 break;

case 2: printf("Tuesday");

 break;

case 3: printf("Wednesday");

 break;

case 4: printf("Thursday");

 break;

case 5: printf("Friday");

break;

71

case 6: printf("Saturday");

 break;

case 7: printf("Sunday");

 break;

}

Each case is labeled by one or more integer-valued constants or constant

expressions. If a case matches the expression value, execution starts at that case.

All case expressions must be different. The case labeled default is executed if none

of the other cases are satisfied. A default is optional; if it isn't there and if none of

the cases match, no action at all takes place. Cases and the default clause can

occur in any order.

Following is a program to count the occurrences of each digit, white space, and all

other characters, using a switch:

#include <stdio.h>

main() /* count digits, white space, others */

{

int c, i, nwhite, nother, ndigit[10];

nwhite = nother = 0;

for (i = 0; i < 10; i++)

ndigit[i] = 0;

while ((c = getchar()) != EOF) {

switch (c) {

case '0': case '1': case '2': case '3': case '4':

case '5': case '6': case '7': case '8': case '9':

ndigit[c-'0']++;

break;

case ' ': case '\n': case '\t': nwhite++;

break;

default:

nother++;

72

break;

}

}

printf("digits =");

for (i = 0; i < 10; i++)

printf(" %d", ndigit[i]);

printf(", white space = %d, other = %d\n", nwhite, nother);

return 0;

}

Note that multiple cases can be combined as is in the case with the digits in the

above program. This is similar to the multiple conditions combined using logical or

(||) with in one if statement. Therefore, it can be said that if multiple conditions

involving single variable but combined using logical or (||) are under one if then

those can be safely converted to switch construct. But if the logical and has been

used to combine multiple conditions or if the multiple conditions involve more than

one variable then switch construct can not be used.

The break statement causes an immediate exit from the switch. Because cases

serve just as labels, after the code for one case is done, execution falls through to

the next unless you take explicit action to escape. break and return are the most

common ways to leave a switch. A break statement can also be used to force an

immediate exit from while, for, and do loops, as will be discussed later in this

lesson.

Falling through cases is a mixed blessing. On the positive side, it allows several

cases to be attached to a single action, as with the digits in this example. But it

also implies that normally each case must end with a break to prevent falling

through to the next. Falling through from one case to another is not robust, being

prone to disintegration when the program is modified. With the exception of

multiple labels for a single computation, fall-throughs should be used sparingly,

and commented.

Default case is used when none of the conditions specified under cases are

encountered and thus may be ignored or an appropriate action may be taken. It

mean all those cases which have not been handled using case labels.

As a matter of good form, put a break after the last case (the default here) even

though it's logically unnecessary. Some day when another case gets added at the

end, this bit of defensive programming will save you.

8. goto and labels

73

C provides the infinitely-abusable goto statement, and labels to branch to.

Formally, the goto statement is never necessary, and in practice it is almost always

easy to write code without it. We have not used goto in this book.

Nevertheless, there are a few situations where gotos may find a place. The most

common is to abandon processing in some deeply nested structure, such as

breaking out of two or more loops at once. The break statement cannot be used

directly since it only exits from the innermost loop. Thus:

 for (...)

 for (...) {

 ...

 if (disaster)

 goto error;

 }

 ...

 error:

 /* clean up the mess */

This organization is handy if the error-handling code is non-trivial, and if errors

can occur in several places.

A label has the same form as a variable name, and is followed by a colon. It can be

attached to any statement in the same function as the goto. The scope of a label is

the entire function.

As another example, consider the problem of determining whether two arrays a and

b have an element in common. One possibility is

 for (i = 0; i < n; i++)

for (j = 0; j < m; j++)

 if (a[i] == b[j])

 goto found;

 /* didn't find any common element */

 ...

 found:

 /* got one: a[i] == b[j] */

74

 ...

Code involving a goto can always be written without one, though perhaps at the

price of some repeated tests or an extra variable. For example, the array search

becomes

 found = 0;

 for (i = 0; i < n && !found; i++)

 for (j = 0; j < m && !found; j++)

 if (a[i] == b[j])

 found = 1;

 if (found)

 /* got one: a[i-1] == b[j-1] */

 ...

 else

 /* didn't find any common element */

 ...

With a few exceptions like those cited here, code that relies on goto statements is

generally harder to understand and to maintain than code without gotos. Although

we are not dogmatic about the matter, it does seem that goto statements should be

used rarely, if at all.

9. Summary
Conditional flow of program provides decision making ability. In C language there

are if …else and switch constructs for implementing conditional flow. if statements

can be nested. In case of switch statement value of some variable is checked

against integer constants. Logical operators are to be used cautiously for combining

conditions.

