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1.1.1 Introduction and Basic Concepts

Partial differential equations occur in various physical and engineering

problems when the functions involved depend on two or more independent variables.

In this lesson, we shall be concerned with a discussion of some important partial

differential equations and we shall restrict our study mostly to those equations

involving two independent variables only.

An equation involving one or more partial derivatives of an unknown function

of two or more independent variables is called a partial differential equation. The

order of the highest derivative is called the order of the equation (as in ordinary

differential equation).

Differential operator is 
df

dx
 (Derivative of f. w.r.t. x)

Partial differential equations is  (Partial derivative of f w.r.t. x)

We consider partial differential equation of order one and two only. The most

general second order linear partial differential equation in two independent variables

is

2 2 2 2

2 2

z z z z
a b c d e fz g

x y x yx y

    
     

     (1)

1
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where a, b, c, d, e, f and g are functions of x and y. If g = 0, then (1) is said to be

homogeneous otherwise it is non-homogeneous. Some important linear partial

differential equations of second order are

Homogeneous 
 

 
 

2 2

2 2

z z
0

x y
 (two dimensional Laplace equation) (2)

Non-homogeneous 

2 2

2 2

z z
b f (x, y)

x y

 
 

 
 (two dimensional Poisson equation) (3)

2
2

2

z z
c

t x

 


 
=0 (one dimensional heat equation) (4)

2 2
2

2 2

z z
c

t x

 


 
=0 (one dimensional wave equation) (5)

where c is a constant, t is the time variable and (x, y) are cartesian coordinates.

1.1.2 Formation of Partial Differential Equations

Partial differential equations may be formed by the elimination of arbitrary

constants from a given relation between the variables. Let z be a function of two

variables x and y, let

f (x, y, z, a, b) = 0 (1)

where a and b are two arbitrary constants. Differentiating (1) partially w.r.t. 'x'

and y and replacing 
z z

and
x y

 
 

 with p and q respectively, we have

f f z
. 0

x z x

  
 

  

f f
p 0

x z

 
 

 
(2)

and
f f

q 0
y y

 
 

  (3)

On eliminating 'a' and 'b' from (2) and (3) we get a partial differential equation

of order one such as

g (x, y, z, p, q) = 0 (4)

where p and q are given by (2) and (3).
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Now suppose the two arbitrary functions u and v are connected by the relation

F (u, v) = 0 (5)

where u = f (x, y, z) (6)

v = g (x, y, z)

A partial differential equation may now be formed as mentioned below. Taking

z as dependent variable, we get on differenting partially w.r.t. x and y, we get

                      

F u u F v v
p p 0

u x z v x z
(7)

F u u F v v
q q 0

u y z v y z

        
              

(8)

On eliminating 
F

u




 and 

F

v




 from (7) and (8), we get

u u v v
p p

x z x z
0

u u v v
q q

y z x z

   
 

   


   
 

   

or
u u v y u u v v

p q q p 0
x z y z y z x z

                                     

or
u v u v u v u v u v u v

. . p . . q . . 0
x y y x z y y z x z z x

                                        
(9)

If we write

u v u v
. . P

z y y z

   
  

   

u v u v
. . Q

x z z x

   
  

   

u v u v
. . R

y x x y

   
  

   

where P, Q and R are functions of x, y and z then equation (9) becomes

Pp + Qq = R

y
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Example 1 : Derive a partial differential equation by eliminating a and b from

z = ax2 y3 + b

Sol. : On differenting w.r.t.x and y and replacing 
z

x




 by p and 
z

y


  by q, we get

p = 2axy3

q = 3ax2y2


p 2y

q 3x
  or 3px – 2py = 0

is the desired partial differential equation.

Example 2 : Derive a partial differential equation by eliminating the arbitrary function

f from the relation f(x2 + y2, x2 – z2) = 0.

Sol. : Define u = x2 + y2 (i )

and v = x2 – z2

We get the given relation as

f (u, v) = 0 (ii)

Differentiating (ii) partially w.r.t. 'x' and 'y', we get

                      

f u u f v v
p p 0

u x z v x z
, and

        
              

f u u f v v
q q 0

u y z v y z

   
    

 

f f
(2x p(o) 2x p( 2z) 0, and

u v

    f f
2y q(o) o q 2z 0

u v

 
    

 

  f f
2x 2x 2pz 0,

u v

 
  

 

and
f f

2y 2qz 0
u v

 
 

 

On eliminating 
f f

and ,
u v

 
 

 we get 
2x 2x 2pz

0
2y 2qz






 – 2 qz . 2x – (2x – 2pz) (2y) = 0
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or 4xqz + 4 (xy – pyz) = 0

or xqz – pyz = –xy

or
xy

xq py
z


 

 py – qx = 
xy

z
 is the required partial differential equation.

Example 3 : Eliminate, a, b, c from 

2 2 2

2 2 2

x y z
1

a b c
  

Sol. : On differentiating the given relation partially w.r.t. x and y, we have

2 2

2x 2zp
0

a c
  (i )

2 2

2y 2zq
0

b c
  (i i)

when  2

2
pq 25 0

c
 

  
2c

pq 25 0
2

  

 pq + 25 = 0

differentiate (i) partially w.r.t. y

 2

2
pq zs 0

c
 

pq + z0 = 0

where 
2z

x y


 

 

pq + zx = 0

If we differentiate (ii) partially OR

We get the same result as x, above  2

2
pq zs 0

c
  

i.e. pq + zx = 0 is the required differential equation. In case, we differentiate (i)

partially w.r.t. x again, we get
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2

2 2

2 2
p zr 0

a c
    

and 2 2

2x 2zp
0

a c
 

2

2

2
p x zrx zp 0

a
    

 p2x + xzr = pz, which is another partial differential equation.

Similarly, we can get

q2y + yzt = qz

Example 4 : Eliminate from z = (x – y) (x + y)

Solution : On differentiating given relation partially w.r.t. x and y, we get

p = (x + y ) + (x – y) ' (x + y)

q = – (x + y) + (x – y) ' (x + y)

which on subtracting

p – q = 2(x + y)

or
2z

p q
(x y)

 


is the required partial differential equation.

1.1.3 Partial Differential Equations of Order One

The general linear partial differential equation of the first order in x, y, z is of

the form

z z
P (x, y,z) Q (x, y,z) R (x, y,z)

x y

 
 

 

which may be written in the symbolic form as

Pp + Qq = R, where 
z z

p , q
x y

 
 
 

For example, if we want to solve
z

p x y
x


  


then its solution is,

2x
z xy (y)

2
   
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where (y) is an arbitrary function of y. Please note that in the above differential

equation p = x + y, P = 1, Q = 0 and R = x + y

Similarly, if we want to solve the equation :

p
y p 2x

y


 

 or
p p 2x

y y y


 



Its solution (like ordinary differential equation) is given by :

py = 2xy + (x)

or
z

y 2xy (x)
x


  



or
 

 

z (x)

2x ,
x y

which on integration w.r.t. x, gives

2
1

g(x)
z x (y)

y
    , (where g(x) (x) dx   and 

1
(y) is an arbitrary function of y.)

 2
1

g(x)
z x (y)

y
     is the required solution.

1.1.4 Lagrange's Method

An equation of the form Pp + Qq = R (i)

Can be solved with the help of Lagrange's method, which is described below :

Let u (x, y, z) = a

(be a solution of Pp + Qq = R)

Now differentiate (ii) w.r.t x, we get (ii)

    
   

    
u u z u u

. 0 or p 0
x z x x z

Similarly, differentiating w.r.t 'y', we get : 
 

 
 
u u

q 0
y z

(iii)

Assuming 
u

0,
z





 we obtain
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u
z xp

ux

z


   




      and    

u

y
q

u

z




 



Substituting the value of p and q from above in Pp + Qq = R, we get

uu

yxP Q R
u u

z z


  

 
 


u u u

P Q R 0
x y z

  
  

  

Hence any solution of Pp + Qq = R is also a solution of

u u u
P Q R 0

x y z

  
  

   (iv)

Now let u (x, y, z) = a be any solution of (iv). Then, we have

u u z

x z x

  
  

  

and
u u z

y z y

  
  

  

on using above values of  and  in

u u z
P Q R 0

y y z

  
  

  

 
u z u z u

P . Q . R 0
z x z y z

    
   

    

or equivalent to 
z z

P Q R,
x y

 
  

 
 since 

u
0

z






So from above, we conclude that any solution of
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u u u
P Q R 0

x y z

  
  

  

is also a solution of Pp + Qq = R

We shall now consider the subsidiary equations viz.

