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1.1.1 Introduction and Basic Concepts

Partial differential equations occur in various physical and engineering
problems when the functions involved depend on two or more independent variables.
In this lesson, we shall be concerned with a discussion of some important partial
differential equations and we shall restrict our study mostly to those equations
involving two independent variables only.

An equation involving one or more partial derivatives of an unknown function
of two or more independent variables is called a partial differential equation. The
order of the highest derivative is called the order of the equation (as in ordinary
differential equation).

Differential operator is ax (Derivative of f. w.r.t. x)

a
Partial differential equations is T (Partial derivative of f w.r.t. x)

We consider partial differential equation of order one and two only. The most
general second order linear partial differential equation in two independent variables
is

0’z 0’z o’z oz ©o°

a¥+b@+cy+d&+e%+f2=g (1)
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where a, b, c, d, e, f and g are functions of x and y. If g = O, then (1) is said to be

homogeneous otherwise it is non-homogeneous. Some important linear partial

differential equations of second order are

1.1.2

2 2
Homogeneous 2 i + g—z =0 (two dimensional Laplace equation) (2)
X y
0’z 0’z . . . :
Non-homogeneous 6x_2+ )F =f(x,y) (two dimensional Poisson equation) (3)
oz 5,0z . . .
EJrC ¥=O (one dimensional heat equation) (4)

Fr, 0
ot ox°
where c is a constant, t is the time variable and (x, y) are cartesian coordinates.
Formation of Partial Differential Equations

Partial differential equations may be formed by the elimination of arbitrary

=0 (one dimensional wave equation) (5)

constants from a given relation between the variables. Let z be a function of two

variables x and y, let

f(x,y,2z,a,b)=0 (1)
where a and b are two arbitrary constants. Differentiating (1) partially w.r.t. 'x’

0 0
and y and replacing é and EZ with p and q respectively, we have

and

o o oz
ox 0z 0Ox

a_f+ a_f—o 2
ax Loz (2)
6f+q6f o

a4 3
oy Loy (3)

On eliminating 'a' and 'b' from (2) and (3) we get a partial differential equation

of order one such as

g(X,¥,2,p,9 =0 (4)

where p and q are given by (2) and (3).
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Now suppose the two arbitrary functions u and v are connected by the relation

F(u,v)=0 (5)
where u = f (x, y, z) (6)
v=g(x,Y, 2

A partial differential equation may now be formed as mentioned below. Taking
z as dependent variable, we get on differenting partially w.r.t. x and y, we get

a_F @4_ @ +a_F @4_ @ =0
oulox Yoz) avlex Poz)” (7)
OF [ ou ou) OF (ov ov
—|—+q— |[+— | —+qg—|=0 (8)
ou \ oy 0z ) ov oy 0z
On eliminati o d & fi 7 d (8 t
n eliminating 7 an p rom (7) and (8), we ge
ou Ou oOv Ov
ox 0z 0% 0z -0
du  fu v ovol
oy qaz cy q@z
ou ou)( ov oy ou ou|( ov ov
or —+tP— || —ta= || —ta9 || —tp|=0
ox 0z )\ oy 0z oy 0z )\ 0x 0z
ou ov ou ov ou ov ou ov ou ov ou ov
or —— . —|+p| = — —|+q| — . ———.— |=0 (9)
0x 0y 0Oy 0% 0z 0y Oy 0z 0X 0z 0z OX

If we write

du ov_ou ov_,p,
dz dy oy oz
u v _du v,
ox 0z 0z 0x
u v_ou v _,o

oy ox ox oy

where P, Q and R are functions of x, y and z then equation (9) becomes
Pp+Qq=R
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Example 1 : Derive a partial differential equation by eliminating a and b from
z=ax’y*+b

0z 0z
Sol. : On differenting w.r.t.x and y and replacing x by p and % by q, we get
p = 2axy?®
q = 3ax?y?
P_2%y
= q_3x or 3px—-2py =0

is the desired partial differential equation.
Example 2 : Derive a partial differential equation by eliminating the arbitrary function
f from the relation f(x?+ y?, x?— z?) = 0.
Sol. : Define u = x2+ y? (i)
and v=x%-22
We get the given relation as
fu,v)=0 (ii)
Differentiating (ii) partially w.r.t. 'x' and 'y', we get

a_f(éu 8uj+6_f[8v ov
ox 0z

ulex Poz) oy P j » and

of (ou ou) of (ov ov
—|—+q— |+— | —+qg—|=0
ou | oy 0z ) ov\oy 0z

= %f (2x + p(o) + %f (2x + p(-22)) =0, and

of of
™ (2y+q(0)) +E (o+ q(—zz)) =0

of of
2X—+(2x-2pz)— =0,
= ou ( P )8\/

of of
and an—zngw

2x 2x-2pz
p -0

0 f
On eliminating aand oy’ We get 2y  —2qz

= -2qz.2x-(2x-2pz) (2y) =0
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or 4xqz + 4 (xy — pyz) = 0
or XQz — Pyz = —Xy
or Xq-py = =
z
Py - gx = X—Zy is the required partial differential equation.
2 2 Z2
Example 3 : Eliminate, a, b, ¢ from ;+§+C—2 =1
Sol. : On differentiating the given relation partially w.r.t. x and y, we have
2x  2zp .
e O 0
2y , 2zq iy
2z 9 (i)
2
when —[pq+25]=0
c
CQ
= [pg +25]=0x >
= pg+25=0
differentiate (i) partially w.r.t. y
2
— [pq+2zs]=0
c
pq+2z0=0
2
where ) = 0’z
Oxdy
pat+tzx=0
If we differentiate (ii) partially OR
2
We get the same result as x, above +C—2[Pq + ZS] =0
i.e. pq + zx = O is the required differential equation. In case, we differentiate (i)

partially w.r.t. x again, we get
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2 2
a—2+C—2|:p2 +Zr:| =0
2x 2z
and el + c2p =0
2712
—Q[p X+zrx—sz=0
a
= p?*x + xzr = pz, which is another partial differential equation.

Similarly, we can get
g’y +yzt=qz
Example 4 : Eliminate ¢ fromz = (x-y) ¢ (X +y)
Solution : On differentiating given relation partially w.r.t. x and y, we get

P=ox+y)+tx-y)o (x+y)
q=-9ox+ty)+(x-y)o (x+y)
which on subtracting

P-q=20(x+Yy)

_ 2z
(x-y)

or pP—-q

is the required partial differential equation.
1.1.3 Partial Differential Equations of Order One

The general linear partial differential equation of the first order in x, y, z is of
the form

0z 0z
P(x,v,z) —+Q(x,y,z2) — =R (X,y,2
(y)axQ(y)ay(y)

which may be written in the symbolic form as

a2
il

Pp + Qq =R, where P=

0z
For example, if we want to solve P= = =Xty

2
X
then its solution is, Zz = ? + Xy +o(y)
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or

1.1.4

Let

Paper-V

where ¢ (y) is an arbitrary function of y. Please note that in the above differential

equationp=x+y,P=1,Q=0andR=x+y

Similarly, if we want to solve the equation :

0 0 2x
ygp+p:2x or P,p_=X

oy 'y 'y

Its solution (like ordinary differential equation) is given by :

py = 2xy + ¢ (%)
0z
P = 2xy + ¢(X)
a—Z:2x+M

y

which on integration w.r.t. x, gives

_x2 4 8%) , , .
zZ=X+ y +.(y) (where g(x)= I¢(X) dx and ¢,(y) is an arbitrary function of y.)

X
z=x"+ % +¢,(y) is the required solution.

Lagrange's Method
An equation of the form Pp + Qq = R

(1)

Can be solved with the help of Lagrange's method, which is described below :

u(x,y, z=a
(be a solution of Pp + Qq = R)
Now differentiate (ii) w.r.t x, we get

ou ou o0z ou ou
—+—.—=0or—+p—=0
ox 0z Ox ox 0z

Assuming %;ﬁ 0, we obtain
Z

(i)

(iii)
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and ay

I
T
I
I

ou
ox az
ou
0z

SIE{Ea

= P@+Q@+R@:O
ox oy 0z

Hence any solution of Pp + Qq = R is also a solution of

P@+Q@+R@=O (iv)
0x oy 0z

Now let u (%, y, z) = a be any solution of (iv). Then, we have
u_ ou oz
ox 0z 0Ox
u__ou oz
and oy oz oy
au au

on using above values of =T and ay in

P@+Q@+Ra—zzo

dy oy oz

ou oz ou 0z Rﬁu

- PZ-QZeRTI-0
0z 0x 0z oy 0z
ou
or equivalent to —Pa—Z+Q6—Z+R, since —#0
ox oy 0z

So from above, we conclude that any solution of
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P@+Q@+R@=O
0x oy 0z

is also a solution of Pp + Qq = R
We shall now consider the subsidiary equations viz.

dx=AP,dy =1Q,dz=2AR (vii)

ou Oou ou
Multiplying (vii) by —u,—,— respectively and adding, we get
0x 0y 0z

@dx+@dy+6—udz =kP6—u+kQ@+kR@
o0x oy 0z o0x oy 0z

ou ou ou
du=»Xx P—+Q—+R—j ou ou ou _
—) [ ox oy oz ) | dx+aydy+82 dz =du)

But du=0sinceu (x,y,2) =a

a—u+R@=O

ou
P—+0Q
Hence, we have ox 5 oz

dx dy z
Hence any solution of 5~ = 6 = (A)

is also a solution of P%+Q%+R?: . In other words any solution of (A)
Z

also satisfies Pp + Qq = R.
Now, we consider the relation ¢ (u;,u,)=0 (B)
Where u, (x,y, z) = C, u,(x, y, z) = C,are the solutions of

dx dy Dz
P Q R
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From (B), we get
do = ﬂdul +ﬂ du, =0
oy, ou,
ou ou ou
where du, =—tdx+ Eldy + a—zldz
and du, = a&dx + ou
ox 0z
Hence, we get
L T L L S PO G (LI ML ML
ou, | 0x oy 0z ou, \ 0x oy 0z
Using dx = AP, dy = AQ, dz = AR, we get
d = 00 [ 0 BN R 4 00 [(Mayp Moy s spl g
ou, \ ox oy 0z 8u2 0x oy 0z

it bl L

oy 0z ou, [): oy 0z
Since, u, and u, satisfy P a + Qa—u + R@ =0
19): oy 0z

au au Qu
P %) e Loyans & ~0

ax ay az
p au, au, aua

and A ay az =0

So we have shown thatifu, (x,y, z) =
solutions of ordinary differential equation

dx dy dz

T O R ,then ¢ (u;,u,)=0

is the general solution of Pp + Qq = R
Any surface given by ¢ (u, u)) =0
or u,(x,y,2) =flu,(xy, 2]

C,andu,(x,y, z) =

C,are two independent

is called an integral surface of the given partial differential equation.
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0z

0
Example 5 : Solve Z&Zer—: X

oy

Solution : Subsidiary equations are

or

From

or

or

dx_de

z X
xdx-zdz=0
x?—-2z2=C

1

dx dy dz dx+dy-+dz

z y X X+y+2z
dz _dx+dy+dz
y X+y+2z

We obtainay =x+y +z
x+z=(a-1)y

x+z=C,y

11
dx _dy _dz
z y X

Mathematics

Thus the general solution of the given differential equation is

f[xz—zz,x+zj=0
y

X2_22:¢(x+z]
y

Example 6 : Solve (y+z)p+ (X+2z)q=xX+y

Solution : The subsidiary equations are

dx dy dz

y+z X+z X+Y

dx+dy+dz dy-dz dx-dy

z(x+y+z) z-y y-X

dx+dy+dz+2(dy—dz)

X+y+z y-z

: Paper-V
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dx+dy+dz+2(dy—dz]:0
X+y+z X-y

log (x+y+z) +zlog(y-2z) =logC,
(x+y+2)(y-2?=C
and (x+y+2z) (x-y)*=C,

or the general solution is ¢ [(x - y)2 (X+Y +2), X- Yj -0
y

Example 7 : Solve yzp + xzq + 2xy = 0
Solution : Its subsidiary equations are

dx dy dz
yz Xz 2Xy
We get xdx — ydy = 0 and 2ydy —zdz = 0

2

x*-y*=C, andyQ—ZE:C2

2
General solution is ¢ [X2 _y2, 32 _%] _0

Example 8 : Solve px-qy =2x -2z
Solution : Its subsidiary equations are

dx dy dz
X -y 2x-z

d—x+d—y=00rxy=C1
X Yy

. odx dz
From the last pair <

2X —z

2xdx — zdx = xdz
2xdx = zdx + xdz
x*=xz + C,

x?-xz = C,
Hence general solution is ¢ (xy, x?—xz) = 0
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1.1.5 Integral Surface Passing Through a Given Curve

In the earlier section, we considered a method of finding the general solution
of a first order partial differential equation. We shall now show that how such a general
solution may be used to determine the integral surface which passes through a given
curve.