10. Short Answer Type Questions

1. What are the various conditional constructs available in C?
2. What is the purpose of switch statement?
3. Why break is needed after cases?
4. What is a default case?

11. Long Answer Type Questions
1. What is the difference between if and switch constructs?
2. In what type of situation switch will be preferred over if statements?
3. What are the rules of using logical operators with conditions?
4. Is it possible to replace all kinds of if constructs with switch? If not then

75

why?
12. Suggested Books

Programming with ANSI and Turbo C Ashok N. Kamthane

Programming using C E. Balagurusamy

Application Programming in C R. S. Salaria

76

BCA Part-1 (Sem-1) Paper: BCAB1104T

 PROGRAMMING FUNDAMENTALS USING C

Lesson No. 7 Author: Dr. DharamVeer Sharma

 Converted into SLM by: Dr. Vishal Singh

Iterative Control Statements

1. Objectives
2. Introduction
3. while Loop
4. for Loop
5. do … while Loop

6. Nested loops
7. Sequence Breaking Control Statements
8. Summary
9. Short Answer Type Questions
10. Long Answer Type Questions
11. Suggested Books

1. Objectives
In this lesson we shall discuss the various iterative control structures available in

the C language. These constructs provide repetitive execution of some set of

statements.

2. Introduction
Iterative control structures provide repetitive computations. In case where some set

of statements are to be executed repeatedly, the iterative control structures can be

used. The C language provides three iterative control structures namely for, while

and do ... while loops. for and while loops are entry control loops where as do …

while is an exit controlled loop.

3. while Loop
As discussed earlier while is an entry controlled loop, means if the condition is true

only then statements under the loop will be executed. In

while (expression)

 statement

the expression is evaluated, if it is non-zero, statement is executed and expression

is re-evaluated. This cycle continues until expression becomes zero, at which point

execution resumes after statement. However if the expression evaluates to zero then

the statement is not executed. while loop is used in case the number of iterations

are not known in advance.

The following variant of while loop produces an infinite loop

while (1)

77

In this case since expression always evaluates to non-zero value, the loop is not

terminated by just checking the expression. Instead, some internal control breaking

mechanism is required to come out of the loop. The mechanism has been discussed

later in this lesson.

4. for Loop

Like while loop, for is also an entry controlled loop. The for statement

for (expr1; expr2; expr3)

 statement

is equivalent to

expr1;

while (expr2) {

 statement

 expr3;

}

except for the behaviour of break or continue.

A loop control variable is used for controlling the number of times for which the

loop will be executed.

Grammatically, the three components of a for loop are expressions. Most

commonly, expr1 and expr3 are assignments or function calls and expr2 is a

relational expression. Any of the three parts can be omitted, although the

semicolons must remain. If expr1 or expr3 is omitted, it is simply dropped from the

expansion. If the test, expr2, is not present, it is taken as permanently true, so

for (;;) {

...

}

is an ``infinite'' loop, presumably to be broken by other means, such as a break or

return.

The three expressions of the for loop are executed in the following way:

expr1: It is executed only once, primarily for initializing the loop control

variable.

expr2: It is executed repeatedly for checking the truthfulness of condition, up

to which the body of the loop is to be executed. When the condition

evaluates to false the loop is terminated.

78

expr3: It is also repeatedly executed for incrementing or decrementing the

value of the loop control variable.

In general, for loop is used when number of iterations is known in advance and

while is used when iterations are not known. However these can be used

interchangeably. Whether to use while or for largely becomes a matter of personal

preference. For example, in

while ((c = getchar()) == ' ' || c == '\n' || c = '\t')

 ; /* skip white space characters */

there is no initialization or re-initialization, so the while is most natural.

The for is preferable when there is a simple initialization and increment since it

keeps the loop control statements close together and visible at the top of the loop.

This is most obvious in

for (i = 0; i < n; i++)

 ...

which is the C idiom for processing the first n elements of an array, the analog of

the Fortran DO loop or the Pascal for. The analogy is not perfect, however, since the

index variable i retains its value when the loop terminates for any reason. Because

the components of the for are arbitrary expressions, for loops are not restricted to

arithmetic progressions. Nonetheless, it is bad style to force unrelated

computations into the initialization and increment of a for, which are better

reserved for loop control operations.

As a larger example, here is another version of atoi for converting a string to its

numeric equivalent. It copes with optional leading white space and an optional + or

- sign.

The structure of the program reflects the form of the input:

skip white space, if any

get sign, if any

get integer part and convert it

Each step does its part, and leaves things in a clean state for the next. The whole

process terminates on the first character that could not be part of a number.