(vi)

Taking =  we obtain

dx = P, dy = Q, dz = R (vii)

Multiplying (vii) by 
u u u

, ,
x y z

  
  

 respectively and adding, we get

u u u
dx dy dz

x y z

  
 

  
u u u

P Q R
x y z

  
     

  

 
u u u

du P Q R
x y z

   
       

 (
u u u

dx dy dz du
x y z

  
  

  
)

But du = 0 since u (x, y, z) = a

Hence, we have 
u u u

P Q R 0
x y z

  
  

  

Hence any solution of (A)

is also a solution of 
u u u

P Q R 0
x y z

  
  

  
. In other words any solution of (A)

also satisfies Pp + Qq = R.

Now, we consider the relation  1 2u , u 0  (B)

Where u
1 
(x, y, z) = C

1
, u

2 
(x, y, z) = C

2 
are the solutions of

dx dy Dz

P Q R
 
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From (B), we get

1 2

1 2

d du .du 0
u u

 
   

 

where
1 1 1

1

u u u
du dx dy dz

x y z

  
  

  

and 2 2 2
2

u u u
du dx dy dz

x y z

  
  

  

Hence, we get

1 1 1

1

u u u
d dx dy . dz

u x y z

   
        

2 2 2

2

u u u
dx dy dz

u x y z

   
       

Using dx = P, dy = Q, dz = R, we get

d
1 1 1

1

u u u
P Q R

u x y z

   
         

2 2 2

2

u u u
P Q R 0

u x y z

   
           

or d
1 1 1

1

u u u
P Q R

u x y z

   
      

2 2 2

2

u u u
P Q R 0

u x y z

   
        

Since, u
1 
and u

2 
satisfy 

u u u
P Q R 0

x y z

  
  

  

  = 0

and  = 0

So we have shown that if u
1 
(x, y, z) = C

1 
and u

2 
(x, y, z) = C

2 
are two independent

solutions of ordinary differential equation

 1 2

dx dy dz
, then u ,u 0

P Q R
   

is the general solution of Pp + Qq = R

Any surface given by (u
1
, u

2
) = 0

or u
2 
(x, y, z) = f [u

1 
(x, y, z)]

is called an integral surface of the given partial differential equation.
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Example 5 : Solve 
z z

z y x
x y

 
 

 

Solution : Subsidiary equations are 
dx dy dz

z y x
 

dx dz

z x


 xdx – zdz = 0

or x2 – z2 = C
1

From
dx dy dz dx dy dz

z y x x y z

 
  

 

dz dx dy dz

y x y z

 


 

We obtain ay = x + y + z

or x + z = (a – 1) y

2x z C y 

Thus the general solution of the given differential equation is

2 2 x z
f x z , 0

y

 
  

 

or
2 2 x z

x z
y

 
    

 

Example 6 : Solve (y + z) p + (x + z) q = x + y

Solution : The subsidiary equations are

dx dy dz

y z x z x y
 

  

 
dx dy dz dy dz dx dy

z x y z z y y x

   
 

   

 dy dzdx dy dz
2 0

x y z y z

 
 

  
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dx dy dz dy dz
2 0

x y z x y

   
     

log (x + y + z) + z log (y – z) = log C
1

(x + y + z) (y – z)2 = C
1

and (x + y + z) (x – y)2 = C
2

or the general solution is  2 x y
x y (x y z), 0

y z

 
      

Example 7 : Solve yzp + xzq + 2xy = 0

Solution : Its subsidiary equations are

dx dy dz

yz xz 2xy
 

We get xdx – ydy = 0 and 2ydy – zdz = 0

2
2 2 2

1 2

z
x y C and y C

2
   

General solution is 
2

2 2 2 z
x y , y 0

2

 
    
 

Example 8 : Solve px – qy = 2x – z

Solution : Its subsidiary equations are

dx dy dz

x y 2x z
 
 

1

dx dy
0 or xy C

x y
  

From the last pair 
dx dz

x 2x z




2xdx – zdx = xdz

2xdx = zdx + xdz

x2 = xz + C
2

x2 –xz = C
2

Hence general solution is (xy, x2 – xz) = 0
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1.1.5 Integral Surface Passing Through a Given Curve

In the earlier section, we considered a method of finding the general solution

of a first order partial differential equation. We shall now show that how such a general

solution may be used to determine the integral surface which passes through a given

curve.

Let U (x, y, z) = C
1 
and v (x, y, z) = C

2 
be two solutions of the subsidiary equations

dx dy dz

P Q R
  (A)

of the linear partial differential euqation

Pp + Qq = R (A')

As we already that general solution of (A') is of the form

f (u, v) = 0 (B)

We now wish to determine the function f when the integral surface includes a

specified curve in (xyz) space. Suppose, for instance, the curve is given by


1 
(x, yz) = 0 

2 
(x, yz) = 0 (C)

Then, the determination of the function f in (B) is equivalent to finding a

relationship between C
1 
and C

2 
in u (x, y, z) = C

1 
and v (x, y, z) C

2 
such that u (x, y, z) =

C
1
, v (x, y, z) = C

2 
and C are compatible. If we now eliminate x, y, z from the last four

equations, we obtain a relation connecting C
1 
and C

2
. Of this relation is

(C
1
, C

2
) = 0 the required solution is thus given by

(u, v) = 0

Example 9 : Find the solution of yp + xq + 1 = z representing a surface passing through

the curve z = x2 + y + 1 and y = 2x.

Solution : The given differential equation is yp + xq + = z – 1

comparing with Pp + Qq = R, we get

P = y, Q = x, R = z – 1, so that the subsidiary equations are

dx dy dz

y x z 1
 



From the first two equations, we get

–x2 + y2 = C
1

(1)

Similarly from the pair 
dx dy dz

y x z 1




 

We have z – 1 = C
2 
(x + y) (2)

We now wish to eliminate C
1 
and C

2 
from (1) and (2) with the help of given

curves z = x2 + y + 1, y = 2x
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If we put z = x2 + y + 1, y = 2x in (2), we have 3C
2 
= 2 + x

From (1), we also get (if we replace y = 2x)

1C
x

3


So that 1
2

C1
C 2

3 3

 
   

 

Hence the required solution is 
2 2z 1 1 y x

2
x y 3 3

  
  
   

Example 10 : Find an integral surface of xp + yq = z passing through the curve

x + y = 1, x2 + y2 + z2 = 25.

Solution : Subsidiary equations are 
dx dy dz

x y z
 

Easily we get 1 2

x z
C , C

y y
 

1

x
Since x y 1 y 1 y (1 C ) 1

y

 
       

 

 1

1
y

1 C




x2 + y2 + z2 = 25

2 2
2

2

x z
y 1 25

yy

 
   

 

 2 2 2
1 2y C C 1 25  

   22 2

1 2 1C C 1 25 1 C   

which on substituting for C
1 
and C

2 
gives in the desired surface.

Solution of partial differential equations of first order of any degree (i.e. non-

linear in p and q).
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1.1.6 P.D.E is Independent of x, y and z (Type I)

When partial differential equation is independent of x, y and z i.e. it is of the

form f (p, q) = 0.

In this case, its complete solution is given by

z = ax + by + c where f (a, b) = 0

because 
z x

a, b
x y

 
 

 

i.e. p = a, q = b, on putting these values in f (a, b) = 0 we get the equation f(b, q)

= 0. Solving f (a, b) = 0, we can find b in terms of a and let b = g(a), then solution is z =

ax + g(a) y + C (A)

To find singular solution (if any) which is envelope of the complete solution

(A), to get singular solution we have to eliminate and c from

= z – ax - yg (a) – c = 0

b d
0, 0

a c

 
 

 

i.e. x – g (a) = 0, – 1 = 0 which is not possible. Hence there is no singular

solution. In fact such equations of type f (p, q) = 0 does not possess singular solution.

To get the general solution, we take c = h (a) so that (A) becomes

z = ax + g(a) y + h (a) (B)

differentiate w.r.t. a

0 = x + g(a) y + n' (a) (C)

Now to find the general solution, we have to eliminate a from B and C.

Example 11 : Find the solution of p2 – q2 = a2

Solution : So solution is z = Ax + By + C

where A2 – B2 = a2

or B2 = A2 – a2

or 2 2z Ax A a y C a     

To find general solution

2 2z Ax A a y (a)     (i)

2 2

a
v x y '(a)

A a
   


(ii)

So (i) and (ii) together represent the general solutionof the given p.d.e.
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1.1.7 P.D.E is of the Form z = px + qy + f (p, q) (Type II)

When the partial differential equation (p.d.e.) is of the form

z = px + qy + f (p, q)

Then its complete solution is given by

z = ax + by + f(a, b)

where a and b are arbitrary constants.