LetU (x,y, z) = C and v (%, y, z) = C, be two solutions of the subsidiary equations
dx_dy de

P 0 R (A)

of the linear partial differential euqation

Pp+Qq=R (A)

As we already that general solution of (A') is of the form

f(u,v)=0 (B)

We now wish to determine the function f when the integral surface includes a
specified curve in (xyz) space. Suppose, for instance, the curve is given by

6, (x,y2) =0  ¢,(x,y2)=0 (C)

Then, the determination of the function f in (B) is equivalent to finding
relationship between C and C,in u (%, y, z) = C,and v (%, y, z) C,such that u (x, y, z) =
C, Vv (x,y, 2z) = C,and C are compatible. If we now eliminate x, y, z from the last four

o

equations, we obtain a relation connecting C, and C,. Of this relation is
v (C,, C,) = O the required solution is thus given by
v(u,v)=0
Example 9 : Find the solution of yp + xq + 1 = z representing a surface passing through
thecurvez=x2+y + 1 and y = 2x.
Solution : The given differential equation isyp + xq + =z -1
comparing with Pp + Qq = R, we get
P=y,Q=x,R=2z-1, so that the subsidiary equations are

dx _dy  dz
y x z-1

From the first two equations, we get
x*+y*=C, (1)
Similarly from the pair Mzﬁ
y+X z—-1
We have z -1 =C,(x +y) (2)
We now wish to eliminate C, and C, from (1) and (2) with the help of given

curves z = x>+ y + 1,y = 2x
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Mathematics :

If we putz=x*+y+ 1,y =2x1in (2), we have 3C,= 2 + x

From (1), we also get (if we replace y = 2x)

x= St

3

1 C
So that C, =— 2+,/—1
3 3

Hence the required solution is

Solution : Subsidiary equations are —

Easily we get X C,, z_
y y

Sincex+y:1:>y(1+ij
y

y*(Cl+C3+1)=25

(Ct+Ci+1)=25(1+C,)

_1
x+y 3

G,

x _dy _dz
X y z
y(l+C))=1

[2+

Example 10 : Find an integral surface of xp + yq = z passing through the curve
x+y=1,x2+y%+ z2= 25,

y

2

-X
3

2

|

which on substituting for C, and C, gives in the desired surface.

Paper-V

Solution of partial differential equations of first order of any degree (i.e. non-

linear in p and q).
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1.1.6 P.D.E is Independent of x, y and z (Type I)

When partial differential equation is independent of X, y and z i.e. it is of the
form f (p, q) = 0.

In this case, its complete solution is given by

z = ax + by + c where f (a, b) =0

2, %y,
because x ’8y

i.e. p = a, q = b, on putting these values in f (a, b) = 0 we get the equation f(b, q)
= 0. Solving f (a, b) = 0, we can find b in terms of a and let b = g(a), then solution is z =
ax + gla)y + C (A)

To find singular solution (if any) which is envelope of the complete solution
(A), to get singular solution we have to eliminate and c from

p=z-ax-yg(a)-c=0

b _o
oa oc
i,e. x — g (a) = 0, — 1 = 0 which is not possible. Hence there is no singular
solution. In fact such equations of type f (p, q) = O does not possess singular solution.
To get the general solution, we take ¢ = h (a) so that (A) becomes
z=ax+g(a)y+h (a) (B)
differentiate w.r.t. a
0=x+ga)y+n'(a)(C)
Now to find the general solution, we have to eliminate a from B and C.
Example 11 : Find the solution of p?- %= a?
Solution : So solution is z = Ax + By + C
where A?- B%= a2

or B2= A?- a2
or z=Ax++A’-a’y+Ca>a
To find general solution

z=Ax++JA’-a’ y+(a) (i)

a '
Nrom AR

So (i) and (ii) together represent the general solutionof the given p.d.e.

V=X-
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1.1.7 P.D.E is of the Form z = px + qy + f (p, q) (Type II)

When the partial differential equation (p.d.e.) is of the form
z=px+qy +f(p,q

Then its complete solution is given by

z =ax + by + f(a, b)

where a and b are arbitrary constants.

To get singular solution, we eliminate a and b from
F=z-ax-by-f(a,b)=0

F _ F
da ob

To find general solution we take b = A (a) so that

z = ax + by + f (a, b) becomes.

z=ax+\A(@y+f(a, A(a))

z-—ax—-A(a)y-f(a, A(a) =0()

-x-AM(@y-f(a,rA(a)=0 (ii)

Now eliminant of a from (i) and (ii) gives us the general solution.

Example 12 : Solve z = px + qy + log (pq)

Sol. :

or

Its solution is z = ax + by + log (ab)
Where a and b are arbitrary constants.
To find singular solution

Let F =z -ax-by-logab

OF 1
_—X—_
oa a
oF __1
oa Y b

Now we eliminate a and b from above three equations, which is
1

z+2log—=0
Xy

z+2+logxy=0

: Paper-V

which is the required singular solution. To get general solution, we take

F=2z-ax-g(a)y-log (ag(a)) -0

oF _1_g'a)_
da x-gla)y a g(a) 0

The general solution is represented by the last two equations.
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1.1.8 P.D.E f(z, p, q) = O (Type-III)

When the partial differential equation is of the form F (z, p, q) = O i.e. the
partial differential equation has p, q and z only (x and y are absent). In such a case,
we take u = x + ay as the trial solution so that

o _m
P % " ouax ou

0z 0z oOu 0z
q=—=—.—=a—
dy ou oy ou

equation becomes F (z, a_z’ aa_zj =0
ou ou
which is an ordinary differential equation of first order and can be solved easily
by integration. Hence, the complete solution is of the form
f(x,y,2z,a,b)=0
a, b being arbitrary constants.
Again to find general solution, take b = A (a), then

f(x,y, 2z, a, A(a)) = 0 and g—f =0is the general solution.
a
Example 13 : Solve z? (p?+ q?+9) = 1

Sol. : Here z? (p2+ g2+ 9)-1=0
Take u = x + ay

oz oz u_e

P % "u'ox o
0z 0z Ou 0z

q: = — — =
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or

1.1.9

z dz = L z
\1-9z? V1+a®
on integerating, we have

g1 (1—922):(x+ay+c)2

(1 +a?(1-9z%) =81 (x + ay + ¢)?

= (9% + 9ay + 9¢)?

(1 +a?) (1-92z% = (9x + 9ay +b)?

where b = 9¢

gives us the general solution of
2 (p’+q’+9)=1

P.D.E f(x, p) = g (y, z) (Type-1V)

When p.d.e. is of the form

f(x, p)=gly,a

Mathematics :

Paper-V

The method to solve such type of equations will be explained on the following

example.

and

or

or

Solve the equation \/5+\/a:x+y
We have \/E—Xzy—\/azk
So that \/5:x+k,orp:(x+k)2

Ja=y-k and q = (y - k)?
dz = pdx + qdy
dz = (x + k)2dx + (y — k)*dy

3 3
,_ &k (y-Kk' b
3 3 3

3z = (x + k)®+ (y — k)®+ b is the complete solution.

To get singular solution, we get
F=3z-(x+kpP-(y-k)?*-Db

2—1F;=—3(x+k)2+3(y—k)2

oF _
ob

Singular solution is obtained by



B.A. Part -1 19 Mathematics : Paper-V

oF oF

F=0,—=0,—=0
ok ob
OoF
but %:—land—lio

So singular solution (S.S.)
To get the general soluton (G.S.), we replace by g(k) and then both
F=3z-(x+k)*- (v - k)*- g(k) represent the G.S.

and 3 (x+k)?-3(y-k?-g'k) =0

1.1.10 SELF CHECK EXERCISE

1. (i Show that 4xyz = 2px?y + 2qy?+ pq is the differential equation obtained when
we eliminate C and C,from z = C x*+ Cy*+ C,C,

(ii) Find the differential equation when we eliminate f from xyz = f (x + y + 2)
Solve the following :

2. p’+q=q’

3. p%=2q

4. pq = xy

S. z=px+qy-2p—-4y

6. XZp + yzq = Xy

7. y+z)p+(z+x)q=x+y

8. pta=q
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LESSON NO. 1.2

PARTIAL DIFFERENTIAL EQUATIONS-II

1.2.1 Homogeneous Linear Equation with Constant Coefficients
1.2.2 Rules to Write Complementary Function

1.2.3 Rules to Obtain Particular Integral

1.2.4 Non Homogeneous Linear PDE

1.2.5 Method of Finding P.I of Non-Nomogeneous Linear PDE

1.2.1 Homogeneous Linear Equation with Constant Coefficients

An equation of the form

2 n n
aZ+k 0z o +k aZzF(x,y) i
ox™ 1 nayn ........... (1)

In which k/'s are constants, is called a homogeneous linear partial differential
equation of the nth order with constant coefficients. It is called homogeneous because
all terms contain derivatives of the same order.

This can be written as, ¢ (D, D)z =F (%, y)

Its solution consists of two parts.

(i) the complementary function (C.F.): which is the complete solution of the
equation ¢ (D, D') z = 0. It must contain n arbitrary functions where n is the
order of the differential equation.

(ii) the particular integral (P.I1.) which is a particular solution (free from arbitrary
constants) of ¢ (D, D')z = F (x, y).

The complete solution of above differential equation is

z=C.F. + P.L
1.2.2 Rules to Write Complementary Function

Consider the equation

2 2 n

Zx—i+klai—azy+kggy—f=0 ................... (i)

which is symbolic form is

(D*+ k,DD'+k,D?z=0 ... (ii)
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From the (A.E.) m*’+ km + k,= 0, by putting D = m and D' = 1 in (ii). Solve the
(A.E.) and find its roots. If

(a) the roots of (A.E.) are different say m and m, then
z=¢,(y+ mx) +¢,(y + myx) is the C.F.
(b) the roots of (A.E.) are equal each equal to say, m, then

z=¢, (y+ mx) +x¢,(y + mx)is the C.F.
In general if the (A.E.) has r roots equal, then

z=¢,(y+mx)+ ... +x7 ¢ (y + mx).
1.2.3 Rules to Obtain Particular Integral
(1) When F (x, y) = e=*by
PlL = 1 - eax+by — 1 eax+by
¢([D,L) ¢ (a,b)

(i.e. put D = a and D' = b) provided ¢ (a, b) #0
Ifdp(a,b)=0": we have the case of failure
in that case

ax+by

_ 1 ax+by 1

P.I.—x.@e ory.ﬂe
oD oD

(ii) When F (x, y) = sin (ax + by)

1

PlL=—————sin(ax+b
$(07, DD, D7) TP

:¢( 5 lb b2)sin(ax+by)i.e.putD2=—aQ,DD‘=—ab,D'2=—b2
_a ’_a ’_

provided ¢ (—ag, —ab, - b2) #0

If ¢ (-a2, — ab, —b?) = 0 : then it is called a case of failure and we can repeat the
process of (i). A similar rule holds when F(x, y) = cos (ax + by).
(iii) When F (x, y) = xPy%, where p and q are positive integers.