#include <ctype.h>

/* atoi: convert s to integer; version 2 */

int atoi(char s[])

79

{

int i, n, sign;

for (i = 0; isspace(s[i]); i++) /* skip white space */

 ;

 sign = (s[i] == '-') ? -1 : 1;

 if (s[i] == '+' || s[i] == '-') /* skip sign */

i++;

for (n = 0; isdigit(s[i]); i++)

n = 10 * n + (s[i] - '0');

return sign * n;

}

The standard library provides a more elaborate function strtol for conversion of

strings to long integers.

The advantages of keeping loop control centralized are even more obvious when

there are several nested loops. The following function is a Shell sort for sorting an

array of integers.

The basic idea of this sorting algorithm, which was invented in 1959 by D. L. Shell,

is that in early stages, far-apart elements are compared, rather than adjacent ones

as in simpler interchange sorts. This tends to eliminate large amounts of disorder

quickly, so later stages have less work to do. The interval between compared

elements is gradually decreased to one, at which point the sort effectively becomes

an adjacent interchange method.

/* shellsort: sort v[0]...v[n-1] into increasing order */

void shellsort(int v[], int n)

{

int gap, i, j, temp;

for (gap = n/2; gap > 0; gap /= 2)

 for (i = gap; i < n; i++)

for (j=i-gap; j>=0 && v[j]>v[j+gap]; j-=gap) {

temp = v[j];

v[j] = v[j+gap];

80

v[j+gap] = temp;

}

}

There are three nested loops. The outermost controls the gap between compared

elements, shrinking it from n/2 by a factor of two each pass until it becomes zero.

The middle loop steps along the elements. The innermost loop compares each pair

of elements that is separated by gap and reverses any that are out of order. Since

gap is eventually reduced to one, all elements are eventually ordered correctly.

Notice how the generality of the for makes the outer loop fit in the same form as the

others, even though it is not an arithmetic progression.

One final C operator is the comma ``,'', which most often finds use in the for

statement. A pair of expressions separated by a comma is evaluated left to right,

and the type and value of the result are the type and value of the right operand.

Thus in a for statement, it is possible to place multiple expressions in the various

parts, for example to process two indices in parallel. This is illustrated in the

function reverse(s), which reverses the string s in place.

#include <string.h>

/* reverse: reverse string s in place */

void reverse(char s[])

{

int c, i, j;

for (i = 0, j = strlen(s)-1; i < j; i++, j--) {

c = s[i];

s[i] = s[j];

s[j] = c;

}

}

The commas that separate function arguments, variables in declarations, etc., are

not comma operators, and do not guarantee left to right evaluation.

Comma operators should be used sparingly. The most suitable uses are for

constructs strongly related to each other, as in the for loop in reverse, and in

macros where a multistep computation has to be a single expression. A comma

81

expression might also be appropriate for the exchange of elements in reverse, where

the exchange can be thought of a single operation:

for (i = 0, j = strlen(s)-1; i < j; i++, j--)

 c = s[i], s[i] = s[j], s[j] = c;

Forms of for loop

Syntax Output Remarks

for (;;) Infinite loop No arguments means

condition is always true,

therefore the loop

executes for infinite

number of times.

for (a=0;a<=20;) Infinite loop Value of 'a' is not

modified, therefore,

condition will always

evaluate to true making

the loop an infinite loop.

for (a=0;a<=10;a++)

 printf("%d ",a);

Displays values from 0 to

10

Since initial value of 'a' is

0 and it is incremented

by one, the values from 0

to 10 will be printed.

When 'a' will become 11

the condition will be false

and loop will terminate.

for (a=10;a>=0;a--) Displays values from 10

to 1

Since initial value of 'a' is

10 and it is decremented

by one, the values from

10 to 0 will be printed.

When 'a' will become -1

the condition will be false

and loop will terminate.

5. do … while Loop
As we discussed in lesson 1, the while and for loops test the termination condition

at the top. By contrast, the third loop in C, the do-while, tests at the bottom after

making each pass through the loop body; the body is always executed at least once.

Therefore, do … while loop is termed as exit controlled loop.

The syntax of the do is

82

 do

 statement

while (expression);

The statement is executed, then expression is evaluated. If it is true, statement is

evaluated again, and so on. When the expression becomes false, the loop

terminates. Except for the sense of the test, do-while is equivalent to the Pascal

repeat-until statement.

Experience shows that do-while is much less used than while and for. Nonetheless,

from time to time it is valuable, as in the following function itoa, which converts a

number to a character string (the inverse of atoi). The job is slightly more

complicated than might be thought at first, because the easy methods of generating

the digits generate them in the wrong order. We have chosen to generate the string

backwards, then reverse it.