To get singular solution, we eliminate a and b from

F = z – ax – by – f (a, b) = 0

F F
0, 0

a b

 
 

 

To find general solution we take b = (a) so that

z = ax + by + f (a, b) becomes.

z = ax + (a) y + f (a, (a))

z – ax – (a) y – f (a, (a) = 0(i)

– x – ' (a) y – f (a, (a) = 0 (ii)

Now eliminant of a from (i) and (ii) gives us the general solution.

Example 12 :  Solve z = px + qy + log (pq)

Sol. : Its solution is z = ax + by + log (ab)

Where a and b are arbitrary constants.

To find singular solution

Let F = z – ax – by – log ab

F 1
x

a a


 



F 1
y

a b


 



Now we eliminate a and b from above three equations, which is

1
z 2 log 0

xy
 

or z + 2 + log xy = 0

which is the required singular solution. To get general solution, we take

F = z – ax – g(a) y – log (ag(a)) – 0

F 1 g '(a)
x g '(a) y 0

a a g(a)


     



The general solution is represented by the last two equations.
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1.1.8 P.D.E f(z, p, q) = 0 (Type-III)

When the partial differential equation is of the form F (z, p, q) = 0 i.e. the

partial differential equation has p, q and z only (x and y are absent). In such a case,

we take u = x + ay as the trial solution so that

z z u z
p .

x u x u

   
  
   

z z u z
q . a

y u y u

   
  
   

equation becomes 
z z

F z, , a 0
u u

      

which is an ordinary differential equation of first order and can be solved easily

by integration. Hence, the complete solution is of the form

f (x, y, z, a, b) = 0

a, b being arbitrary constants.

Again to find general solution, take b =  (a), then

f (x, y, z, a, (a)) = 0 and 
f

0
a





is the general solution.

Example 13 : Solve z2 (p2 + q2 +9) = 1

Sol. : Here z2 (p2 + q2 + 9) –1 = 0

Take u = x + ay

z z u z
p .

x u x u

   
  
   

z z u z
q . a

y u y u

   
  
   

 
2

2 2z
So that z 1 a 9 1 0

u

           

 
2

2

2

z 1
1 a 9

u z

      

2 2
2

2

z 1 9z 1 9z
1 a

u zz

  
  


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or 2 2

z 1
dz z

1 9z 1 a


 

on integerating, we have

     
2

22
1 a

1 9z x ay c
81


   

(1 + a2) (1–9z2) = 81 (x + ay + c)2

= (9x + 9ay + 9c)2

(1 + a2) (1 – 9z2) = (9x + 9ay +b)2

where b = 9c

gives us the general solution of

z2 (p2 + q2 + 9) = 1

1.1.9 P.D.E f(x, p) = g (y, z) (Type-IV)

When p.d.e. is of the form

f (x, p) = g(y, q)

The method to solve such type of equations will be explained on the following

example.

Solve the equation p q x y  

We have p x y q k   

So that 2p x k, or p (x k)   

q y k   and q = (y – k)2

and dz = pdx + qdy

dz = (x + k)2 dx + (y – k)2 dy

or

3 3(x k) (y k) b
z

3 3 3

 
  

or 3z = (x + k)3 + (y – k)3 + b is the complete solution.

To get singular solution, we get

F = 3z – (x + k)3 – (y – k)3 – b

2 2F
3 (x k) 3 (y k)

k


    



F
1

b


 



Singular solution is obtained by
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F F
F 0, 0, 0

k b

 
  

 

but
F

1 and 1 0
b


   



So singular solution (S.S.)

To get the general soluton (G.S.), we replace by g(k) and then both

F = 3z – (x + k)3 – (y – k)3 – g(k) represent the G.S.

and 3 (x + k)2 – 3 (y –k)2 – g'(k) = 0

1.1.10 SELF CHECK EXERCISE

1. (i) Show that 4xyz = 2px2y + 2qy2 + pq is the differential equation obtained when

we eliminate C
1 
and C

2 
from z = C

1
x2 + C

2
y2 + C

1
C

2

(ii) Find the differential equation when we eliminate f from xyz = f (x + y + z)

Solve the following :

2. p2 + q = q2

3. p2 = zq

4. pq = xy

5. z = px + qy – 2p – 4y

6. xzp + yzq = xy

7. (y + z) p + (z + x) q = x + y

8. p + q = q
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PARTIAL DIFFERENTIAL EQUATIONS

LESSON NO. 1.2

PARTIAL DIFFERENTIAL EQUATIONS–II

1.2.1 Homogeneous Linear Equation with Constant Coefficients

1.2.2 Rules to Write Complementary Function

1.2.3 Rules to Obtain Particular Integral

1.2.4 Non Homogeneous Linear PDE

1.2.5 Method of Finding P.I of Non-Nomogeneous Linear PDE

1.2.1 Homogeneous Linear Equation with Constant Coefficients

An equation of the form



  
   

   

2 n n

1 nn n 1 n

z z z
k ........... k F (x, y)

x x y y
........... (i)

In which k
i
's are constants, is called a homogeneous linear partial differential

equation of the nth order with constant coefficients. It is called homogeneous because

all terms contain derivatives of the same order.

This can be written as,  (D, D')z = F (x, y)

Its solution consists of two parts.

(i) the complementary function (C.F.): which is the complete solution of the

equation  (D, D') z = 0. It must contain n arbitrary functions where n is the

order of the differential equation.

(ii) the particular integral (P.I.) which is a particular solution (free from arbitrary

constants) of  (D, D')z = F (x, y).

The complete solution of above differential equation is

z = C.F. + P.I.

1.2.2 Rules to Write Complementary Function

Consider the equation

2 2 n

1 22 2

z z z
k k 0

x yx y

  
  

   ................... (i)

which is symbolic form is

(D2 + k
1
DD' + k

2
D'2) z = 0 ................. (ii)

20
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From the (A.E.) m2 + k
1
m + k

2 
= 0, by putting D = m and D' = 1 in (ii). Solve the

(A.E.) and find its roots. If

(a) the roots of (A.E.) are different say m
1 
and m

2 
then

z = 
2 
(y + m

1
x) + 

2 
(y + m

2
x) is the C.F.

(b) the roots of (A.E.) are equal each equal to say, m
1 
then

z = 
1 
(y + m

1
x) + x 

2 
(y + m

1
x) is the C.F.

In general if the (A.E.) has r roots equal, then

z = 
1 
(y + mx) + ................. + xr–1 

r 
(y + m

1
x).

1.2.3 Rules to Obtain Particular Integral

(i) When F (x, y) = ex + by

    


x by x by

1

1 1
P.I. e e

(a,b)(D,D )

(i.e. put D = a and D' = b) provided (a, b) 0

If (a, b) = 0 : we have the case of failure

in that case

   
 
 

x by x by

1

1 1
P.I. x . e or y . e

D D

(ii) When F (x, y) = sin (ax + by)

2 2

1
P.I. sin (ax by)

(D , DD',D )
 


2 2 2 2

2 2

1
sin (ax by) i.e. put D a , DD' ab, D' b

( a , ab, b )
       
   

provided  2 2a , ab, b 0    

If (–a2, – ab, –b2) = 0 : then it is called a case of failure and we can repeat the

process of (i). A similar rule holds when F(x, y) = cos (ax + by).

(iii) When F (x, y) = xp yq, where p and q are positive integers.

   


1p q p q

1

1
P.I. x y (D, D') x y

(D, D )

-1 D
If p q, expand [  (D, D')] in powers of

D'
 

'

'

'
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-1 D'
If q p, expand [  (D, D')] in powers of

D
 

Also, we have  
y cons tan t

1
F(x, y) F(x, y) dx and

D

 
x cons tan t

1
F(x, y) F(x, y) dy

D

(iv) If f(x, y) = ax bye V (x, y)  where V (x, y) is a function of x & y

 



ax by

1

1
P.I. e . V

D, D '

 
ax by 1

e
D a, D' b


  

(v) A short method, when f(x, y) is a function of ax + by.

we may apply a shorter method to find the particular integral.

Working Rule : To get the particular integral of an equation

F (D, D') z =  (ax + by) where F (D, D') is a homogeneous function of D, D' of

degree n.

Put ax + by = t, then integrate (t), n times with respect to t.

Put a for D and b for D' in F(D, D') to get F (a, b).

Then 
1

P.I. nth
F (a,b)

   integral of (t) with respect to t, where t = ax + by.

In case of failure :

 
    



n

n n
1

1 x
(ax by ) (ax by )

n !bbD aD

(vi) When F(x, y) = Any function

Then 
 1

1
P.I. F(x, y)

(D,D )

Resolve  1

1

(D,D )
 into partial fractions.