1 Pyd _ N P w4
P.I.—mxy —[d)(D,D)] X"y

If p<q, expand [¢ (D, D')]'in powers of g
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(iv)

(vi)

1

If q < p, expand [¢ (D, D')]'in powers of %

1
Also, we have o F(x,y)= I F(x,y)dx and

y constant

SFy)- | Flxy)dy

x cons tant
If f(x, y) = e™"™V (x,y) where V (x, y) is a function of x & y

PL = ;ea’”bﬂ Vi

¢(D,D")

ax+by 1

“°  p(D+a,Db)

A short method, when f(x, y) is a function of ax + by.

we may apply a shorter method to find the particular integral.

Working Rule : To get the particular integral of an equation

F (D, D') z = ¢ (ax + by) where F (D, D') is a homogeneous function of D, D' of
degree n.

Put ax + by = t, then integrate ¢ (t), n times with respect to t.

Put a for D and b for D' in F(D, D') to get F (a, b).

Then PIL = 1 b xnth integral of ¢(t) with respect to t, where t = ax + by.

F (a,
In case of failure :

1 — ¢ (ax + by) = X

(bD -aD') n!b"

¢ (ax + by)

When F(x, y) = Any function

Then PlL= (%,y)

R — F
¢(D,D’)

1
Resolve —‘_(I) D,D) into partial fractions.
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Considering ¢ (D, D') as a function of D alone.

PL= ﬁ F(x,y)= IF(X,C - mx) dx

where c is to be replaced by y + mx after integration.
1.2.4 Non Homogeneous Linear PDE

A linear PDE which is not homogeneous i.e. all the derivatives are not of the
same order, is called a non-homogeneous linear partial differential equation.

F(D, D')z = {(x, y)

Where F(D, D') is non-homogenous in D and D'.

F (D, D') is not always resolvable into linear factors as in homogeneous linear
equations.

Therefore, we classify linear differential operators F (D, D') into two following
types.

(i) F (D, D') cannot be resolved into linear factors for example D?- D'.

(ii) F (D, D') can be expressed as product of linear factors of the form

(oD + BD + v) where a,  and y are constants.

Method of finding C.F. of non-homogenous linear PDEs :

F(D, D')z = {(x, y)
Case I. When F (D, D') cannot be factorized into linear factors.

In such cases we apply trial method consider the equation

D-D%)z=0 e (i)
Let a trial solution of (i) be
z=Aex"k (ii)

where, A, h and k are constants

from (if), Dz =-%. = - Ae™
aX_

0%z

and D" z = S =k?Ae™

Putting these in (i), we get

(h — k?) Aetx*Ww =0

or h=k* ... (iii)

Putting the value of h in (ii) a solution (which is also C.F.) is taken as

z=AeR (iv)

Since all values of k satisfy the given equation (i), a more general solution
(which is also C.F.) is taken as
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2=y A )

Where A and k are arbitrary constants.

Example 1 : Solve (2D*- 3D?D' + D'3)z=0
Solution : The given equation can be written as

(2D?-D') (D2-=D")z=0  .cocoeern. (1)
consider (2D?-D'Yz=0 ... (2)
Let z = AeM**™ be a trial solution of (1). Then we have
D%z = Ah?e™*Wand D'z = Ah%e™*® . Putting these values in (2), we get
A(2h%?-k) et**® = 0 so that 2h?- k = 0 or k = 2h? hence the most general

solution of (2) is z = Z:Aeh"*2th .............. (3)

Next, consider (D?- D') z = O............ (4)
Let z=A'e"*™7 be a trial solution of (1). Then we have

D%z =A'h%elt*ky and D'z = A'k'e"**ky. Putting these values in (4), we get

A'(h'-k')e"™* Y =0 so thath'—k' = 0 or h?= k'

Hence the most general solution of (3) is
7 = ZAveh'erQh'Qy
From (3) and (5) the most general solution of (1) is

2 . 2
ZAth+2h v JrZ:Aeh Y A, A h, b, k, k' being arbitrary constants.

2

2 2
Example 2 : Solve (2—Zj + (6—2] =n?z
X

8}72

Solution : The given equation can be written as

or

(D?+ D?-n%z=0 . (1)
Let a trial solution of (1) be

z=Aex*"k 2)
D?z = Ah?ebx* kv and D'?2 = Ak? ebx *ky

Hence (1) gives
A (h2+ k2_ n2) ehx+ky= O
h?+ k?=n? (3)
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Taking a as parameter, we see that (2) is satisfied if h = n cos q and k =n sin a

Putting these values in (2) the required general equation is

7 = ZA en (x cos a+y sin a)

A and a being arbitrary constants.

Case II : When F (D, D') can be linear factor of F(D, D'). To find C.F. corresponding to
this factor we consider the most simple non-homogeneous equation.
(acD+BD'+y)z=0

or ap + g =-yz

.............. (i)
Which is of Lagrange's form
dx dy dz
T T T e, (ii)
a B —yz

From first and second ratio of (ii)
ody - Bdx=01i.e.ay-px=C

Again from first and third ratios of (ii), we get

%z_—ydx

z o

Integrating, log z = % X+ log C,

-, -, -1,
z=C,e® ,z=e®* ¢(C),z=e* ¢(ay-Ppx)

From (iii)
Thus the part of C.F. corresponding to linear factor

—-X

aD + BD' + yis e* ¢ oy — Px

where ¢ is an arbitrary function. Similarly it can be shown that if F(D, D') has
non-repeated linear factors of the type.

F(D,D)=(a,D+B,D +y)(a,D+B,D" +7v,)ceevernnnen (o, D+B D' +7)

then C.F. of equation F (D, D')z=F (x, y)

s r2 Tn
=e’¢ (o, +Bx)+e2¢ (0,y +BoX) + e e ¢ (o, y +B,X)
Also corresponding to a repeated factor

(o D+pBD'+ y)k , the part of C.F. is
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=

e;X(I)1 (oy = Bx) + x¢, (0y —PX) +..eoen +x* 1, (oy — Bx)

Remarks :

1.

1.2.5

Corresponding to each non repeated factor (D — mD' - y) the part of C.F. is
e”¢ (y +mx)
If the factor (D-mD'-y) repeats k times then the part of C.F. corresponding to it
is e™ (¢, (y + mx) + x¢, (y +mx) +.............. x1 ¢, (v + mx)).
If a factor (BD' + y) occurs only once then C.F. corresponding to it is

-y

e?q) (Bx) - In case BD' + y repeats k times the part of C.F. is

-

e P[0y (BX)+ Xy (BX) + wooorreerrreern X9, (Bx)]

Method of Finding P.I of Non-Nomogeneous Linear PDE
F(D,D)z=1(x,y)

1

Pl=———+
F(D, D7)

f(x,y)

Case 1l: WhenF (x,y) =e**Yand F (a, b) #0

PL= —,—1 ™ = _t ey
F(D,D) F (a,b)

Example 3 : Solve (D?- D2+ D-D') =z = e=*%
Solution : The given equation can be re-written as

or

[(D-D) (D+D)]z=e>"%

(D+D') (D +D'+1)z = ex*3

C'F' = ¢1 (y + X) + eixq)g (y - X) + ¢1¢2
being arbitrary functions and P.I. is

1 e2x+3y

(D-D')(D+D'+1)

1 2x+3y

(2-3)(2+2+1)

1 X+
= _662 % Hence the required general solution is
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z=C.F.+Pl.ie.

By + %)+ ,(y - x) - &j &3y

Case II : When {(x, y) = sin (ax + by) or cos (ax + by)

1
PlL=———sin(ax+b
FD,D) S @x+by)

1
F(DQ,DDl,DQ,D,Dl)

which can be evaluated further.
Example 4 : Solve (D2 + DD'+ D' - 1) z = sin (x + 2y)
Solution : The given equation can be written as
(D+1)(D+D'-1)z=sin (x + 2y)

Mathematics :

Hence he required general Solution is z = C.F. + P.I. Do Yourself

Case III : When {(x, y) = x™y", m and n being positive integers.

1 m_..n n-l,m_n
PL=—— _x"y" =[F{D,D) x
oY [F(D, D) 'x™y" |

Example 5 : Solver — s + 2q — z = x%y?

2 2
Solution : | 22 |_[ 22 |, o[ % _z=x%y?
ox? oxdy dy

(D?-DD' + 2D' = 1) z = X2y% oo (1)

Paper-V

Since (D?- DD' + 2D' — 1) cannot be resolved into linear factors in D and D/,

hence C.F. of (1) is obtained by considering the equation.

(D2-DD'+2D'-1)z=0  ............ (2)
Let a trial solution of (2) be
z=Aex*"k (3)

D2z = Ah?e™*w DD'z = Ahket**Ww, D'z = Aker** &
then (2) gives

A(h>-hk +2k - 1) e™*®=0orh2-hk+2k-1=0

sothat k=———2~2 4
@ (4)

From (3),C.F. £ Ae™* ¥ where A, h, k are arbitrary constants and h and k are
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related by (4). Now P.I. =

1 X2y2 _ 1 X2y2
D> -DD'+2D'+1 1—(D2—DD'+2D')

= [1- (D?- DD' + 2D')] ! x2y?

= [-[1 + (D*-~DD' + 2D')] + (D2~ DD' + 2D")?2+ [D?+ D' (2 - D)3 +...... | x%y
=—[1 + (D2~ DD' + 2D') +(D?D2+ 4D2D' - 4DD"2+.......... )

+3D2D"?(2 - D)2 +........ ] x%y?
=—[1 + (D?>-DD' + 2D') + D?D'?+ 4D?D' - 4DD"?+ 12D?D"?+...... | x%y?

= —x?y?- 2y?+ 4xy - 2x?y - x?-16x — 16y — 52
Hence the required general solution is
z=C.F. + P.L
z =3 Aet*"W_ x%y?2_Dy? + 4xy — 2x%y — x?— 16x — 16y — 52
Case IV : When f(x, y) Ve**"®where v is a function of x and y, then

1

P.I. = m

(V ax+by) _ eax+by

1
F(D+a,D'b)

which can be evaluated further.
Example 6 : Solve (D - 3 D' - 2)?z = 2e*tan (y + 3%)
Solution : Hence
C.F. =e*[¢, (y + 3x) + x¢, (y + 3%)]
1

= ————— 2% tan (y + 3x
and Pl = pmonos (v +3x)

1
{(D+2)-3(D'+0)-2}

— 262x+0.y

5 tan (y + 3x)

2
=2e™* ;2 .tan (y + 3x) = 2e** ;( tan (y + 3x
(D-3D") 1°.21

= x2e?*tan (y + 3x)
z=e” [¢,(y +3x) +x¢, (y + 3x) |+ x’e™ tan (y + 3x)

Remark : if f (x, y) = e**®and F(a, b) = 0 then we have

: Paper-V
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PlL= 1 eax+by ax+by
F(D.D')
B 1
FD+aD'+b)’

which can be evaluated further.

Mathematics :

Paper-V
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PARTIAL DIFFERENTIAL EQUATIONS

LESSON NO. 1.3

PARTIAL DIFFERENTIAL EQUATIONS-III

1.3.1 Classification of Linear PDF of Second Order in Two Independent Variables
1.3.2 Canonical Forms

1.3.3 Case-I

1.3.4 Case-II

1.3.5 Case-III

1.3.1 Classification of Linear Partial Differential Equation of Second Order in
Two Independent Variables
Let us consider the equation of second order in two independent variables
xandy

2 2 2
adu,gdu cgy—‘j

o T2 ooy + =0 (1)
where A is positive.