/* itoa: convert n to characters in s */

void itoa(int n, char s[])

{

int i, sign;

if ((sign = n) < 0) /* record sign */

 n = -n; /* make n positive */

i = 0;

do { /* generate digits in reverse order */

 s[i++] = n % 10 + '0'; /* get next digit */

} while ((n /= 10) > 0); /* delete it */

if (sign < 0)

 s[i++] = '-';

s[i] = '\0';

reverse(s);

}

The do-while is necessary, or at least convenient, since at least one character must

be installed in the array s, even if n is zero. We also used braces around the single

statement that makes up the body of the do-while, even though they are

83

unnecessary, so the hasty reader will not mistake the while part for the beginning

of a while loop.

do … while construct is best suited for situations where some program or block is

to be repeatedly executed but that must be executed at least once. Following is the

example demonstrating the use of do … while construct:

Example

/* program for finding sum any n numbers */

#include <stdio.h>

#include <conio.h>

void main()

{

 int i, x, n, sum;

char choice;

do {

 sum = 0;

 clrscr();

 printf("Enter the number of values -> ");

 scanf("%d",&n);

 for (i=0; i < n;i++)

 {

 printf("\nEnter some number -> ");

 scanf("%d",&x);

 sum += x;

}

printf("\nSum of entered numbers is -> %d",sum);

printf("Want to run the program again <Y/N>");

choice = getch();

 } while (choice == 'Y' || choice == 'y');

84

 printf("\n!!! That's all folks !!!");

 getch();

}

In the above example the program runs for the first time and them asks the user if

he wants to run the program again. Depending on the choice of the user the

program either executes again or is exits.

6. Nested loops
Loops can be nested in any order within a program. If iterations with in iterations

are to be performed then nested loops can be use. In such cases loop control

variable, which controls the number of iterations to be performed, should be

chosen separately for each of the inner loops.

This can be well demonstrated from the following example in which all possible

outcomes of throwing three dice can be generated:

Example

#include <stdio.h>

#include <conio.h>

void main()

{

 int i,j,k;

 printf("Possible outcomes of throwing three dice are -> \n");

 for (i=1;i<=6;i++)

 for (j=1;j<=6;j++)

 for (k=1;k<=6;k++)

 printf("%d %d %d\t",I,j,k);

}

This program will produce all possible outcomes of throwing three dice

simultaneously.

7. Sequence Breaking Control Statements
It is sometimes convenient to be able to exit from a loop other than by testing at the

top or bottom. The break statement provides an early exit from for, while, and do,

just as from switch. A break causes the innermost enclosing loop or switch to be

exited immediately.

85

The following function, trim, removes trailing blanks, tabs and newlines from the

end of a string, using a break to exit from a loop when the rightmost non-blank,

non-tab, non-newline is found.

/* trim: remove trailing blanks, tabs, newlines */

int trim(char s[])

{

int n;

for (n = strlen(s)-1; n >= 0; n--)

 if (s[n] != ' ' && s[n] != '\t' && s[n] != '\n')

 break;

s[n+1] = '\0';

return n;

}

strlen returns the length of the string. The for loop starts at the end and scans

backwards looking for the first character that is not a blank or tab or newline. The

loop is broken when one is found, or when n becomes negative (that is, when the

entire string has been scanned). You should verify that this is correct behavior even

when the string is empty or contains only white space characters.

The continue statement is related to break, but less often used; it causes the next

iteration of the enclosing for, while, or do loop to begin. In the while and do, this

means that the test part is executed immediately; in the for, control passes to the

increment step. The continue statement applies only to loops, not to switch. A

continue inside a switch inside a loop causes the next loop iteration.

As an example, this fragment processes only the non-negative elements in the array

a; negative values are skipped.

for (i = 0; i < n; i++)

if (a[i] < 0) /* skip negative elements */

continue;

... /* do positive elements */

The continue statement is often used when the part of the loop that follows is

complicated, so that reversing a test and indenting another level would nest the

program too deeply.

8. Summary

86

Iterative control structures are used when some statements are to be executed

repetitively. In C language, there are three iterative control structures available. for

and while are entry controlled loops and can be used interchangeably. do …while is

an exit controlled loop. for or while loops should not be used in place of do … while

loop.

9. Short Answer Type Questions

1. What are the various iterative controlled structures available in C?

2. What is the difference between for and while loop?

3. Atleast how many times statements are executed in do … while loop?

4. What is the difference between break and continue?

10. Long Answer Type Questions

1. Discuss in detail the syntax and use of for and while loops.

2. Is it possible to use for or while loops in place of do … while loop? Explain

your answer.