'

'

'

'

'

'
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Considering (D, D') as a function of D alone.

  
 1

1
P.I. F(x, y) F(x,c mx) dx

D mD

where c is to be replaced by y + mx after integration.

1.2.4 Non Homogeneous Linear PDE

A linear PDE which is not homogeneous i.e. all the derivatives are not of the

same order, is called a non-homogeneous linear partial differential equation.

F(D, D')z = f(x, y)

Where F(D, D') is non-homogenous in D and D'.

F (D, D') is not always resolvable into linear factors as in homogeneous linear

equations.

Therefore, we classify linear differential operators F (D, D') into two following

types.

(i) F (D, D') cannot be resolved into linear factors for example D2 – D'.

(ii) F (D, D') can be expressed as product of linear factors of the form

(D + D + ) where , and are constants.

Method of finding C.F. of non-homogenous linear PDEs :

F(D, D')z = f(x, y)

Case I. When F (D, D') cannot be factorized into linear factors.

In such cases we apply trial method consider the equation

(D – D2)z = 0 ............... (i)

Let a trial solution of (i) be

z = Aehx + ky .............. (ii)

where, A, h and k are constants

from (ii), 
 


2 hx ky

2

z
Dz h Ae

x

and 
 


2
2 2 hx ky

2

z
D' z k Ae

y

Putting these in (i), we get

(h – k2) Aehx + ky = 0

or h = k2 .......... (iii)

Putting the value of h in (ii) a solution (which is also C.F.) is taken as

2k x kyz Ae  .............. (iv)

Since all values of k satisfy the given equation (i), a more general solution

(which is also C.F.) is taken as

'
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2k x kyz Ae  ........... (v)

Where A and k are arbitrary constants.

Example 1 : Solve (2D4 – 3D2 D' + D'2) z = 0

Solution : The given equation can be written as

(2D2 – D') (D2 – D') z = 0 .............. (1)

consider (2D2 – D') z = 0 .............. (2)

Let z = Aehx + my be a trial solution of (1). Then we have

D2z = Ah2 ehx + ky and D'z = Ah2ehx + ky . Putting these values in (2), we get

A(2h2 –k) ehx + ky = 0 so that 2h2 – k = 0 or k = 2h2 hence the most general

solution of (2) is 
2hx 2h yz Ae  .............. (3)

Next, consider (D2 – D') z = 0............ (4)

Let h ' x k ' yz A 'e   be a trial solution of (1). Then we have

2 2 h' x k ' yD z A 'h' e   and h ' x k ' yD'z A 'k 'e  . Putting these values in (4), we get

h' x k ' yA '(h' k ') e 0   so that h' – k' = 0 or h'2 = k'

Hence the most general solution of (3) is

2h' x 2h ' yz A 'e  ................ (5)

From (3) and (5) the most general solution of (1) is

2 2hx 2h y h ' x 2h' yAe Ae   A, A', h, h', k, k' being arbitrary constants.

Example 2 : Solve 
2 2

2

2 2

z z
n z

x y

    
    

    

Solution : The given equation can be written as

(D2 + D'2 – n2) z = 0 .............. (1)

Let a trial solution of (1) be

z = Aehx + ky ............... (2)

 D2z = Ah2ehx + ky and D'2 = Ak2 eh'x +k'y

Hence (1) gives

A (h2 + k2 – n2) ehx + ky = 0

or h2 + k2 = n2 ................ (3)
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Taking a as parameter, we see that (2) is satisfied if h = n cos q and k = n sin a

Putting these values in (2) the required general equation is

n (x cos sin )z A e  

A and a being arbitrary constants.

Case II : When F (D, D') can be linear factor of F(D, D'). To find C.F. corresponding to

this factor we consider the most simple non-homogeneous equation.

(D + D' + ) z = 0

or p + q = –z .............. (i)

Which is of Lagrange's form

dx dy dz

z
 

   ............ (ii)

From first and second ratio of (ii)

dy – dx = 0 i.e. y – x = C ............... (iii)

Again from first and third ratios of (ii), we get

dz
dx

z






Integrating, log z = x



+ log C
1

 
x x x

1z C e , z e (C), z e y x
  
         

From (iii)

Thus the part of C.F. corresponding to linear factor

D + D' + is 
x

e y x

     ........ (iv)

where is an arbitrary function. Similarly it can be shown that if F(D, D') has

non-repeated linear factors of the type.

F(D, D') = (
1
D + 

1
D' + 

1
) (

2
D + 

2 
D' + 

2
) ............. (

n
D + 

n
D' + 

n
)

then C.F. of equation F (D, D') z = F (x, y)

   
21

21
1 1 2 2e y x e y x .......


            

n

n
n ne y x



    

Also corresponding to a repeated factor

 kD D' ,      the part of C.F. is
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     
x

k 1
1 2 ke y x x y x ........ x y x


               

Remarks :

1. Corresponding to each non repeated factor (D – mD' - ) the part of C.F. is

ex(y +mx)

2. If the factor (D–mD'–) repeats k times then the part of C.F. corresponding to it

is ex (
1 
(y + mx) + x

2 
(y +mx) +.............. xk–1 

k 
(y + mx)).

3. If a factor (D' + ) occurs only once then C.F. corresponding to it is

e ( x)


   . In case D' + repeats k times the part of C.F. is

   
1 y

k 1

1 2 k 1e [ ( x) x x .......................x x ]




       

1.2.5 Method of Finding P.I of Non-Nomogeneous Linear PDE

F (D, D')z = f (x, y)


1

1
P.I. f(x, y)

F(D, D )

Case 1 : When F (x, y) = ex + by and F (a, b) 0

  ax by ax by

1

1 1
P.I. e e

F (a,b)F (D, D )

Example 3 : Solve (D2 – D'2 + D – D') = z = e2x + 3y

Solution : The given equation can be re-written as

[(D – D') (D + D')] z = e2x + 3y

or (D + D') (D + D'+1)z = e2x + 3y

 C.F. = 
1 
(y + x) + e–x 

2 
(y – x) + 

1


2

being arbitrary functions and P.I. is

   
2x 3y1

e
D D' D D' 1



  

   
2x 3y1

e
2 3 2 2 1


  

2x 3y1
e

6

  Hence the required general solution is

'

'
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z = C.F. + P.I. i.e.

x 2x 3y
1 2

1
(y x) e (y x) e

6

         
 

Case II : When f(x, y) = sin (ax + by) or cos (ax + by)

1

1
P.I. sin (ax by)

F(D,D )
 

 2 1 2 1

1

F D ,DD ,D , D,D


which can be evaluated further.

Example 4 : Solve (D2 + DD' + D' – 1) z = sin (x + 2y)

Solution : The given equation can be written as

(D + 1) (D + D' – 1) z = sin (x + 2y)

Hence he required general Solution is z = C.F. + P.I. Do Yourself

Case III : When f(x, y) = xmyn, m and n being positive integers.

m n 1 m n

1

1
P.I. x y F(D, D') x y

F (D,D )

    

Example 5 : Solve r – s + 2q – z = x2y2

Solution : 
2 2

2 2

2

z z z
2 z x y

x y yx

       
               

(D2 – DD' + 2D' – 1) z = x2 y2 ........... (1)

Since (D2 – DD' + 2D' – 1) cannot be resolved into linear factors in D and D',

hence C.F. of (1) is obtained by considering the equation.

(D2 – DD' + 2D' – 1) z = 0 ............. (2)

Let a trial solution of (2) be

z = Aehx + ky ............. (3)

 D2z = Ah2 ehx + ky, DD'z = Ahkehx + ky, D'z = Akehx + ky

then (2) gives

A (h2 – hk + 2k – 1) ehx + ky = 0 or h2 – hk + 2k – 1 = 0

so that 
 
 

21 h
k

2 h





............... (4)

 From (3),C.F. Aehx + ky  where A, h, k are arbitrary constants and h and k are
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related by (4). Now P.I. =

 
2 2 2 2

2 2

1 1
x y x y

D DD' 2D' 1 1 D DD' 2D'


     

= [1– (D2 – DD' + 2D')]–1 x2y2

= [–[1 + (D2 – DD' + 2D')] + (D2 – DD' + 2D')2 + [D2 + D' (2 – D)]3 +......] x2y2

= – [1 + (D2 – DD' + 2D') +(D2D2 + 4D2 D' – 4DD'2 +..........)