( ou au]
+f|x,y,4, —

ox’ ox

Here ¢=A$§> + B3, +C§,’

The equation (1) is

(i) elliptic if B2-4AC < 0.

(ii) Hyperbolic if B2?-4AC > 0, and

(iii) Parabolic if B?*-4AC=0
Note 1. If A, B, C are constants then the nature of the equation (1) will be the same in
the whole region i.e. for all values of x and y. The nature will depend on B?- 4AC.

The equation (1) will be elliptic if B2-4AC <0
The equation (1) will be hyperbolic if B2-4AC > O,
The equation (1) will be Parabolic if B2-4AC=0

Note 2. If A, B, C are functions of x and y then the nature of equation (1) will not be
same in the whole region i.e. for all values of x and y.

The equation (1) will be elliptic in the region where B2-4AC <0

The equation (1) will be hyperbolic in the region where B?- 4AC > O,

The equation (1) will be Parabolic in the region where B2-4AC =0

30
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Example 1 : Classify the following :
o’u  o’u  o’u

i et
(@) ot?  oxdy ox>

N 62_u_ ’u  d*u
i) 52 " Toaxay X

o*u o*u o*u
ot? oxot  ox’

(iii)

Solution :
(i) Here A=1,B=1,C=1and so
B2-4AC=1-4=-3<0
Therefore, the given operator is elliptic.
(ii) Here A=1,B=-4,C=1 and so
B2-4AC=16-4=12>0
Therefore, the given operator is hyperbolic.
(iii) HereA=1,B=4,C =4 and so
B2-4AC=16-16=0
Therefore, the given operator is parabolic.
Example 2 : Classify the following equations :

2 2 2
Ju, d0u, du_ 0 (Laplace equation)

(1) x> oy® 0z°

N u u u 1 o°u .
(ii) poey + W + o = peapvey (Wave equation)

82—u+62—u+62—u—i@(Heate uation)
() 52 o2 a2 &2 ot 4
Solution :
(i) Here the operator
0=387"+8,"+38,", 8, =a, =a;; =1
a13= a23= a'31 = 1
¢ is +ve for all real values of 5, + 3, + §,and it reduces to zero only when
8,+8,+6,=0
Hence, the given Laplace's equation is elliptic.
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(ii) Here the operator

1
=8> +8,"+8, —C—4642

This can be both positive or negative. Hence the equation is hyperbolic.

(iii) Herea, =a,, =a,=4a,=0

and a12= a13= a'14= a21 = a23= a24= a31 = a34= a'41 = a42= a43= O

a; &y &3 Ay 1000
Ay Ay 8y ay| (001 0 0 0
Q31 83y A3 Agy jo o1 o
Q41 A4y Qyz Ay 0 00O

Hence the equation is parabolic.

Example 3 : Classify the equation.

2 2 2

1-x) 0 i - 2xy oz +(1-y) 0 i +xa—z+3x2ya—z—22=0

0x Ox0y oy ox oy

Solution : Consider the operator

¢ =As,> +B 5,8, + C3,°where §, = 9 5, = 2

0x oy

Here A=1-x% B=-2xy,C=1-yand so

B2-4AC = 4x%y?-4 (1 -x?) (1 -¥?)
=4 (-1 +x*+y?

Since A, B, C are functions of x and y, the given differential equation is
hyperbolic in the region where B%2- 4AC > 0 i.e. x2+ y?> 1, parabolic in the region
where B%2- 4AC = O i.e. at points on the circle x?+ y?= 1, and elliptic in the region
where B2- 4AC < O i.e. x>+ y?< 1.

Example 4 : Find where the following operator is hyperbolic, parabolic and elliptic.

0*u o*u 0*u
+ x

. &u L P
(@) o> | oxot | ox?
. ,07u  d*u

) X o et

o*u 0%u o’u du

t—+2—+x +—
) o e T e
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Solution : (i) Here A=1,B=t,C=x

B2- 4AC = t2- 4x

Thus the operator is hyperbolic if t?— 4x > 0 i.e. if t>— 4x > 0, parabolic if t?= 4x
and elliptic if t? < 4x.
(ii) Here A=x%,B=0,C=-1

: B2-4AC = 4x?

Thus the operator is hyperbolic if 4x?> 0 i.e. if x> O, i.e. if x < O parabolic if
4x%= (0 i.e. if x = 0.

Since 4x? cannot be negative so the operator cannot be elliptic.
(iii) Here A=t,B=2,C=x
: B2-4AC = 4 —4tx

Thus the operator is hyperbolic if 4 — 4tx > O i.e. tx < 1, parabolic if tx = 1 and
elliptic if tx > 1.

. . u L, 0% . .
Example 5 : Shot that the equation re =c = is hyperbolic.
t t
Solution : Here A=c?, B=0,C = -
B2- 4AC = 4c%> 0
Hence the given equation is hyperbolic.

Example 6 : Classify the following as elliptic, parabolic or hyperbolic.

. 0’z oz . O’z Pz
0 == i) ——=——
0x* 0y ox* 0y
(iii) x> oy’
Solution : Do yourself.
Answer : (i) Parabolic (ii) Hyperbolic (iii) Elliptic

1.3.2 Canonical Forms (Method of Transformation)

Now we shall consider the equation of the type

Rr+Ss+Tt+F(x,y,2,p,q9 =0 ... (1)

Where R, S, T are continuous functions of x and y possessing continuous partial
derivatives of as high an order as necessary. We shall show that any equation of the
type (1) can be reduced to one of the three canonical forms by a suitable change of the
independent variables. Suppose, we change the independent variables from x, y to u,
vV were

u=u(xy,v=v(X,y) .. (2)

Then, we have
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_0z _0z 8u+8z ov
0X 0Ou 0x Ov 0x

8z (ou)’ o’z uov %z
=—|=| t2—— —+—
ou? | ox ouov  0x 0x  ov

(avjz oz ®u 0z 0>
Ox ou ox?  ov ox?

g. 0z 0oz _(G_Ui+& i)
oxdy x| dy ox du  Ox OV

dudy ov oy
Pzoudu o’z (udv ou v
o’ 0x 0y oudv | dx oy dy ox

0%z ov 8V 82 o*u 8z v

o ox Oy | ou yox | ov dyox




B.A. Part -1 35 Mathematics : Paper-V

W L0z 0() _(uw oo
Wy Tylay) xou oy oy

(@a_er@ a_zj &z (au]2+ 9z ou

oy ou oy ov) ou® oy

sudv dy

ov %z (ov) oz o*u
—t ||t
oy ov-\dy ou oy

Substituting these values of p, q, r, s and t, in (1), it takes the form

2 2 2
A=SZiop 22 +Ca—§+(u,v,z,a—z,6—zj=0 (3)
81_1 81.18V ay 8V .............
ou) _ou o ?
Where A=R(—J sE S &2 (4)
[5);4 0x oy
B:Ra_u@ lS a—uﬁ+—@ +T@‘@ (5)
oxX 0x 2 15):4 8y ox ay ay ..............
oY _ov ov ov Y
C:R(_) S—.—+T|—| . ()
ox ox 0Oy oy

and the function F is the transformed form of the function f.

Now the problem is to determine u and v so that the equation (3) takes the
simplest possible form. The procedure is simple when the discriminant S?-4RT of
the quadratic equation.

RA2+SA+T=0 e (7)

is everywhere either positive, negative or zero, and we shall discuss these
three cases separately.

1.3.3 Case-I1: S°- 4RT > O : If this condition is satisfied then the roots A, A, of the
o’z >’z

equation (7) are real and distinct. The coefficient of ﬁandﬁ in the eqution (3)

will vanish if we choose u and v such that

du . u
w M (8)
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ou N ou
and x e g ..................... 9)
The differential equation (8) and (9) will determine the form of u and v as

functions of x and y. For this, from (8), lagranges auxiliary equations are

dx _dy _du
1 - O
The last member gives du = O, i.e.

u = constant
The first two members given

Ny -
~ThM=0 (10)

Let f, (x, y) = constant be the solution of the equation (10).
Then the solution of the equation (8) can be taken as

u=f(x,y) (11)
Similarly, if f, (x, y) = constant is a solution of

Y _3,-0

ox

Then the solution of the equation (9) can be taken as
u=f(x,y) (12)
Also it can be easily seen that, in general

AC - B? :(4RT—SQ)[ —————
X

So that when A and C are zero

It follows that B?> 0 since S?- 4RT > O and hence we can divide both sides of

the equation by it.
Thus making the substitution defined by the equations (11) and (12) the

equation (1) transforms to the form.

0%z

ou ov

0z 82]

= wVv,z, —, —
¢[ ou’ ov
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which is the canonical form in this case.
1.3.4 Case-II: S?2- 4RT = 0 : In this case the roots of the equation (7) are equal. We
define the function u as in Case I and take v to be any function of x and y, which is
independent of u. Then we have as before, A = 0.

Since S?- 4RT = 0, hence from (13), B2= 0 i.e. B = 0 and dividing by C, we see
that in this case the canonical form of the equation (1) is

0’z oz oz
W=¢[u,v,z,a,5j ................... (15)
1.3.5 Case-III : S?- 4RT < O : Formally it is the same as Case I expect that now the
roots of the equation (7) are complex.

Proceeding as in Case I, we find that the equation (1) reduces to the form (14)
but that the variables u, v are not real but are in fact complex conjugates.

To find a real canonical form let

u=oa+if, v=o-if

1 1
So that a==(u+v),p==(u-v).
o 2( v),B 2( v)

oz 0z oo 0z Op 1(az .6zj

Now — = =
ou oo ou JOpou 2o op

oz 1(oz .oz
Similarly > 2 a—la—ﬁ

1(d%2 &%z
=Tl Az e
4 0a” Op
Thus, transforming the independent variables u, v, and a, B the desired
canonical form is

Oz Pz_ (g, 0% o2
2o ot PP o
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Second order partial differential equations of the type (1) are classified by their
canonical forms; we say that an equation of this type is :

(1) Hyperbolic, if S2-4RT > 0
(ii) Parabolic, if S2-4RT =0
(iii)  Elliptic, if S2-4RT <0

Solved Examples :

Example 7 : Reduce the equation
y-1Pr-y-1l)s+y(y-1t+p-q=2ye=(1-y)* ... (1)
to canonical form and hence solve it.

Solution : Comparing the equation (1) with
Rr+Ss + Tt + f(x, y, z, p, q) = 0, we have
R=(y-1),8=-(°-1),T=y(y-1)
The quadratic equation RA2+ SA+ T =0
therefore, becomes
y-1)A-(y*-1)r+y(y-1)=0

or AM—(y+1)A+y=0

or A-1)(r-y)=0

= A =1 (real and distinct roots)

dy
i ——+1=0
The equation dx

d
and _y+y:0
dx

These on integration give

X +y = constant and y**= constant,

so that to change the independent variables from x, y, to u, v, we take
u=x+yandv =ye:

0z 0z Ou 0z Ov

p= = —t—.—
OxX oOu 0Xx 0Ov Ox

oz <0z 0Oz oz

=—+ye* —=—+vVv—
ou ov ou ov
0z 0z ou 0z Ov
q=—=—.—+ —. —
dy ou dy ov oy
0z 0z
= —_— e —_—
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0 (&j 0 [az Xazj
and t=—| Z|=2| Z e 2
dy \dy ) oy \ou ov

Substituting these values in (1) it reduces to

0%z

:2 62X1— 3
. yer(l-y)

(1-y)e"

which is the canonical form of the equation (1).
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Integrating (2) w.r.t. v, we get
0z
o Vi, (u)

where ¢, (u) is an arbitrary function of u.