3. Explain the meaning of sequence breaking control statements.

11. Suggested Books

Programming with ANSI and Turbo C Ashok N. Kamthane

Programming using C E. Balagurusamy

Application Programming in C R. S. Salaria

87

BCA Part-1 (Sem-1) Paper: BCAB1104T

 PROGRAMMING FUNDAMENTALS USING C

Lesson No. 8 Author: Dr. DharamVeer Sharma

 Converted into SLM by: Dr. Vishal Singh

Functions

1. Objectives
2. Introduction
3. Basics of Functions

4. Functions Returning Non-integers
5. External Variables
6. Formal and Actual Arguments
7. Scope Rules
8. Header Files
9. Recursion
10. Summary
11. Short Answer Type Questions
12. Long Answer Type Questions
13. Suggested Books

1. Objectives
In this lesson, we shall discuss the program structuring tool, called function. We

shall discuss function prototyping, function definition and function calling

methods. The discussion will also include methods of parameter passing and

recursive functions.

2. Introduction
The C language is basically a functional programming language, in which the

program is divided in small manageable pieces of code called functions, which

break large computing tasks into smaller ones, and enable people to build on what

others have done instead of starting over from scratch. Appropriate functions hide

details of operation from parts of the program that don't need to know about them,

thus clarifying the whole, and easing the pain of making changes.

C has been designed to make functions efficient and easy to use; C programs

generally consist of many small functions rather than a few big ones. A program

may reside in one or more source files. Source files may be compiled separately and

loaded together, along with previously compiled functions from libraries. We will

not go into that process here, however, since the details vary from system to

system.

3. Basics of Functions

88

To begin with, let us design and write a program to print each line of its input that

contains a particular ``pattern'' or string of characters. For example, searching for

the pattern of letters ``ould'' in the set of lines

Ah Love! could you and I with Fate conspire

To grasp this sorry Scheme of Things entire,

Would not we shatter it to bits -- and then

Re-mould it nearer to the Heart's Desire!

will produce the output

Ah Love! could you and I with Fate conspire

Would not we shatter it to bits -- and then

Re-mould it nearer to the Heart's Desire!

The job falls neatly into three pieces:

while (there's another line)

if (the line contains the pattern)

 print it

Although it's certainly possible to put the code for all of this in main, a better way

is to use the structure to advantage by making each part a separate function. Three

small pieces are better to deal with than one big one, because irrelevant details can

be buried in the functions, and the chance of unwanted interactions is minimized.

And the pieces may even be useful in other programs.

``While there's another line'' is getline, a function that we wrote in lesson 1, and

``print it'' is printf, which someone has already provided for us. This means we

need only write a routine to decide whether the line contains an occurrence of the

pattern.

We can solve that problem by writing a function strindex(s,t) that returns the

position or index in the string s where the string t begins, or -1 if s does not contain

t. Because C arrays begin at position zero, indexes will be zero or positive, and so a

negative value like -1 is convenient for signaling failure. When we later need more

sophisticated pattern matching, we only have to replace strindex; the rest of the

code can remain the same. (The standard library provides a function strstr that is

similar to strindex, except that it returns a pointer instead of an index.)

Given this much design, filling in the details of the program is straightforward.

Here is the whole thing, so you can see how the pieces fit together. For now, the

pattern to be searched for is a literal string, which is not the most general of

mechanisms. We will return shortly to a discussion of how to initialize character

89

arrays, and will show how to make the pattern a parameter that is set when the

program is run. There is also a slightly different version of getline; you might find it

instructive to compare it to the one in lesson 2.

#include <stdio.h>

#define MAXLINE 1000 /* maximum input line length */

int getline(char line[], int max)

int strindex(char source[], char searchfor[]);

char pattern[] = "ould"; /* pattern to search for */

/* find all lines matching pattern */

main()

{

char line[MAXLINE];

int found = 0;

while (getline(line, MAXLINE) > 0)

if (strindex(line, pattern) >= 0) {

printf("%s", line);

found++;

}

return found;

}

/* getline: get line into s, return length */

int getline(char s[], int lim)

{

int c, i;

 i = 0;

 while (--lim > 0 && (c=getchar()) != EOF && c != '\n')

 s[i++] = c;

 if (c == '\n')

90

s[i++] = c;

 s[i] = '\0';

return i;

}

/* strindex: return index of t in s, -1 if none */

int strindex(char s[], char t[])

{

int i, j, k;

 for (i = 0; s[i] != '\0'; i++) {

for (j=i, k=0; t[k]!='\0' && s[j]==t[k]; j++, k++)

 ;

 if (k > 0 && t[k] == '\0')

return i;

}

 return -1;

}

Each function definition has the form

return-type function-name(argument declarations)

{

 declarations and statements

}

Various parts may be absent; a minimal function is

dummy() {}

which does nothing and returns nothing. A do-nothing function like this is

sometimes useful as a place holder during program development. If the return type

is omitted, int is assumed.