+ 3D2 D'2 (2 – D)2 +........] x2y2

= –[1 + (D2 – DD' + 2D') + D2D'2 + 4D2D' – 4DD'2 + 12D2 D'2 +......] x2y2

= –x2 y2 – 2y2 + 4xy – 2x2 y – x2 –16x – 16y – 52

Hence the required general solution is

z = C.F. + P.I.

z = Aehx + ky – x2y2 –2y2 + 4xy – 2x2 y – x2 – 16x – 16y – 52

Case IV : When f(x, y) Veax + by where v is a function of x and y, then

P.I. =  ax by ax by1
Ve e

F (D,D')

 

 
1

F D a, D'b




which can be evaluated further.

Example 6 : Solve (D – 3 D' – 2)2 z = 2e2x tan (y + 3x)

Solution : Hence

C.F. = e2x [, (y + 3x) + x
2 
(y + 3x)]

and P.I. = 
2x 0.y

2

1
2e tan (y 3x)

(D 3D' 2)

 
 

    
2x 0.y

2

1
2e tan (y 3x)

D 2 3 D' 0 2

 
   

 

2
2x 2x

2 2

1 x
2e . tan (y 3x) 2e tan (y 3x

1 .2!D 3D'
   



= x2 e2x tan (y + 3x)

   2x 2 2x
2z e , y 3x x y 3x x e tan (y 3x)         

Remark : if f (x, y) = eax + by and F(a, b) = 0 then we have
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ax by ax by1
P.I. e e

F(D.D')

  

1
.1

F(D a D' b)


 

which can be evaluated further.
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PARTIAL DIFFERENTIAL EQUATIONS

LESSON NO. 1.3

PARTIAL DIFFERENTIAL EQUATIONS–III

1.3.1 Classification of Linear PDF of Second Order in Two Independent Variables

1.3.2 Canonical Forms

1.3.3 Case–I

1.3.4 Case–II

1.3.5 Case–III

1.3.1 Classification of Linear Partial Differential Equation of Second Order in

Two Independent Variables

Let us consider the equation of second order in two independent variables

x and y

2 2 2

2 2

u u u u u
A B C f x, y,u, , 0

x y x xx y

               
.......... (1)

where A is positive.

Here 2 2

1 1 2A B C      

The equation (1) is

(i) elliptic if B2 – 4AC < 0.

(ii) Hyperbolic if B2 – 4AC > 0, and

(iii) Parabolic if B2 – 4AC = 0

Note 1. If A, B, C are constants then the nature of the equation (1) will be the same in

the whole region i.e. for all values of x and y. The nature will depend on B2 – 4AC.

The equation (1) will be elliptic if B2 – 4AC < 0

The equation (1) will be hyperbolic if B2 – 4AC > 0,

The equation (1) will be Parabolic if B2 – 4AC = 0

Note 2. If A, B, C are functions of x and y then the nature of equation (1) will not be

same in the whole region i.e. for all values of x and y.

The equation (1) will be elliptic in the region where B2 – 4AC < 0

The equation (1) will be hyperbolic in the region where B2 – 4AC > 0,

The equation (1) will be Parabolic in the region where B2 – 4AC = 0

30
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Example 1 : Classify the following :

(i)

2 2 2

2 2

u u u

x yt x

  
 
  

(ii)

2 2 2

2 2

u u u
4

x yt x

  
 

  

(iii)

2 2 2

2 2

u u u
4 4

x tt x

  
 

  

Solution :

(i) Here A = 1, B = 1, C = 1 and so

B2 – 4AC = 1 – 4 = – 3 < 0

Therefore, the given operator is elliptic.

(ii) Here A = 1, B = –4, C = 1 and so

B2 – 4AC = 16 – 4 = 12 > 0

Therefore, the given operator is hyperbolic.

(iii) Here A = 1, B = 4, C = 4 and so

B2 – 4AC = 16 – 16 = 0

Therefore, the given operator is parabolic.

Example 2 : Classify the following equations :

(i)
2 2 2

2 2 2

u u u
0 (Laplace equation)

x y z

  
  

  

(ii)

2 2 2 2

2 2 2 2 2

u u u 1 u
(Wave equation)

x y z c t

   
  

   

(iii)

2 2 2

2 2 2 2

u u u 1 u
(Heat equation)

tx y z c

   
  

  

Solution :

(i) Here the operator

2 2

1 2 3 11 22 33, a a a 1         

a
13 

= a
23 

= a
31 

= 1

is +ve for all real values of 
1
 + 

2 
+ 

3 
and it reduces to zero only when


1 
+ 

2 
+ 

3 
= 0

Hence, the given Laplace's equation is elliptic.
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(ii) Here the operator

2 2 2 2

1 2 3 44

1

c
        

This can be both positive or negative. Hence the equation is hyperbolic.

(iii) Here a
11 

= a
22 

= a
33 

= a
44 

= 0

and a
12 

= a
13 

= a
14 

= a
21 

= a
23 

= a
24 

= a
31 

= a
34 

= a
41 

= a
42 

= a
43 

= 0

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a 1 0 0 0

a a a a 0 1 0 0
0

a a a a 0 0 1 0

a a a a 0 0 0 0

 

Hence the equation is parabolic.

Example 3 : Classify the equation.

2 2 2
2

2 2

z z z z z
(1 x) 2xy (1 y) x 3x y 2z 0

x y x yx y

    
       

    

Solution : Consider the operator

2 2
1 1 2 2 1 2A B C where

x y

 
           

 

Here A = 1 – x2, B = –2xy, C = 1 – y and so

B2 – 4AC = 4x2 y2 – 4 (1 – x2) (1 – y2)

= 4 (–1 + x2 + y2)

Since A, B, C are functions of x and y, the given differential equation is

hyperbolic in the region where B2 – 4AC > 0 i.e. x2 + y2 > 1, parabolic in the region

where B2 – 4AC = 0 i.e. at points on the circle x2 + y2 = 1, and elliptic in the region

where B2 – 4AC < 0 i.e. x2 + y2 < 1.

Example 4 : Find where the following operator is hyperbolic, parabolic and elliptic.

(i)

2 2 2

2 2

u u u
t x

x tt x

  
 

  

(ii)

2 2
2

2 2

u u
x u

t x

 
 

 

(iii)

2 2 2

2 2

u u u u
t 2 x

x t xt x

   
  

   
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Solution : (i) Here A = 1, B = t, C = x

 B2 – 4AC = t2 – 4x

Thus the operator is hyperbolic if t2 – 4x > 0 i.e. if t2 – 4x > 0, parabolic if t2 = 4x

and elliptic if t2 < 4x.

(ii) Here A = x2, B = 0, C = –1

 B2 – 4AC = 4x2

Thus the operator is hyperbolic if 4x2 > 0 i.e. if x2 > 0, i.e. if x < 0 parabolic if

4x2 = 0 i.e. if x = 0.

Since 4x2 cannot be negative so the operator cannot be elliptic.

(iii) Here A = t, B = 2, C = x

 B2 – 4AC = 4 –4tx

Thus the operator is hyperbolic if 4 – 4tx > 0 i.e. tx < 1, parabolic if tx = 1 and

elliptic if tx > 1.

Example 5 : Shot that the equation 
2 2

2

2 2

u u
c

t t

 


 
 is hyperbolic.

Solution : Here A = c2, B = 0, C = -

 B2 – 4AC = 4c2 > 0

Hence the given equation is hyperbolic.

Example 6 : Classify the following as elliptic, parabolic or hyperbolic.

(i) 
2

2

z z

yx

 



(ii) 
2 2

2 2

z z

x y

 


 

(iii) 

2 2

2 2

z z
0

x y

 
 

 

Solution : Do yourself.

Answer : (i) Parabolic (ii) Hyperbolic (iii) Elliptic

1.3.2 Canonical Forms (Method of Transformation)

Now we shall consider the equation of the type

Rr + Ss + Tt + F(x, y, z, p, q) = 0 ............. (1)

Where R, S, T are continuous functions of x and y possessing continuous partial

derivatives of as high an order as necessary. We shall show that any equation of the

type (1) can be reduced to one of the three canonical forms by a suitable change of the

independent variables. Suppose, we change the independent variables from x, y to u,

v were

u = u (x, y), v = v (x, y) .............. (2)

Then, we have
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z z u z v
p . .

x u x v x

    
  
    

z z u z v
q . .

y u y v y

    
  
    


u v

. .
x x u x v

    
 

    

u v
. .

y y u y v

    
 

    

Now, 
2

2

z z u u
r . .

x x x u x vx

                        

u z v z
. .

x u x v

         

22 2 2

2 2

z u z u v z
2 .

x u v x xu v

               

2 2 2

2 2

v z u z v

x u vx x

            

2 2z z u v
S .

x y x y x u x v

                       

z u z v
.

u y v y

    
     

2 2

2

z u u z u v u v
.

x y u v x y y xu

        
            

2 2 2

2

z v v z u z v

x y u y x v y xv

      
 

       
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and
2

2

z z u v v
t .

y y x u y vy

         
               

22 2

2

u z v z z u z u
. 2

y u y v y u v yu

          
               

22 2

2 2

v z v z u

y y uv y

     
      

Substituting these values of p, q, r, s and t, in (1), it takes the form

2 2 2

2 2

z z z z z
A 2B C u,v,z, , 0

u v u vu y

                
............. (3)

Where 

22
u u u u

A R S , T
x x y y

                
.............. (4)

u v 1 u v u v u v
B R S . . T .

x x 2 x y y x y y

        
            

.............. (5)

22
v v v v

C R S . T
x x y y

                
................ (6)

and the function F is the transformed form of the function f.