Again integrating (3) w.r.t. u, we get

z=uv’+ ¥ (u) +v¥,(v)

where ¥ is an integral ¢, and ¥, is an arbitrary function.
or  z=(x+y)yeX+ ¥ (x+y)+ ¥, (yeY
Example 8 : Reduce the equation o2 oy°
Solution : The given equation can be written as

r-x*t=0

Comparing the equation (1) with

to canonical form.

Rr+Ss+Tt+(x,y, z, p, q) = 0, we have
R=1,5S=0,T=-x2

The quadratic equation RA?+ SA +T =0
therefore becomes

A?—x%2=0 =LA =x,—-x (real and distinct roots).

The equations dy +X, =0and dy + X, =0 becomes
dx dx

d—y+x:0andd—y—x:0

dx dx

These on integration give
1 o L >
v+ EX = constant and y—Ex —constant
So that to change the independent variables from x, y, to u, v, we take

uzv+%x2 :V:y—lx2

2

0z 0z Ou 0z OV

p= = — . —
OX oOu Ox OV OX

ou ov

ou ov

0z oz (62 6zj
=x



B.A. Part -1 41

A A A
d dy oudy ov dy ou ov

e Te 2 () e o)
ox?  ox\0x ox ou ov

ou\ou ov)ox oviou 0v)ox ou ov

2 2 2
:Xg[az o’z azj oz oz,

POT R
ou puov ov? ) ou ov

0’z 0 [62] (a 8)(82 8zj
t=—5=—|—|=|—+— || —+—
oy> oyloy) \ou ov)lou ov

0%z 0%z 0%z
=—+2 +—
ou ouov ov

Substituting these values in (1), it reduces to

Pz _ 1 (a_z_a_zj
oudv  4x*\ou ov

o’z 1 (8_2_6_2)
oudv 4u-v)lou ov

which is the required canonical form of the given equation.

Mathematics

: Paper-V
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PARTIAL DIFFERENTIAL EQUATIONS

LESSON NO. 2.1 AUTHOR: DR.RAJ KUMAR

PARTIAL DIFFERENTIAL EQUATIONS -IV

2.1.1 Linear partial differential equation (An Introduction)
2.1.2 Homogeneous linear equations with constant coefficients
2.1.3 Complementary function of homogeneous equation

2.1.4 Particular integral

2.1.5 General method of finding the particular integral

2.1.6 Non-homogeneous linear partial differential equations with constant
coefficients

2.1.7 Exercise
2.1.0 LINEAR PARTIAL DIFFERENTIAL EQUATION
A partial differential equation in which dependent variable and its derivatives
are of degree one and coefficients are constants is called a linear partial differential
equation with constant coefficients. It can be written as
0"z 0"z 0"z 0"z 8”712

an—l
At A4 —m—+..+ A, —+B— =+ B2
Ox 9x" oy dx Oy Oy ox 0" 0y

foet ME A N L 1 Pz = g, y) (1)
y

If we denote D for —— and D' for 5, this equation can be written as

ox

|D" + 4, D"'D'+...+ 4, D" +B, D" + B, D'>D'+.. MD + ND'+P|z = §(x, y)
or in short f(D,D')z =¢(x,y)

The equation of such type is solved in two following steps.
(i) Finding complementary function by putting f(D,D")z =0,
(ii) Particular Integral

P(x, ).

1

" 7.0)
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The complete solution of the equatin will be z= C.F. + P.L.

2.1.2 HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

The equation of the type
(D" +a, D" D'+a, D"> D" +...a, D" )z = f(x,y)
where q,,a,,............. a,are constants, is called homogeneous linear partial
differential equation of the nth order with the constant coefficients.
Note: It is called homogeneous because all terms contain derivatives of

same order. The simplest case is (D—mD"')z=0 —.(2)
ie., p—-mgq=0

On solving with Lagrange's method

dx dy dz
—=——=—=dz=0 and dy=-mdx, integrating
I -m O
we get z=C, and y=-mx+C, or z=C, and y+mx=C,

Hence solution of (2) is z = @(y + mx)

2.1.3 METHOD OF FINDING COMPLEMENTARY FUNCTION OF
HOMOGENEOUS EQUATION
Let z = ¢@(y + mx)be the solution of the equation
(a,D"+a,D""' D'+....a,D" )z =0 (1)
D"z =D"¢(y+mx)=m"¢" (y + mx)
D" z=D"¢(y+mx)=¢" (y +mx)

~(ayD"+a, D" D'+...a, D" )z = (agm" +am"” +...a,)¢"” (y + mx) =0

or a,m" +a,m"" +...+a,=0 (2)

The equation (2) is called the auxilary equation.
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Auxilary equation can be written by replacing D by m and D' by 1 in the
given equation (1)

Case 1. If solution of equation (2) m,,m,, ..... m, are all distinct, then the
solution of the differential equation is,
z=g(y+mx)+¢,(y+mx)+...+ ¢, (y+mx) ....(3)

Case II. When auxilary equation has equal roots. Let m, m be two equal
roots of equation (1), then (D —m D'")* is a factor of the equation.
(D-mD'")?z=0 can be written as
(D-mD"YD-mD'")z=0 e (4)
Let (D-mD")z=u .. (5)
The equation (4) can be written as
(D-mDYu=0 = u=¢(y+mx)
Putting the value of u in (5), we have
(D-mD'")z=¢(y+mx)
or  p—mq=¢(y+mx)
Solving by Lagranges method, we get

dx  dx dz

— = = dy=—-mdx and dz = ¢(y+mx)dx
1 -m @#(y+mx)

On integration, we have y+mx=a

and dz = ¢(y + mx)dx = ¢(a)dx ....(6)

or z=x¢(a)+b=xd(y+mx)+¢(y+mx) cee(7)

Combining (6) and (7) we have
z=x@(y+mx)+@(y+mx).
If the root m is repeated n times then
z=x""g(y+mx)+x"g,(y + mx) +.....+ @, (y + mx)
is the required complementary function.
Example 1. Find the general solution of the partial differential equation:
0’z  20°z
ox®  Oxox oy -
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0’z 20z
Solution. The given equation is ox>  dxoxdy

It can be written as
(D*-2D*D")z=0
The auxilary equation is
m*—2m?*=0
m*(m—2)=0= m=0,0,2 are its roots. Hence O occurs twice.

The general solution of the given equation is

z=¢(y+0x)+x¢,(y+0x) + ¢(y +2x)

or z=4 (V) +x4,(y)+d,(y+2x).

2.1.4 PARTICULAR INTEGRAL

Particular integral of the equation F(D, D')z = f(x, y) is written as

z= F(D—,D') S(X,¥). Now we shall discuss the methods of finding P.I. for different
functions.

Case I. When f(x,y) is a function of ax + by.

Let F(D, D) =a,D" +a,D"" D'+.....+a,D"

be a homogeneous function of D and D' of degree n

Df (ax +by) = af'(ax + by) D' f(ax+by) =bf"(ax+by)
D?f(ax+by)=a?*f"(ax+by) D" f(ax+by)=b*f"(ax+by)

D" f(ax+by)=a" " (ax+by) D' f(ax+by)=b"f" (ax+by)

F (D, D) f(ax+by)={a,D"+a, D" D'+....+a, D"} f (ax+by)
{a,a" +a,a" b+....+a, b"} " (ax+by)
F (D, D) f(ax+by)=F (a,b)f" (ax+by)

L 1
Fo.py =R

f(ax+by)
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or

1

1
F—(D,D') f(ax+by)= Fa.b) U ;',?;;2".'- f(®)dtdtdt.....where t = ax + by .(3)

provided F (a,b)#0

Exceptional case: F (a, b)=0

IfF (a, b) = Othen (bD - aD') is a factor of F(D, D)

or F({D, D) = (bD -aD') G (D, D) ...(1)

1
“ T D—aD)G(D.D")

P.I is S (ax+by) (2

Consider (bD—aD")z = f(ax+by) .3
ie. bp —aq = f(ax+by)

& _dy  dz
or b —a flax+by) ...(4)

From first and second members, we have a dx+b dy=0=ax+by=c

d d (By Integration)
X 4 X X
From first and third members, B = 1) :>sz(c) = zf(ax +by)

By integration)
X
Thus solution of (3) is Z = Zf (ax+Dby)

_x w(ax+by)
". Solution of (2) is ¢ s W ..(5)

where y(ax+by) is integration f(ax+by) as many times as is the degree of
G (D, D)
Now F(D,D")=(bD—-aD")G(D,D")

F'(D,D")=bG (D,D")+(bD —-aD'") G'(D,D")

F'(a,b)=bG (a,b) ...(6)
Putting in (5), we get

f(ax+by) v (ax +by)

X
zZz=—— e —
F(D,D") F(D,D")
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Working Rule - To evalute ﬁf (ax+by) when F (a, b)=0

(i) Differentiate F (D, D') w.r.t D partially and multiply the expression by x
and replace D and D' by a and b.

(ii) If F' (a, b) is also zero, differentiate again and multiply again by x and
replace a, b for D and D' respectively.

(iii) When FW©(q,b)# 0 obtain y(ax+by) as in the previous article.

Case II. Particular Integral when f (x,y) is a polynomial in x, y

1 1
P'I_F'(D—’l)')f(x,y)_Dn 1+¢(Dj f(X,J’)
D'

— {m{%ﬂ £(xy)

Expanding by Binomial theorem and taking B as integral w.r.t. x and D'

as derivative w.r.t. y we can find the P.I.

Case III. P.I. when f(x, y) is either sin(mx+ny) or cos(mx + ny)
D" sin(mx + ny) = —n? sin(mx + ny)
D" sin(mx+ny) =—n? sin(mx+ ny)

DD' sin(mx + ny) = —mn sin(mx + ny)

then F(D? DD',D"?)sin(mx+ny) = f(—m*—mn,—n?)sin (mx + ny)

! sin (mx+ny) = ! sin (mx+ ny)

Pl = 5
F(D*,DD',D"?) f(—m?*—mn,—n?)

provided f(—m?—mn,—n?)#0

1 1
. cos (mx +ny) = cos (mx+n
Similarly (D%, DD', D% ( y) f(=m2—mn,—n?) ( y)
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Method. Replace D2 by —m?, D2 by —p?2 and pDpD'by —nm to get P.L
Case IV. P.I. when F(x, y) is of the form ~*

Let F(D, D) =a,D" +a,D""' D'+.....+a,D"

D" o™t — g7 p@hy

DD ™ — g"p o

Dn' ax+by __ bn ax+by

- ADD)¢" ={a,d'+a d" b+....+a b} =Fa,b)e™"”

1 eax+by — l ax+by

F(D,D") F(a,b) ¢ provided F(a,b)#0.

2.1.5 GENERAL METHOD OF FINDING THE PARTICULAR INTEGRAL

Let Z=5HT D,f( x,))
or (D-—mD")z = f(x,y)
p—mq = f(x,y)

Its subsidiary equations are:

dx dx dz

L=m f(xy)

From first and second relations of (2), we have dy+m dx =0
y+mx=c

From first and third relations of (2), we have
dz = f(x,y)dx = f(x,c—mx)dx [Using (3)]
z= If(x,c—mx)dx

Thus z=— D,f( x,y) = [ f(x.c=mx)dx

where cis to be replaced by y+mx after integration

0’z 0%z
— =COS X COS 2
Example 2. Solve o2 8x8y Y.