A program is just a set of definitions of variables and functions. Communication

between the functions is by arguments and values returned by the functions, and

through external variables. The functions can occur in any order in the source file,

91

and the source program can be split into multiple files, so long as no function is

split.

The return statement is the mechanism for returning a value from the called

function to its caller. Any expression can follow return:

return expression;

The expression will be converted to the return type of the function if necessary.

Parentheses are often used around the expression, but they are optional.

The calling function is free to ignore the returned value. Furthermore, there need to

be no expression after return; in that case, no value is returned to the caller.

Control also returns to the caller with no value when execution ``falls off the end'' of

the function by reaching the closing right brace. It is not illegal, but probably a sign

of trouble, if a function returns a value from one place and no value from another.

In any case, if a function fails to return a value, its ``value'' is certain to be garbage.

The pattern-searching program returns a status from main, the number of matches

found. This value is available for use by the environment that called the program

The mechanics of how to compile and load a C program that resides on multiple

source files vary from one system to the next. Suppose that the three functions are

stored in three files called main.c, getline.c, and strindex.c. Then the command

cc main.c getline.c strindex.c

compiles the three files, placing the resulting object code in files main.o, getline.o,

and strindex.o, then loads them all into an executable file called a.out. If there is an

error, say in main.c, the file can be recompiled by itself and the result loaded with

the previous object files, with the command

cc main.c getline.o strindex.o

The cc command uses the ``.c'' versus ``.o'' naming convention to distinguish

source files from object files.

4. Functions Returning Non-integers
So far our examples of functions have returned either no value (void) or an int.

What if a function must return some other type? many numerical functions like

sqrt, sin, and cos return double; other specialized functions return other types. To

illustrate how to deal with this, let us write and use the function atof(s), which

converts the string s to its double-precision floating-point equivalent. atof if an

extension of atoi, which we showed versions of in lessons 2 and 3. It handles an

optional sign and decimal point, and the presence or absence of either part or

fractional part. Our version is not a high-quality input conversion routine; that

would take more space than we care to use. The standard library includes an atof;

the header <stdlib.h> declares it.

92

First, atof itself must declare the type of value it returns, since it is not int. The

type name precedes the function name:

#include <ctype.h>

/* atof: convert string s to double */

double atof(char s[])

{

double val, power;

 int i, sign;

 for (i = 0; isspace(s[i]); i++) /* skip white space */

 ;

 sign = (s[i] == '-') ? -1 : 1;

 if (s[i] == '+' || s[i] == '-')

 i++;

 for (val = 0.0; isdigit(s[i]); i++)

 val = 10.0 * val + (s[i] - '0');

 if (s[i] == '.')

 i++;

 for (power = 1.0; isdigit(s[i]); i++) {

 val = 10.0 * val + (s[i] - '0');

 power *= 10;

 }

 return sign * val / power;

}

Second, and just as important, the calling routine must know that atof returns a

non-int value. One way to ensure this is to declare atof explicitly in the calling

routine. The declaration is shown in this primitive calculator (barely adequate for

check-book balancing), which reads one number per line, optionally preceded with

a sign, and adds them up, printing the running sum after each input:

#include <stdio.h>

93

#define MAXLINE 100

/* rudimentary calculator */

main()

{

double sum, atof(char []);

char line[MAXLINE];

int getline(char line[], int max);

 sum = 0;

 while (getline(line, MAXLINE) > 0)

 printf("\t%g\n", sum += atof(line));

 return 0;

}

The declaration

double sum, atof(char []);

says that sum is a double variable, and that atof is a function that takes one char[]

argument and returns a double.

The function atof must be declared and defined consistently. If atof itself and the

call to it in main have inconsistent types in the same source file, the error will be

detected by the compiler. But if (as is more likely) atof were compiled separately,

the mismatch would not be detected, atof would return a double that main would

treat as an int, and meaningless answers would result.

In the light of what we have said about how declarations must match definitions,

this might seem surprising. The reason a mismatch can happen is that if there is

no function prototype, a function is implicitly declared by its first appearance in an

expression, such as

 sum += atof(line)

If a name that has not been previously declared occurs in an expression and is

followed by a left parentheses, it is declared by context to be a function name, the

function is assumed to return an int, and nothing is assumed about its arguments.