Now the problem is to determine u and v so that the equation (3) takes the

simplest possible form. The procedure is simple when the discriminant S2 –4RT of

the quadratic equation.

R2 + S+ T = 0 ................... (7)

is everywhere either positive, negative or zero, and we shall discuss these

three cases separately.

1.3.3 Case–I : S2 – 4RT > 0 : If this condition is satisfied then the roots 
1
, 

2 
of the

equation (7) are real and distinct. The coefficient of 
2 2

2 2

z z
and

u v

 

 
 in the eqution (3)

will vanish if we choose u and v such that

1

u u

x y

 
 

  ...................... (8)
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and 2

u u

x y

 
 

  ..................... (9)

The differential equation (8) and (9) will determine the form of u and v as

functions of x and y. For this, from (8), lagranges auxiliary equations are

1

dx dy du

1 0
 


The last member gives du = 0, i.e.

u = constant

The first two members given

1

y
0

x


  


.................... (10)

Let f
1 
(x, y) = constant be the solution of the equation (10).

Then the solution of the equation (8) can be taken as

u = f
1 
(x, y) ................... (11)

Similarly, if f
2 
(x, y) = constant is a solution of

2

y
0

x


  



Then the solution of the equation (9) can be taken as

u = f
2 
(x, y) ..................... (12)

Also it can be easily seen that, in general

2

2 2 u v u v
AC B (4RT S )

x y y x

    
        

So that when A and C are zero

2

2 2 u v u v
B (S 4RT)

x y y x

    
       

.................... (13)

It follows that B2 > 0 since S2 – 4RT > 0 and hence we can divide both sides of

the equation by it.

Thus making the substitution defined by the equations (11) and (12) the

equation (1) transforms to the form.

2z z z
u,v,z, ,

u v u v

          
..................... (14)
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which is the canonical form in this case.

1.3.4 Case–II : S2 – 4RT = 0 : In this case the roots of the equation (7) are equal. We

define the function u as in Case I and take v to be any function of x and y, which is

independent of u. Then we have as before, A = 0.

Since S2 – 4RT = 0, hence from (13), B2 = 0 i.e. B = 0 and dividing by C, we see

that in this case the canonical form of the equation (1) is

2

2

z z z
u,v, z, ,

u vv

         
................... (15)

1.3.5 Case–III : S2 – 4RT < 0 : Formally it is the same as Case I expect that now the

roots of the equation (7) are complex.

Proceeding as in Case I, we find that the equation (1) reduces to the form (14)

but that the variables u, v are not real but are in fact complex conjugates.

To find a real canonical form let

u = + i, v = – i

So that 
1 1

(u v), (u v)
2 2

      .

Now
z z z 1 z z

i
u u u 2

       
           

Similarly 
z 1 z z

i
v 2

   
     


2z z

u v u y

   
      

1 z z
i

4

      
           

2 2

2 2

1 z z

4

  
  

  

Thus, transforming the independent variables u, v, and ,  the desired

canonical form is

2 2

2 2

z z z z
, , z, ,

    
         

........... (16)
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Second order partial differential equations of the type (1) are classified by their

canonical forms; we say that an equation of this type is :

(i) Hyperbolic, if S2 – 4RT > 0

(ii) Parabolic, if S2 – 4RT = 0

(iii) Elliptic, if S2 – 4RT < 0

Solved Examples :

Example 7 : Reduce the equation

(y – 1)2 r – (y2 – 1)s + y (y – 1) t + p – q = 2ye2x (1 – y)3 ............ (1)

to canonical form and hence solve it.

Solution : Comparing the equation (1) with

Rr + Ss + Tt + f(x, y, z, p, q) = 0, we have

R = (y – 1), S = – (y2 – 1), T = y (y – 1)

The quadratic equation R2 + S+ T = 0

therefore, becomes

(y – 1) 2 – (y2 – 1) + y (y – 1) = 0

or 2 – (y + 1) + y = 0

or (– 1) (– y) = 0

 = 1 (real and distinct roots)

The equation 
dy

1 0
dx

 

and
dy

y 0
dx

 

These on integration give

x + y = constant and yex = constant,

so that to change the independent variables from x, y, to u, v, we take

u = x + y and v = yex.

z z u z v
p . .

x u x v x

    
  
    

xz z z z
ye v

u v u v

   
   
   

z z u z v
q . .

y u y v y

    
  
    

xz z
e

u v

 
 
 
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z z z
r v v

x x u v u v

                            

2 2 2
2

2 2

z z z z
2v v v

u v vu v

   
   

   

xz z z
s e

x y x u v

                 

x xz z z
e e

x u x v v

                   

x xz z z
v e v e

u v u u v v v

                                     

 
2 2 2

x x x

2 2

z v z z
e v ve e

u v vu v

   
    

   

and xz z z
t e

y y y u v

                 

xz z
e

y u y v

                

xz u z v
e

u u y v u y

                     

z u z v

u v y v u y

                      

2 2 2
x 2x

2 2

z z z
2e e

u vu v

  
  

  

Substituting these values in (1) it reduces to

 
2

3 x 2x 3z
1 y e 2y e (1 y)

u v


  

 

which is the canonical form of the equation (1).
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Integrating (2) w.r.t. v, we get

2

1

z
v (u)

u


  


.......... (3)

where 
1 
(u) is an arbitrary function of u.

Again integrating (3) w.r.t. u, we get

z = uv2 + 
1 
(u) + 

2 
(v)

where 
1 
is an integral 

1 
and 

2 
is an arbitrary function.

or z = (x + y) y2 e2x + 
1 
(x + y) + 

2 
(yex)

Example 8 : Reduce the equation 

2 2
2

2 2

z z
x

x y

 


   to canonical form.

Solution : The given equation can be written as

r – x2 t = 0

Comparing the equation (1) with

Rr + Ss + Tt + (x, y, z, p, q) = 0, we have

R = 1, S = 0, T = –x2.

The quadratic equation R2 + S+T = 0

therefore becomes

2 – x2 = 0 =x, – x (real and distinct roots).

The equations 1 2

dy dy
0 and 0

dx dx
      becomes

dy dy
x 0 and x 0

dx dx
   

These on integration give

2 21 1
y x constant and y- x cons tan t

2 2
  

So that to change the independent variables from x, y, to u, v, we take

2 21 1
u v x v y x

2 2
    

z z u z v
p . .

x u x v x

    
  
    

z z z z
x x

u v u v

            
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z z u z v z z
q . .

y u y v y u v

      
    
      

2

2

z z z z z
r x

x x x u vx

                          

z z z z
x 1

x u v u v

                    

z z u z z v z z
x

u u v x v u v x u v

                                          

2 2 2
2

2 2

z z z z z
x 2 and

u v u vu v

     
     

     

2

2

z z z z
t

y y u v u vy

                             

2 2 2

2 2

z z z
2

u vu v

  
  

  

Substituting these values in (1), it reduces to

2

2

z 1 z z

u v u v4x

         

2z 1 z z

u v 4 (u v) u v

          

which is the required canonical form of the given equation.
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2.1.0 LINEAR PARTIAL DIFFERENTIAL EQUATION

         A partial differential equation in which dependent variable and its derivatives

are of degree one and coefficients are constants is called a linear partial differential

equation with constant coefficients. It can be written as

y
B

x
B

y

z
A

y

z
A

y

z
A

x

z
n

x

n

n

n

n

n

nn

x

n

n

x

n

n

n





































 2

1

11

1

022211 ...

),(...... yxPz
y

z
N

x

z
M 








         ....(1)

If we denote D for 
x


 and D' for 
y


,  this equation can be written as

  ),('...''...' 2

1

1

0

1

1 yxzPNDMDDDBDBDADDAD nnn

n

nn  

or in short ),()',( yxzDDf 

The equation of such type  is solved in two following steps.

(i) Finding complementary function by putting ,0)',( zDDf

(ii) Particular Integral

                                         ).,(
)',(

1
yx

DDf
z 

zz

1
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The complete solution of the equatin will be z = C.F. + P.I.