..(3)
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Solution. The symbolic form of the given equation is
(D?>*—DD'")z =cos x cos 2y
It auxiliary equation is m?-m=0=>m=0,1

SCFUis g(y+0x)+d,(y+x)ie. 4(¥)+d,(y+x)

1
N P.I. = —————cos xcos 2
ow DD’ y

1
———  |cos (x+2y)+cos (x—2
S ooy 08 (1 2) +cos (x=2y)]

1
—cos(x—2
0 ¢ y)}

1 1
= —|——cos (x+2y)+
2[D2—DD' ( Y) D?

o r
2| -17-1(-1.2)
[obtained by replacing D? [obtained by replacing D? by

by -12 and DD' by -1.2] -12 and DD’ by -1(-2)]

cos (x+2y)+ cos (x— 2y)}

1
—1P=(-1(-2))

1 1 1
= — +2y)+ -2
2{—1+ZCOS (x+2y) _l_zcos(x y)}

1 1
= E{cos(x+2y)—§cos(x—2y)}

Hence complete solution is
z=CF.+PlI

= g(y)+¢ (y+x)+%cos(x+2y) —%cos(x—2y)

x+2y

Example 3. Solve:(D*-7DD"”—-6D")z = x*+xy*>+ y*+cos(x—y)+e
Solution. A.E.is m*—Tm—-6=0

or (m+1)(m*-—m—-6)=0
m=-1,-2,3
C'F':¢1(y_x)+¢2(y_2x)+¢3(y+:i’x) (1)

2 2 3 xX2+xp*+ 3
P.I. for x>+ xy*+ )7 is D3—yDD'2—6D'3( i+ y?)
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1
(x> +xy+57%)
2 3
03[1—”) 6D }

D> D?

D> D}

(p) 3 -1
=Di{1—7D °D } (x* +xy + »%)

1{ 7D'2 6D'3
—| 1+
D3

L

= {(xz +xy+y?) +—(6y) +—(6)}

D?
1 N 42 36 1
= —(x Txy+y )+_(y) B stands for Integration w.r.t. x
5 4 5 6 5 6
X X 3 X
I A S ) ML Y L F Ly )
60 24 6 120 720 60 24 6 20 20
) 1
P.I for €0S (x—y)is cos (x—y)

D*~7 DD?-6D"

1
" (D+D')YD+2D")YD-3D"
1
" (D+D')Y(D+2D')(1+3)
= ! sin ¢
4D +D")Y(D+2D")

! si

" 4D+D')D+2D")

1
" 4D+DY1-2)

cos (x—y)

j cos t dt, where t=x—y

[By putting D=1, D' =-1 in D-3D’']

n(x-y)

I sin £ df By putting D=1, D' = -1 in D+2D))

- m(—cos t)

= —————Cos (x— '=1-1=0 - i
4D+D") (x=y) [Here D+D' = 1-1=0 . rule fails]

[.. multiply numerator by x and differentiate the denominator]

_xcos(x—y)
4
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.(3)
I N S (4)
D*—-7DD"?—-6D"3 1-28-48 75

x+2y
2
P.I. for e’ =

[obtained by putting D=1, D'=2 in the denominator]
. Complete solutionis =z =C.F.+ P.I.

4 5 6

X 313 7
y+xy + xy+x_
24 6 20 20

x+2y

ie. Z=¢1(y—X)+¢z(y—2x)+¢3(y+3x)+%+

| Xcos (x—y) e
4 75

Art 1: Provie that : {

f(D,D") ' f(D+a,D'+b) v

ax+by __ax+by

Proof. D(e™ V) =e“ "DV +ae™™"” V =e“ " (D+a)V
D' (eax+byV) — eax+byD'V + beax+byV — eax+by (D'+b)V
5 f(D,DYe™ ™ V =™ f(D+a,D'+b)
ey = _ —e™ f(D+a, D'+b)V
f(D,D")

1
Let f(D+a,D+b)/ =0 then V' =70 7 50

Then from (1), we have

1 1

+b +b
eax y — eax y.Q

f(D+a, D'+b) Q f(D,D")

Replacing Q by V and interchanging the sides we get,

1 1
f(D,D" B f(D+a, D'+b)

ax+byyr __ _ax+by

2.1.6 NON- HOMOGENEOU'S LINEAR PARTIAL DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

Definition: If the partial derivatives occuring in the equation are not of same
order, then it is called Non-homogenous linear partial differential equation with

constant coefficients.
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3 0*z 0’z 582_ iy , .
e.g. (i) axay+ay2— 5—6 () (D;=3D,+5)(D,—D,)=(x+3y)e """

Complementary function:

CaseIl. When f(D,,D,) can be factorized in terms of linear factorsin D, and D,

We know, the solutions of f(D,,D )z=0 (i)
are, C.F.'sof f(D,,D,)z=F(x,y) ....(ii)
(subcase i)

Now if f(D,,D,) can be factorized into distinct linear factors
Let f(D,,D)z=0
becomes (@D, + D, +y)a, D, + 3, D, +7,).....
(¢,D,+ D, +7)....(a,D,+ B,D,+y,)z=0 ... (i)
Clearly any solution of (@, D, + /3, D, +7)z=0,1<i<n ... (iv)

is the solution of f(D,,D,)z=0
Equation (iv) = @,(D,z)+ f,(D,z)=-y,;z or ap+ pq=-yz
dx _dy _ dz

so the lagrange's A.E.'s are a B -z

i

«..(v)

Taking first two members of (v)

We get 8. dx =a,dy

Integrating Sx—a,y+c

where ¢ is constant of integration

= fpx—ay=c oo (Vi)

Taking first and last member of (v)

l l

where d>0 is constant of integration

= logz—logd:—ﬁx = loggz——x
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Vi

= z=¢“ () (Put d = g(c))
= z=e K g(p.x—ay) (using (vi)
for a, #0

If g, =0 and f5, #0, then taking last two members of (v)

dy dz dz 12
—= = —=-"td
We have B -z - 5 'y
- =Ly tlog 2 log z—log A=—2-
Integrating log %= y+log = logz—log A= y
P, B,
= log Z__ 7
P
iy, Ty
z —e B = Z:ﬂ, e B
7, ‘
= z=¢g(c)e” (Putting A =w,(c))

=

y
z=e™ W(ﬁix_aiy)
which is solution of f(D,, D,)z=0

so that for each factor (1<i<n), we got a solution and general solution is

n 2y 7

z=e “ g(Br—ay)te ® f(Bx—a,y) +..+e “Hfx—a,y)

assuming @ ,......c....... a, are all non zero

... (vii)

or z=e” y(fx-—ay)te Py, (Sx-ay)+..+e " y,(Sx—a,y) -+-(viii)
assuming S, f,.cccceeeene. 3, are non zero

WHEN FACTORS ARE REPEATED (subcase ii)
If some factors of f(D,,D,) are repeated then let us suppose that first two
factors are same i.e., a, D, + 3, D, +y,=a, D, + 5D, +7,

Then, general solution is given by
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n 7 7

zme " () Ba-ap)te ® fBr—ay)tote” §(fx—a,)

But it contains p—1 arbitrary functions so it cannot be general solution.

To find general solution
Now relation (iii) becomes
(@D, + B D, +y)(a;D.+ B D, +75)cc...(a, D+ B,D, +7,)2=0 .. (ix)
Clearly For 3<i < n, the solution of (@, D, + 8, D, +7,)z =0 is also solution

of (ix) and hence of (iii)

7i

iy

z=e" ¢i(ﬁix_aiy)

where 3<i<n if a,#0 is a solution of (ix) and hence of (iii) or

|
=

z=¢ 5 w(f x—ay) Where 3<i<n if B, #0is a solution of (ix) and
hence of (iii)
Hence sum of these solutions is a solution of (iii) (%)

Now solution of (¢, D, + 8, D, +7,)*z=0 is a solution of (ix) and hence of (iii)
= (aq, D, +/))1Dy +y)aD, + S Dy +7)z2=0
= (ale+ﬁ1Dy+7/l)u:O

where u=(a,D, + 3D, +7)z

V4l

——=x

. -1y .
= u=e" ¢(ﬁ1x_a1y) if Cl1¢0 o u=e A V/(ﬁlx_aly) if ﬁlio'
Let ¢, #0

N,

(ale+ﬁ1Dy+71)Z:u = (ale+ﬁ1Dy+71)Z:e “P(Px—ay)z

V4l

—=x

= ap+pg=e” fx-ay)-y:z

which is lagrange's linear equation
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Lagrange's A. Equations are
de _dy dz

a B I
LT e g(Bx—ay)-yz

Taking first two members
We get f3 dx=a,dy after Integrating, we get fix—a,y=c

Now taking first and third members

dx dz dz 1| o=
—=— —=—{€ 1 ¢(C)—71Z}
We get ¢ o a,
e Pc)-nz
N,
o B n e
dx a, aq

which is linear differential equation

hdx ﬁx
L.F. (Integrating factor) = ej @ _ o

so sol of this equation is

R s ! #©)
zet =fe [—e “P(e) fdx+d == g(o)|ldv+d =T x+d
a a a

Let d = i(c) and —#(0) =4 ©)

Vi

z e;‘x =g (x+h(c)=xf(Sx—ay)+d(fSx—ay)

N

1

“ (e (Bx—ay)+ b (Bx—a,y))

= zZ=e€
Combining (x) and (xi)

Ny

z=e " (x¢(frx—ay)+d(fx—ay)+d(Bx—ay)+...+8,(Bx—ay)

is general sol of (ix) and hence of (iii) (- it contains n arbitrary functions)

correct

Similarly if f5 #0
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71

Let (a, D +ﬁ1D +7)z= ”—eﬁl w(px—ay)

_hn
Y
P

= aptfg=e v (Bx—ay)-7yz

which is Lagrange's linear equation

its A.E.'s are

dx _dy dz

a J

Sy taking first two members
e "y (Bx—ay)-rz

we get fidx=a dy = fBx—a y=c

Now taking IInd and IIIrd members

n
d_y: dz = %:i e ﬁ‘yl//(c')—ylz
we get f3 ﬁl dy J3
y(c)=nz
71
E L H ()
dy /31

which is linear equation.

71d n

ItsLF. = ;A" _h

%y I 1 7%y (c") %y dv+d'= (" J' dv+d'= W( )
solis ze" =|—e ™ w(c')e" dy+d'= ;yc ly+d'=
s V] B

Let d'=y,(c') and W(/g ) =y(c)

71

ﬂl =y (A)y+w,()=yy, (B x—ay)+w,(Bx—ay)

}’1

= z=¢ "(yy,(Bx—ay)+v,(Bx—ay) ... (xii)

Combining (x) and (xii)
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n

z=e M (B =)+ (B =)+ (B —ay) bt (B3 —a,9))

is general sol of (ix) and hence of (iij) (- it contains n arbitrary functions)

Note: If @D, + 3D +7y, is repeaed K times, Then general solution is

_h,

z=e ” {(XKAV/l (Sx—ay)+ xK72‘//2 (Bx—ay)+...... +xy(Sx—ay)}

FWia (B X—ag ¥+ +y,(Bx—a,y))
OR

N

v
z=e” O (Bx—a )+ ¥y (Bx—ay) + e vy (Bx—ay)

AW (BeaX—ag y)+..ty,(Bx—a,y))
Case (ii). When f(D,, D,) can not be factorized into linear factors

Let z=Ae""**’,  where a, 3, A are constants ...(i)
be C.F.of f(D,, D,)z=0 ... (i)
Here D z= Aae’™"” and Dz=4 et hY

2_ 2 _ax+fy 2_ 2 _ax+pfy
D z=Aa’e Djz=A e

l_ I _ax+pfy m_ m _ax+fy
Dz=Aa e Diz=A4p"e

D.D/x =D, D! (4"

_ Di(A BT e Yy = A D)lc(eaer/fy):A/‘gm(al eIy = A B gl A
= [(D,,D,)z= f(a, B)(Ae" )
so that z=A4 e is sol of (ii) if f(a,8)=0
where A is arbitrary constant. For any value of a, we can find f such that
f(a, 5)=0 or for any value of S, we can find a such that f(a, 5)=0
. there are infinite pairs (q;, 5,) such that f(a;, 5)=0.
Therefore z =3 A4 e“*™"’

where f(a,/3;)=0 is general sol.
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Example 4. Find the general solution of r—s—-2¢t+2p+2¢g=0

Sol. We have r—s—-2t+2p+2g=0

2 2 2
B A T i - Lo
tox? oxody oy Ox Oy

In symbol form, (D; —=D,D,-2D;+2D +2D )z=0

= (D} -2D,D,+D,D,-2D; +2(D,+D,))z=0

= (D,(D,-2D,)+D(D,-2D,)+2(D,+D,))z=0

= ((D,+D,)(D,-2D,)+2(D,+D,)z=0 = (D,+D,)D,-2D, +2)z=0

= (1-D,+1-D,+0)1-D,-2-D +2)z=0
The general solution is given by

(Here a = 1, /))1 :1,]/1 =0 agzlaﬁz :_297/2 =2)

0 2
z=e'gl-y-1-x)+e ! §(-2-y-1-x)

z=¢(y—x)+e¢(-2y—x) where ¢, #, are arbitrary functions.