Furthermore, if a function declaration does not include arguments, as in

 double atof();

94

that too is taken to mean that nothing is to be assumed about the arguments of

atof; all parameter checking is turned off. This special meaning of the empty

argument list is intended to permit older C programs to compile with new

compilers. But it's a bad idea to use it with new C programs. If the function takes

arguments, declare them; if it takes no arguments, use void.

Given atof, properly declared, we could write atoi (convert a string to int) in terms of

it:

/* atoi: convert string s to integer using atof */

int atoi(char s[])

{

 double atof(char s[]);

 return (int) atof(s);

}

Notice the structure of the declarations and the return statement. The value of the

expression in

return expression;

is converted to the type of the function before the return is taken. Therefore, the

value of atof, a double, is converted automatically to int when it appears in this

return, since the function atoi returns an int. This operation does potentionally

discard information, however, so some compilers warn of it. The cast states

explicitly that the operation is intended, and suppresses any warning.

5. External Variables
A C program consists of a set of external objects, which are either variables or

functions. The adjective ``external'' is used in contrast to ``internal'', which

describes the arguments and variables defined inside functions. External variables

are defined outside of any function, and are thus potentionally available to many

functions. Functions themselves are always external, because C does not allow

functions to be defined inside other functions. By default, external variables and

functions have the property that all references to them by the same name, even

from functions compiled separately, are references to the same thing. (The standard

calls this property external linkage.) In this sense, external variables are analogous

to Fortran COMMON blocks or variables in the outermost block in Pascal. We will

see later how to define external variables and functions that are visible only within

a single source file. Because external variables are globally accessible, they provide

an alternative to function arguments and return values for communicating data

between functions. Any function may access an external variable by referring to it

by name, if the name has been declared somehow.

95

If a large number of variables must be shared among functions, external variables

are more convenient and efficient than long argument lists. As pointed out in

lesson 1, however, this reasoning should be applied with some caution, for it can

have a bad effect on program structure, and lead to programs with too many data

connections between functions.

External variables are also useful because of their greater scope and lifetime.

Automatic variables are internal to a function; they come into existence when the

function is entered, and disappear when it is left. External variables, on the other

hand, are permanent, so they can retain values from one function invocation to the

next. Thus if two functions must share some data, yet neither calls the other, it is

often most convenient if the shared data is kept in external variables rather than

being passed in and out via arguments.

6. Formal and Actual Arguments
The values passed to the function at the time of call are called actual parameters.

The values of the actual parameters are received by the variable declared at the

time of the function declaration. These receiving variable are called formal

parameters.

Example:

#include <stdio.h>

unsigned long GetSquare(unsigned long x)

{

 return x * x;

}

void main()

{

 int a = 10;

 printf("Square of value %d is %ld", GetSquare(a));

}

In the above example, while calling to function GetSquare(a), the parameter passed

is an actual parameter, while when this values is received by the function then it is

stored in formal parameter x.

7. Scope Rules
The functions and external variables that make up a C program need not all be

compiled at the same time; the source text of the program may be kept in several

files, and previously compiled routines may be loaded from libraries. Among the

questions of interest are

96

 How are declarations written so that variables are properly declared during
compilation?

 How are declarations arranged so that all the pieces will be properly
connected when the program is loaded?

 How are declarations organized so there is only one copy?
 How are external variables initialized?

Let us discuss these topics by reorganizing the calculator program into several files.

As a practical matter, the calculator is too small to be worth splitting, but it is a

fine illustration of the issues that arise in larger programs.

The scope of a name is the part of the program within which the name can be used.

For an automatic variable declared at the beginning of a function, the scope is the

function in which the name is declared. Local variables of the same name in

different functions are unrelated. The same is true of the parameters of the

function, which are in effect local variables.

The scope of an external variable or a function lasts from the point at which it is

declared to the end of the file being compiled. For example, if main, sp, val, push,

and pop are defined in one file, in the order shown above, that is,

main() { ... }

int sp = 0;

double val[MAXVAL];

void push(double f) { ... }

double pop(void) { ... }

then the variables sp and val may be used in push and pop simply by naming

them; no further declarations are needed. But these names are not visible in main,

nor are push and pop themselves.

On the other hand, if an external variable is to be referred to before it is defined, or

if it is defined in a different source file from the one where it is being used, then an

extern declaration is mandatory.

It is important to distinguish between the declaration of an external variable and its

definition. A declaration announces the properties of a variable (primarily its type);

a definition also causes storage to be set aside. If the lines

int sp;

double val[MAXVAL];

appear outside of any function, they define the external variables sp and val, cause

storage to be set aside, and also serve as the declarations for the rest of that source

file. On the other hand, the lines

97

extern int sp;

extern double val[];

declare for the rest of the source file that sp is an int and that val is a double array

(whose size is determined elsewhere), but they do not create the variables or reserve

storage for them.