2.1.2 HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT

COEFFICIENTS

The equation of the type

),()'....''( 22

2

1

1 yxfzDaDDaDDaD n

n

nnn  
                    .....(1)

    where naaa ....,........., 21 are constants, is called homogeneous linear partial

differential equation of the nth order with the constant coefficients.

Note: It is called homogeneous because all terms contain derivatives of

same order. The simplest case is 0)'(  zmDD                                            ....(2)

i.e., 0mqp

On solving with Lagrange's method

0
01




 dz
dz

m

dydx
 and ,mdxdy   integrating

            we get 
1Cz   and 

2Cmxy  or
1Cz   and 

2Cmxy 

Hence solution of (2) is )( mxyz  

2.1.3  METHOD OF FINDING COMPLEMENTARY FUNCTION OF

HOMOGENEOUS EQUATION

  Let )( mxyz   be the solution of the equation

0)'.....'( 1

10   zDaDDaDa n

n

nn
           ...(1)

             )()( )( mxymmxyDzD nnnn  

)()('' )( mxymxyDzD nnn  

0)()...()'....'( )(1

10

1

10   mxyamamazDaDDaDa n

n

nnn

n

nn 

or 0....1

10  
n

nn amama            ...(2)

             The equation (2) is called the auxilary equation.
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Auxilary equation can be written by replacing D by m and D' by 1 in the

given equation (1)

Case 1. If solution of equation (2) ,, 21 mm  ..... nm  are all distinct, then the

solution of the differential equation is,

              )(....)()( 2211 xmyxmyxmyz nn             ....(3)

          Case II. When auxilary equation has equal roots. Let m, m be two equal

roots of equation (1), then )²'( DmD   is a factor of the equation.

0)²'(  zDmD  can be written as

0)')('(  zDmDDmD         .... (4)

Let uzDmD  )'(         .... (5)

The equation (4) can be written as

)(0)'( mxyuuDmD  

            Putting the value of u in (5), we have

             )()'( mxyzDmD  

                       or      )( mxymqp  

                Solving by Lagranges method, we get

dxmxydzandmdxdy
mxy

dz

m

dxdx
)(

)(1






 



                  On integration, we have amxy 

              and        dxadxmxydz )()(                                     ....(6)

or )()()( 1 mxymxyxbaxz             ....(7)

Combining (6) and (7) we have

                    )()( 1 mxymxyxz   .

            If the root m is repeated n times then

            )(.....)()( 2

2

1

1 mxymxyxmxyxz n

nn   

                  is the required complementary function.

Example 1. Find the general solution of the partial differential equation:

0
³2

³

³









yxx

z

x

z
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Solution. The given equation is 0
³2

³

³









yxx

z

x

z

It can be written as

0)'²2³(  zDDD

The auxilary equation is

0²2³  mm

2,0,00)2²(  mmm are its roots. Hence 0 occurs twice.

The general solution of the given equation is

)2()0()0( 321 xyxyxxyz  

or )2()()( 321 xyyxyz   .

2.1.4  PARTICULAR INTEGRAL

Particular integral of the equation F(D, D') ),( yxfz  is written as

),(
)',(

1
yxf

DDF
z  . Now we shall discuss the methods of finding P.I. for different

functions.

Case I. When f(x,y) is a function of ax + by.

Let F(D, D') 
n

n

nn DaDDaDa '.....'1

10  

be a homogeneous function of D and D' of degree n

           )(')(')(')( byaxbfbyaxfDbyaxafbyaxDf 

           )("²)('²)("²)(² byaxfbbyaxfDbyaxfabyaxfD 

            

           )()(')()( )()()( byaxfbbyaxfDbyaxfabyaxfD nnnnnn 

    F (D, D') )(}'.....'{)( 1

10 byaxfDaDDaDabyaxf n

n

nn  

   )(}.....{ )(1

10 byaxfbabaaaa nn

n

nn  

    F (D, D) )(),()( )( byaxfbaFbyaxf n 

)(
),(

1
)(

)',(

1 )( byaxf
baF

byaxf
DDF

n 
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            or

    byaxtwheredtdtdttf
baF

byaxf
DDF timesn

......)(
),(

1
)(

)',(

1
         ...(3)

provided F 0),( ba

Exceptional case : F (a, b) = 0

If F (a, b) = 0 then (bD - aD') is a factor of F(D, D')

or F(D, D') = (bD -aD') G (D, D')                                                                       ...(1)

P.I.  is )(
)',()'(

1
byaxf

DDGaDbD
z 


           ...(2)

Consider   )()'( byaxfzaDbD            ...(3

i.e. )( byaxfaqbp 

or
)( byaxf

dz

a

dy

b

dx





           ...(4)

From first and second members, we have a cbyaxdybdx  0

(By Integration)

From first and third members, )()(
)(

byaxf
b

x
cf

b

x
z

cf

dz

b

dx


By integration)

Thus solution of (3) is )( byaxf
b

x
z 

  Solution of (2) is 
),(

)(

baG

byax

b

x
z





          ...(5)

where )( byax   is integration )( byaxf   as many times as is the degree of

G (D, D')

Now )',()'()',( DDGaDbDDDF 

        )',(')'()',()',(' DDGaDbDDDbGDDF 

),(),(' babGbaF            ...(6)

Putting in (5), we get

)(
)',(

)(
)',(

1
byax

DDF

x
byaxf

DDF
z  
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Working Rule - To evalute )(
)',(

1
byaxf

DDF
  when F (a, b) = 0

          (i) Differentiate F (D, D') w.r.t D partially and multiply the expression by x

and replace D and D' by a and b.

(ii) If F' (a, b) is also zero, differentiate again and multiply again by x and

replace a, b for D and D' respectively.

(iii) When  F(r) 0),( ba  obtain )( byax   as in the previous article.

Case II. Particular Integral when f (x,y) is a polynomial in x, y

                   

),(

'
1

1
),(

)',(

1
. yxf

D

D
D

yxf
DDF

IP
n






















                               ),(
'

1
1

1

yxf
D

D

Dn


















 

Expanding by Binomial theorem and taking 
D

1
 as integral w.r.t. x and D'

as derivative w.r.t. y we can find the P.I.

Case III. P.I. when f(x, y) is either sin(mx+ny) or cos(mx + ny)

then  )(sin²),²,()(sin'²),'²,( nymxnmnmfnymxDDDDF 

)(sin
²),²,(

1
)(sin

'²),',(

1
..

2
nymx

nmnmf
nymx

DDDDF
IP 


 ,

provided 0²),²,(  nmnmf

Similarly )(cos
²),²,(

1
)(cos

'²),'²,(

1
nymx

nmnmf
nymx

DDDDf





)sin(²)sin('² nymxnnymxD 

)sin()sin(' nymxmnnymxDD 

)sin(²)sin('² nymxnnymxD 
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Method. Replace ²D  by ²m ,  '²D  by ²n  and  'DD by nm  to get P.I.

Case IV. P.I. when F(x, y) is of the form   byaxe 

Let F(D, D') 
n

n

nn DaDDaDa '.....'1

10  

byaxnbyaxn

byaxnbyaxn

byaxnbyaxn

ebeD

ebaeDD

eaeD













'

11 '

  
byaxbyaxn

n

nnbyax ebaFebabaaaaeDDF   ),(}.....{)',( 1

10

byaxbyax e
baF

e
DDF

 
),(

1

)',(

1
  provided 0),( baF .

2.1.5 GENERAL METHOD OF FINDING THE PARTICULAR INTEGRAL

Let ),(
'

1
yxf

mDD
z


         ...(1)

or                 ),()'( yxfzmDD 

           ),( yxfmqp 

Its subsidiary equations are:

),(1 yxf

dz

m

dxdx



         ...(2)

From first and second relations of (2), we have 0 dxmdy

 cmxy          ...(3)

From first and third relations of (2), we have

dxmxcxfdxyxfdz ),(),(  [Using (3)]

   dxmxcxfz ),(

Thus  


 dxmxcxfyxf
mDD

z ),(),(
'

1

where c is to be replaced by mxy   after integration

Example 2. Solve .2coscos
²

²

²
yx

yx

z

x

z








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Solution. The symbolic form of the given equation is

yxzDDD 2coscos)'²( 

It auxiliary equation is 1,00²  mmm

)()(..)()0(.. 2121 xyyeixyxyisFC  

Now P.I. =   yx
DDD

2coscos
'²

1



=    )2(cos)2(cos
'²

1

2

1
yxyx

DDD




=  




 





)2(cos
'²

1
)2(cos

'²

1

2

1
yx

DDD
yx

DDD















)2(cos

))2.(1(²1

1
)2(cos

)2.1(1²1

1

2

1
yxyx

[obtained by replacing D2   [obtained by replacing D² by

by -1²  and DD'  by  -1.2]   -1² and DD' by -1(-2)]

= 




 





)2cos(
21

1
)2(cos

21

1

2

1
yxyx

= 




  )2(cos
3

1
)2(cos

2

1
yxyx

Hence complete solution is

IPFCz ... 