2.1.7 Exercise

Solve the following differential equations:

@)  (D;+2D,D,+D;)z=e"""

2 2 2
2 1902 +3ai:10sin(2x+y)

(i) Ox? ox oy Oy
(iii) r+t=cosaxcos f3y
(iv) r+3s+2t=2x+3y

r+s5—6t=x%sin (x+y)
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(v)

(vii)

(viii)

(D} +4D,D,~2D})z =[x +2y

(D} -4D; D,+4D,D;)z =4sin(2x +y)
(D} -4D,D,+4D;)z =tan (y+2x)

Solve the following partial diff. equation

r+s+p+q+z=0

MATHEMATICS : PAPER-V
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PARTIAL DIFFERENTIAL EQUATIONS

LESSON NO. 2.2 AUTHOR: DR.RAJ KUMAR

PARTIAL DIFFERENTIAL EQUATIONS -V

2.2.1 Methods to find P.I. Of non-homogenous linear partial differential
equations with constant coefficients

2.2.2 Heat, wave and Laplace’s equation

2.2.3 Method of separation of variables

2.2.4 Heat diffusion equation

2.2.5 Vibrations of stretched string-wave equation

2.2.6 D’ Alembert’s solution of the wave equation

2.2.7 Solution of Laplace’s equation in two dimensional

2.2.8 Exercise

2.2.1 METHODS TO FIND P.I. OF NON-HOMOGENOUS LINEAR PARTIAL
DIFFERENTIAL EQUATIONS WITH CONSTANT CEFFICIENTS

Here we are discussing some rules (methods) to find P.I. of

f(D,,D,)z=F(x,y)
TYPE-I When F(x,y)=€"""*"  form

l eax+/a’)f _ 1 eax+/a’)f

Then P.I. = m "~ f(a,B)

if f(a, f)#0 ie,change D by a and D, by /3.

TYPE-II When F(x,y)=sin(ax+ f5y) or cos(ax+fy)

1 .
. ——sin(ax+ fy)
Then P.I. f(Dany)

19
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1
change D’ by—az,D; by—j3* and D, D, by—a 3

or COs(ax+fy)=

sin(ax+ 3y or cos(ax+ fy)if denominator #0
TYPE-III  When F(x,y)=x"y"

1 I m —1 I m
Then P.I. = mxy (f(D,,D,)) (x'y")

Here expand (f (D)C,Dy))f1 in as cending powers of

D X Dy
or ——
D, D,

TYPE-IV  When F(x,y)=e"""U(x,y)

1 ax+fy ax+ 3 1
_——e U(x,y)=e"""" U (x,
Then P.I. = f(Dany) (x.) f(Dx+a,Dy+/3 (x.)
Note: If f(a, 3)=0 when F(x,y)=e"""*’
1 ax+fy — 1 (eaer/fy 1) B
Then f(Dany) f(Dany) Here U(x, y)=1
eax+/)’)f 1 (1)

- f(D,+a,D,+p) "

Example 1. Find the general solution of r—t-3 p+3qg=xy+e‘*?’.

Sol. Wehave r—t-3p+3g=xy+e"*’
2 2 x+2
= (D;-D;-3D,+3D)z=xy+e"”

= (D,—D,)(D,+D,-3)z=xy+e"*

C.F. is given by
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= e_%x¢1(—l-x—1~y)+e_%x¢2(—1.x—1.y)
=4 (-x—y)+e g (-x-y)
= Wl(x"'J’)"‘e}xl//z(x"‘y)

where y,,y, are arbitrary functions

I
+eé
And PL.="p "D y(D,+D, BENCR

x+2y)

1 1 xX+2y

= (Dx_Dy)(Dx+Dy—3xy+(Dx—Dy)(Dx+Dy—3) (1)

1
Here Xy
(D, - Dy)(Dx + Dy -3)

1+ (D +D)+ (D +D)2j(xy)

_ - %]xy—i- (D, +D,)(x y)+= DD(X)’)j

11
3D,
L 2 Pyt 2
-~ 3D D, i)
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xy x* 2

1 x+2y

And (p +D,-3)(D,-D,)

1 ex+2y

~ (D,+D,-3)(D,-D,)

; L ex+2y
- D,+D,-3\-1

_ _ex+2y 1 (1)
D +1+D, +2-3

= —"¥(D,+D,)" ()

-1
D
YA

X X

MATHEMATICS : PAPER-V

(It is case of failure)
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1 D
- —etT 1=
D( Djo

X X

x+2y L _
_ —e (Dx(l 0)}

= _ ex+2y(x)

6 9 9 18 27

Hence the general solution is

x X +
Z:‘//1(X+J’)+e3 Wo(x+y)———————— xe "™ correct

2.2.2 HEAT, WAVE AND LAPLACE'S EQUATION

Physical applications of partial differential equations involve the setting
up and solution of differential equations which involve physical problems like
waves on string, heat diffusion in metal bar etc. The differential equation together
with these boundary conditions, constitute a boundary value problem.

A number of problems in engineerng give rise to the following well known

partial differential equations:

. . 0%y ) 0%y
(i) Wave equation : - =¢"——.

ot ox ou O%u
(ii) One dimensional heat flow equation : — =¢?

ot ox?’

(iii) The dimensional heat flow equation which in steady becomes the two

dimensional Laplace's equation :

o*v 0%

ety ?
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(iv) Transmission line equations.
v) Vibrating membrane. Two dimensional wave equations.
(vi) Laplace's equation in three dimensions.
Beside these, the partial differential equations frequently occur in the theory of
elasticity.
2.2.3 Method of Separation of Variables
The method is used in solving second order linear partial differential
equations ie. of the form p P+qQ+rR+sS+tT =w ...(1)
where P, Q, R, S, T, W are functions of x, y only
Putz=Xx)Y (y) ...(2)

Then equation (1) becomes
(D)X =1 g(D)Y 3
X v ..(3)

It can be solved by method of separation of variables. In this case, equation

(1) is known as separable in x, y.

Now equation (3) is possible only when each side is constant j (say) because

L.H.S. is a function of x only and R.H.S. is a function of y only
Then X and Y are given by f(D)X =AX ...(4)
and g(D")Y =A4Y ...(5)

Equations (4) and (5) are ordinary linear second order differential equations

and can be solved.
Knowing X, Y the solution of (1) is given by (2)

2.2.4 Heat Diffusion Equation

Consider a homogenous bar of uniform cross-section a. Suppose that the
sides are covered with a material imperivious to heat so that the stream lines of
heat-flow are all parallel and perpendicular to the area a. Take one end of the bar
as the origin and the direction of flow as the positive x-axis. Let p be the density,

s the specific heat and k the thermal conductivity.
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Let u(x,t) be the temperature at a distance x from 0. If & be the temperature
change in a slab of thickness O x of the bar then the quantity of heat in this slab.
=spadxou

Hence the rate of increase of heat in this slab is

ou
spadx—=R —R
p o 1

29

where R, and R, are respectively the rate of inflow and out flow of heat.

These rates are given by

R =—k a(a—uj and R, = —ka(a—uj
ax x ax X+

N ou _k |(Oulox),,s—(0ulox),
or Sp X

Writing k/sp =c? called the diffusivity of the substance and taking the

limit as o — 0, we get

ou ,0%u
—=c
ot Oox?

This is one dimensional heat-flow (diffusion) equation.

ou 0%
Example 2. Find the solution of —=¢

ot Ox?
u(0,1)=0=u(l,t) and u(x,0)=(—x)x,0<x</.

satisfying boundary conditins

Sol. by using the method of variable separation we get,
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cin?r?

= . nm .
u(xil):zan S Te : (1) satisfying u(0,¢) =0=u(l,t)

Using intitial condition u = (Il — x)x when t =0

= ¥

n=l

2 nix
= a =—|({—-x)x sin —dx
= [0=0 l

nm ! l nmx
(lx—xzi—_cos’j} —J.(l—zx)(—cos l j
T Mo o v

!
_2 (0—0)+Lj(1—2x) cos 2 gy
[ nre, /

~ | N

nr
nrw ]

2
—2x Ll -2 } j( 9

nr
!

nwx\ nzwx nx nrw

1
:i L( —[)sin nﬂ—L(l)sm 0+ 21 [&j

2
2 (0 0+ 21 (—cos nzr+cos 0)}
Y n*r?

412( -1y + ) 421-(=D"Y)

n? n3r?

Putting in (1), we, get

2 & ([ 1=(=1)" nme S
u(x, t)— i Z( e j ;€ " is the required solution.

n=1

2.2.5 Vibrations of Stretched String-Wave Equation
Consider a tightly stretched elastic string of length [ and fixed ends A and

B subjected to constant tension T. The tension T will be considered to be large as
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compared to the weight of the string so that the effects of gravity are negligible.
Let the string be released from rest and and allowed to vibrate. We shall

study the subsequent motion of string, with no external forces acting on it,

assuming that each point of the string makes small vibrations at right angles to

the equilibrium position AB of the string entirely in one plane.

Take the end A as the origin, AB as the x-axis and AY perpendicular to it as the y-
axis; so that the motion takes place entirely in the xy-plane. The above fig shows

the string in the position APB at time t. Consider the motion of the element

AY
-
p._V"_"é'l’
BEE s
| B )
T ' 3
e y 3
i
A x  ox B >X

PQ of the string between its points P (x, y)and Q (x + dx, y + dy), where the tangents
make angles ¥ and y +Jy with x-axis. Clearly the element is moving upwards
with the acceleration 0?y/0¢?. Also the vertical component of the force acting on
this element.

=Tsin(y +oy)—Tsin

:T[sin(w+§l//)—sin 1//]

=T[tan (y+Jdwy)—tan y/]since v 1s small

. A3

If m be the mass per unit length of the string, then by Newton's second law

of motion, we have

mass X acceleration = Net force
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S ERE)
or? ox) .5 LOxJ,

&) &)
O’y _T|\0x) 5 \Ox),
m

i.e. orr ox

Taking limits as Q — P,i.e. 6 x—0, we have

0? 02
L_22Y (1) where CZ:;

c
ot? ox?’

This is the partial differential equation giving the transverse vibrations of
the string. It is also called the one dimension wave equation.
(IT) Solution of the wave equation :
Assume that a solution of (1) is of the form
y=XT()

Where X is a function of x a nd T is a function of t only.