There must be only one definition of an external variable among all the files that

make up the source program; other files may contain extern declarations to access

it. (There may also be extern declarations in the file containing the definition.) Array

sizes must be specified with the definition, but are optional with an extern

declaration. Initialization of an external variable goes only with the definition.

Although it is not a likely organization for this program, the functions push and

pop could be defined in one file, and the variables val and sp defined and initialized

in another. Then these definitions and declarations would be necessary to tie them

together:

 in file1:

extern int sp;

extern double val[];

void push(double f) { ... }

double pop(void) { ... }

 in file2:

int sp = 0;

double val[MAXVAL];

Because the extern declarations in file1 lie ahead of and outside the function

definitions, they apply to all functions; one set of declarations suffices for all of

file1. This same organization would also bee needed if the definition of sp and val

followed their use in one file.

8. Header Files

Let is now consider dividing the calculator program into several source files, as it

might be is each of the components were substantially bigger. The main function

would go in one file, which we will call main.c; push, pop, and their variables go

into a second file, stack.c; getop goes into a third, getop.c. Finally, getch and

ungetch go into a fourth file, getch.c; we separate them from the others because

they would come from a separately-compiled library in a realistic program.

There is one more thing to worry about - the definitions and declarations shared

among files. As much as possible, we want to centralize this, so that there is only

one copy to get and keep right as the program evolves. Accordingly, we will place

98

this common material in a header file, calc.h, which will be included as necessary.

(The #include line is described in) The resulting program then looks like this:

There is a tradeoff between the desire that each file have access only to the

information it needs for its job and the practical reality that it is harder to maintain

more header files. Up to some moderate program size, it is probably best to have

one header file that contains everything that is to be shared between any two parts

of the program; that is the decision we made here. For a much larger program,

more organization and more headers would be needed.

9. Recursion
C functions may be used recursively; that is, a function may call itself either

directly or indirectly. Consider printing a number as a character string. As we

mentioned before, the digits are generated in the wrong order: low-order digits are

available before high-order digits, but they have to be printed the other way

around.

There are two solutions to this problem. On is to store the digits in an array as they

are generated, then print them in the reverse order, as we did with itoa in lesson 7.

99

The alternative is a recursive solution, in which printd first calls itself to cope with

any leading digits, then prints the trailing digit. Again, this version can fail on the

largest negative number.

#include <stdio.h>

/* printd: print n in decimal */

 void printd(int n)

 {

 if (n < 0) {

 putchar('-');

 n = -n;

 }

 if (n / 10)

 printd(n / 10);

 putchar(n % 10 + '0');

 }

When a function calls itself recursively, each invocation gets a fresh set of all the

automatic variables, independent of the previous set. This in printd(123) the first

printd receives the argument n = 123. It passes 12 to a second printd, which in

turn passes 1 to a third. The third-level printd prints 1, then returns to the second

level. That printd prints 2, then returns to the first level. That one prints 3 and

terminates.

Recursion may provide no saving in storage, since somewhere a stack of the values

being processed must be maintained. Nor will it be faster. But recursive code is

more compact, and often much easier to write and understand than the non-

recursive equivalent. Recursion is the natural solution for some of the problems

like factorial computation, fabonacci series generation, quick sort, binary search

etc.

While using recursion, care should be taken that recursive function always return

some value or recursion has some terminating point.

10. Summary
Functions decompose a large program into manageable smaller units, which can be

tested independently. Functions also facilitate breaking the program into logical

units. While calling the functions, any parameter passed is the actual parameter

and the variable receiving the value is called formal parameter. Recursive functions

are those which call themselves directly or indirectly. Recursive functions should

100

have a terminating point.

11. Short Answer Type Questions
1. What is the syntax of declaring a function?
2. What is the difference between function declaration and function definition?
3. What is the meaning of function prototyping?
4. Define recursion.

12. Long Answer Type Questions
1. What is the advantage of decomposing program into functions?
2. What type of values can be returned by functions?
3. What is the difference between formal and actual parameters?

13. Suggested Books

1. Application Programming in C R. S. Salaria

2. C Programming using Turbo C Robert Lafore

3. Programming with ANSI and Turbo C Ashok N. Kamthane

4. Programming using C E. Balagurusamy

Last Updated on May 2023

Mandatory Student Feedback Form

https://forms.gle/KS5CLhvpwrpgjwN98

Note: Students, kindly click this google form link, and fill this feedback form once.

https://forms.gle/KS5CLhvpwrpgjwN98