.2

azy " azy _yn
at2=X‘T and atz_X T

Then

Substituting these in equation (1), we get

X TH 2 X”T H X_” = iT_”
=c i.e. Y 2717
Clearly the left hand side of (3) is a function x only and the right side is a

function of t only. Since x and t are independent variables, (2) can hold good if

each side is equal to a constant k (say). Then (3) leads to the ordinary differential

equations:
d*X
T2 —kX =0 ..(4)
2
and T —kc*T =0 ...(5)

dt?



B.A -PART-I(SEMESTER-II) 29 MATHEMATICS : PAPER-V

Solving (4) and (5), we get
(i) When k is positive and k = p?, say
X=ce+c,e?™ and T=c,e?+ce?
(ii) When k is negative and k =—p?, say
X =c5cos px+cgsin px  and T =c, cos cpt +c¢ sin cpt.
(iii) When kis zero
X=¢x+¢, and T=c¢,t+c,

Thus the various possible solutions of wave-equation (1) are

y=(c e +c,e " )Nc;e? +c,e ) ...(6)
¥ =(c5 cos px+c, sin px) (¢, cos cpt+c¢g sin cpt) (7)
y=(cx+c)(ct+cp) -(8)

Of these three solutions, we have to choose that solution which is consistent with
the physical nature of the problem. As we will be dealing with problems on
vibrations, y must be a periodic function of x and t. Hence their solution must
involve trigonometric terms. Accordingly the solution given by (7) i.e. of the form.
¥ =(c,cos p+c,sin px)(c, coscpt + ¢, sincpt) ...(9)
is the only suitable solution of the wave equation.
Example 3. A string fixed at ends distant 5 is initially in the shape of the string

(1.0) = x(r—x) ) )
y(x, B and is released from rest. Find y(x’t).

Sol. The displacement y(x,?) is solution of wave equation

0%y
o = o ...(1)

with boundary conditions y(0,¢) =0= y(x,t) for all t >( and initial displacement

is given by

y0 = f0) =" for g e
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and initial velocity = O
by using method of separation variable we get,
Here =

We have

y(x,t) = ZEn cos (nm:tjsin(nﬂxj
n=1 T

T

= iEﬂ cos (nct)sin (nx)

n=l1

2% . (nrx
where £, =" [ f(x)sm( jdx
0

T

sin nx dx

_27x(r-x)
_ﬁ'!. r

_%{x(ﬁ_x)(cosnxj} —]E(ﬂ—Zx)(— cosnxjdx}
T n oo n

=%[(0—0)+l]£(7r—2x)cos nxde
7 ny

0 0 n

_ 22((”_2x)smnx} _I_zsm nxdxj
n n

2 (O_O)+g(—cosnxj”
nr? n n 0
= 24 2(— lj(cos nx—cos0)
n*r n
A 0 if n even
ey ((-D"-1= 8 if n odd

. o n*2p-1)y i.en=2p-1
y(x,t) = z_lmcos (2 p—Det)sin (2 p—1)x).
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.y _you yov_o P
" Ox Oudx Ovdox Ou  Ov

2.2.6 D' Almebert's Solution of the Wave Equation

The wave equation is

=c? (1
o ¢ ox M

Let us introduce the new independent variables # =x+cf, v=Xx—ct so that
y becomes a function of u and v.

And &y ZQ[QJFQ}:[QJFE}[QJFQ}
o arlou ov] lou ovlou ov

:i a_y+a_y l+i a_y+a_y 1
ou| ou Ov ov| ou Ov

2 2 2
_0y, oy O
ou?> Ouou Ov?

o’y | 0%y o’y | 0%y
Stmilarly 52 C{ o Couon o2 |

Substituting this in equation (1), we get

o’y 0
Ou Ov ~(2)
Oy
Integrating (2) wrt v, we get —— = f () ...(3)

ou

Where f(u)is an arbitrary function of u. Now integrating (3) w.r.t. u we obtain.
y=| f@duty ).

Where y/(v) is an arbitrary function of v. Since the integral is a function of

u alone, we may denote it by ¢@(u).. Thus
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y=p)+y(v)
ie. y(x,t)=@d(x+ct)+w(x—ct) ..(4)
This is the geneal solution of the wave equation (1)
Now to determine ¢ and ¥, suppose initially

oy(x,0) 0
u(x,0)= f(x) and or

Differentiating (4) w.r.t. t, we get % =c@'(x+ct)—cy'(x—ct)
Att=0,¢"(x)=y'(x) ...(5)
and  y(x,0) = () +y(x) = /(%) .6)
o (5) gives @(x) =y (x)+k.

A6 becorries 2 (x)+k = f(x) |

or ¥@=2[/()-k] ana (=7 (0 +#]

Hence the solution of (4) takes the form
1 1
00 = f rren) + k] [f (o —er) =]
1
= y(x,1) =5(f(X+Ct)+f(x—Ct)) ..(7)
which is the d' Alembert's solution of the wave equation (1).

Example 4. Using D' Alembert's method, find the deflection of a vibrating string
of unit length having fixed ends with initial velocity zero and initial deflection
S () =a(x-x%
Sol. The vibrations of an elastic string are governed by
0*u 0*u

— 2

ot? Ox?

under conditions u(0,7) =0=u(l,?)
Here u(x,0)= f(x)=a(x—x%)
and u,(x,0)=0
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By D' Alembert's method, the solution is

ML0:%UKHw0+fQ—aD
=%@ux+a—(x+ayyuux—a—(x—ay)
:%{2x-(2x1+6xc%ﬂ
=ax(1-x*=3c?)

= u(x,0)=ax(1-x%= f(x)

ou(x,t)
ot

ou(x,t)
Tj =0, je. boundary conditions are satisfied.
t=0

ax(—3c*(2t))

an

Hence solution is u(x,t)=ax(1—x*—-3c%*t?)

2.2.7 SOLUTION OF LAPLACE'S EQUATION IN TWO DIMENSIONAL

0’u 0%u
The Laplace's Equation is @"' oy? =0 (1)

Let u=X(x)Y(y) be a solution of (1)

o Yd2X+Xd2Y _
Putting in (1), we get _dx2 &2

0

1d°X _1dY
X dx* Y dy?

.2

Since x and y are independent variables so (2) can hold good only if each
side of (2) is equal to constant k (say). Then (2) leads to the ordinary differential

equations. X 47y
—kX =0 and

dx? dx?

—kY =0 ..(3)
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Solving these equations, we have to discuss three cases

Case I. When [ is +vedi2.e. k=2 )

d*Y
—A2x=0 —+A%y=0
I X and &y Yy

Equation (3) becomes
AE.'sare D2-12=( and D2+ 12=0

= D=x1 and D'=+i A

sothat X =g, e +a,e ™

and Y=b cos A y+b,sindy
Or

= q, cosh Ax+a, sinhAx

‘" =cosh A x+sinh A x and e ** = cosh A x—sinh A x)
Thus solution of (1) is
u(x,y)=(a,e* +a,e ™) (b, cos 1y+b, sin 1y)

or
(4
=(a,coshAx+a,sinh Ax)(b,cos Ay+b, sin 4 y)

Case II. When =0

x| &y
e gy

Equation (3) becomes
Solving X =a,;x+a, and Y =Db,y+b,
Thus solution of (1) is

u(x,y)=(a;x+a,)(b;y+b,) ...(5)

Case III. When kis -ve i.e. [ =—/2
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2 2Y )
Equation (3) becomes I +A2x=0 and &y +A2y=0
A.E.'sare D24+ 2= and PD2-/42=0(
= D £ A and D'=%+ 41
so that
X =a, cos Ax+a, sindx and Y=be" +be
OR

b, cosh A y+b, sinh 4 y

Thus solution of (1) is . 1 2
u(x,y)=(a;cos Ax+agsinAx)(bse™” +b,e")

Or
=(ascosAx+agsinAx)(b; coshAy+b,sinh A y)

o*u 0%

—+ =0
Example 5. Solve o2 oy

subject to u(0,y)=u(7z,y)=0,0<y<rx
and  u(x,7)=0,u(x,0)=sin’x;0<x<7x
Sol. Do as in Example 2
Here u(x,0)= F(x)=sin%x

Here [=m=r1

2 T . (nxm
A :—cosechJ.sm%c sin| —x |dx
7 0 7

V4

= zcosech n ﬂj(#j sin (nx)dx

T 0

2 ) T
=——cosech nr smnxdx—Jsm nxcos?2x dx
0

27

S N
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_ 1 cosech I’lﬂ'((_ Cosnxj —%I(Sin (n+2)x+sin(n—-2)x) dx]
h 0

T 0
1 osectinal = (( Iy ) 1( cos(n+2)x_cos(n—2)xj
/4 2 n+2 n—2 0

Lot ] Sy i) et costr-ir |
n

T 2 n+2 n—2

where 5 =2

:{l cosechnﬂ(_—l((—l)”—l)+l{[(_l)n+(_1)HJ—( t 1 j}
V4 n 2 \n+2 n-2 n+2 n-2

(rcos(n+2m=cos(nmr+2x)=(-1)"cos 2z=(-1)"

and cos (n—-2)r=cos(nzr—-2rx)= ((—1)" cos27w = (—1)”)

:lcosechnﬂ (1 D"+ ( 1) _1f_2n
V2 n2—4 2\n*-4

:lcosechnﬂ 2_1 2n —l 2n if n is odd
i n 2\n*-4) 2\ n*-4

" jifn is odd

n*—4

= lcosech n 7[[% -
T n

_ —8cosech nn Fnisodd.

T n(n*—

And A4,=0 if nis even

T
And when 7 =2. then jsin2xsinnxdx=.|.sin2xsin2x dx
0 0

sin?x (2sinx cos x)dx

O'—-N
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Vi . 4 z

. sin” x
=2J'sm3x cos xdx =2 =0
. .0 4- 0
Hence sol is given by

u(x,y) = i jco(sefh ”)” sin (1 (7 — y))sin (n.x)

where n is odd

i . écposelih((z(zpp l)lz)izi) sinh((2 p—1)(x - y)sin (2 p —1)x).

2.2.8 EXERCISE

0%u 82u
1. Solve 7, o2 % =0 subject to u(0,y)=u(/,y)=0,0<y<m

and u(x,m)=0, u(x,0)=/x—-x*0<x</

2. A rectangular plate with insulated surface is 8 cm wide and so long
compared to its width that it may be considered infinite in length without

introducing an appreciable error. If the temperature along one short edge y =0
is given by

v(x, 0)_100s1n( A j0<x<8

3. A long rectangular plate of width a cms withinsulated surface has its
temperature v equal to zero on both the long sides and one of the shortsides so
that

v(0,y)=0,v(a,y)=0,v(x,0)=0,v(x,0)=kx
show that the steady state temperature within the plate is

n+l  —nzy

v(x,y)—zakz( 1) o Smnﬂx

a
4) Sol 82u_08_u i that
(4) Solve o2 o given tha

100 x
(i) u=0 when y=( and lfor > () (ii) u=T;0<x<l.
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()

A homogeneous rod of conducting material of length 100 cms has its

ends kept at zero temperature and temperature initially is

(8)

X 0<x<50

u(x,0)=
(x.0) {IOO—x, 50<x<100

Find the deflection u(x,?) of the vibrating string (length =7 and ¢2=1)
corresponding to zero initial velocity and initial deflection.

A string is stretched and fastened to two points lapart. Motion is started by
displacing the string in the form y =a sin % from which it is released at
time t=0. Show that the displacement of any point at a distance x from one

end at time tis given by

y(x,t) =a sin (%} cos (ﬂTCtj

A ti%ht string of length [ has its ends x=0, x =/ fixed. The point where
X = 5 is drawn aside a small distance h and released at time ¢ =(). At any
subsequent time ;> () the displacement Y(x,t) of the string satisfies the
one dimensional wave equation

oY oY

ot? Ox?

Determine Y(x,?) at any time ¢ > ().