=  )2(cos
6

1
)2,(cos

2

1
)()(1 yxyxxyy 

Example 3. 
yxeyxyxyxzDDDDSolve 2)(cos³²²'³)6'²7³(: 

Solution. 067³..  mmisEA

or 0)6²)(1(  mmm

3,2,1 m

)3()2()(.. 321 xyxyxyFC              ...(1)

P.I. for ³²² yxyx   is ³)²²(
'³6'²³

1
yxyx

DDDyD






(x+2y)
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=    

³)²(

³

'³6

²

'²7
1³

1
yxyx

D

D

D

D
D








 

= ³)²(
³

'³6

²

'²7
1

³

1
1

yxyx
D

D

D

D

D





 


= ³)²(
³

3'6

²

'²7
1

³

1
yxyx

D

D

D

D

D





 

= 




  )6(
³

6
)6(

²

7
²)²(

³

1

D
y

D
yxyx

D

= 65

36
)(

42
²)²(

³

1

D
y

D
yxyx

D
   


D

1
  stands for Integration w.r.t. x 



= 
2020

7

6

³³

2460720
.36

120
42

6

³³

2460

6

5

456545
x

yx
yxyxxxx

y
yxyxx

     ...(2)

P.I. for  )(cos
'³6'²7³

1
)(cos yx

DDDD
isyx 




= )(cos
)'3)('2)('(

1
yx

DDDDDD




=  


yxtwheredtt
DDDD

,cos
)31)('2)('(

1

[By putting D=1, D' =-1  in D-3D']

= t
DDDD

sin
)'2)('(4

1



= )(sin
)'2)('(4

1
yx

DDDD




= 
dtt

DD
sin

)21)('(4

1
  [By putting D=1, D' = -1 in D+2D')

= )cos(
)'(4

1
t

DD





=  )(cos
)'(4

1
yx

DD


 [Here D+D' = 1-1=0   rule fails]

[  multiply numerator by x and differentiate the denominator]

4

)(cos yxx 

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                                                     ...(3)

P.I. for 
7548281

1

3'6'²7³

1
2

22

yx

yxyx
e

e
DDDD

e


 





      ...(4)

[obtained by putting D=1, D'=2 in the denominator]

  Complete solution is .... IPFCz 

i.e.  
2020

7

6

³³

2460
)3()2()(

6545

321

xyxyxyxx
xyxyxyz  

754

)(cos
2 yx

eyxx







Art 1: Prove that :

V
bDaDf

eVe
DDF

byaxbyax .
)',(

1
.

)',(

1


 

Proof. VaDeVaeDVeVeD byaxbyaxbyaxbyax )(.)(  

VbDeVbeVDeVeD
byaxbyaxbyaxbyax

)'(')('  

   )',(.)',( bDaDfeVeDDf byaxbyax  

   VbDaDfe
DDf

Ve byaxbyax )',(
)',(

1
 

Let QVbDaDf  )',(   then Q
bDaDf

V
)',(

1




Then from (1), we have

Qe
DDf

Q
bDaDf

e byaxbyax .
)',(

1

)',(

1  


Replacing Q by V and interchanging the sides we get,

V
bDaDf

eVe
DDf

byaxbyax

)',(

1

)',(

1


 

2.1.6  NON- HOMOGENEOU'S LINEAR PARTIAL DIFFERENTIAL EQUATIONS

WITH CONSTANT COEFFICIENTS

Definition: If the partial derivatives occuring in the equation are not of same

order, then it is called Non-homogenous linear partial differential equation with

constant coefficients.

ff
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e.g. (i)  
yxe

y

z

y

z

yx

z 45
²

²²
3 












 (ii)  

yx

yxyx eyxDDDD
 32

)3()()53(

Complementary function:

Case I. When ),( yx DDf  can be factorized in terms of linear factors in yx DandD

          We know, the solutions of 0),( zDDf yx  ....(i)

are, C.F.'s of ),(),( yxFzDDf yx  ....(ii)

(subcase i)

Now if ),( yx DDf  can be factorized into distinct linear factors

Let  0),( zDDf yx

becomes ).....)(( 222111   yxyx DßDaDßDa

0))....((  zDßDaDßDa nynxniyixi         ...(iii)

Clearly any solution of 0)(  zDßDa iyixi  , ni 1         ... (iv)

is the solution of 0),( zDDf yx

Equation (iv) zzDßzDa iyixi  )()(           or zqßpa iii 

so the lagrange's A.E.'s are 
z

dz

ß

dy

a

dx

iii 
           ...(v)

Taking first two members of (v)

We get dyadxß ii 

Integrating cyaxß ii 

where c  is constant of integration

cyaxß ii          ...(vi)

Taking first and last member of (v)

we get ,loglog dx
a

zdx
az

dz

i

i

i

i 


where d>0 is constant of integration

x
ad

z
x

a
dz

i

i

i

i 
 logloglog

x
a

x
a i

i

i

i

edze
d

z )()(





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)(
)(

cez i

x
ai

i






 (Put )(cd i )

)(
)(

yaxßez iii

x
ai

i







(using (vi)

for 0ia

If 0ia and ,0iß  then taking last two members of (v)

We have dy
ßz

dz

z

dz

ß

dy

i

i

ii









Integrating log  y
ß

zy
ß

z
i

i

i

i 



 logloglog

y
ß

z

i

i


 log

y
ß

y
ß i

i

i

i

eze
z










y
ß

i
i

i

ecz






 )(           (Putting )(ci  )

)( yaxßez ii

y
ßi

i







which is solution of 0),( zDDf yx

so that for each factor )1( ni , we got a solution and general solution is

)(....)()( 222111
2

2

1

1

yaxßeyaxßeyaxßez nn

a
x

a
x

a n

n







assuming naa ......,.........1  are all non zero

...(vii)

or    )(....)()( 222111
2

2

1

1

yaxßeyaxßeyaxßez nnn

x
ßß

x
ß n

n







         ...(viii)

assuming nßßß .............., 21  are non zero

 WHEN FACTORS ARE REPEATED (subcase ii)

If some factors of ),( yx DDf  are repeated then let us suppose that first two

factors are same i.e., 111222   yxyx DßDaDßDa

Then, general solution is given by
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)(...)())(( 3331121
3

3

1

1

yaxßeyaxßeyaxßez nnn

x
a

x
a

x
a n

n







But it contains 1n  arbitrary functions so it cannot be general solution.

To find general solution

Now relation (iii) becomes

0)).......(()²( 333111  zDßDaDßDaDßDa nynxnyxyx      ....(ix)

Clearly For ,3 ni   the solution of 0)(  zDßDa iyixi   is also solution

of (ix) and hence of (iii)

)( yaxßez iii

x
ai

i







where ni 3  if 0ia  is a solution of (ix) and hence of (iii) or

)( yaxßez ii

y
ßi

i







   where ni 3  if  0iß is a solution of (ix) and

hence of  (iii)

Hence sum of these solutions is a solution of (iii)          ...(x)

        Now solution of 0)²( 111  zDßDa yx   is a solution of (ix) and hence of (iii)

0))(( 111111  zDßDaDßDa yxyx 

0)( 111  uDßDa yx 

where zDßDau yx )( 111 

)( 11
1

1

yaxßeu
x

a 





 if  01 a  or  )( 11
1

1

yaxßeu
y

ß 





 if  .01 ß

Let 01 a

zyaxßezDßDauzDßDa
x

a

yxyx )()()( 11111111
1

1







zyaxßeqßpa
x

a

11111 )(1

1







which is lagrange's linear equation
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 Lagrange's A. Equations are

zyaxße

dz

ß

dy

a

dx

x
a

111

11
)(1

1









           Taking first two members

We get dyadxß 11   after Integrating, we get cyaxß  11

Now taking first and third members

We get  




















zce

adx

dz

zce

dz

a

dx x
a

x
a

1

1

1

1

)(
1

)(

1

1

1

1








)(
1

1

1

11

1 ce
a

z
adx

dz x
a 








                                   which is linear differential equation

 I.F. (Integrating factor) = 
x

a
dx

a
ee 1

1

1

1 




so sol of this equation is

  

















dx
a

c
ddxc

a
ddxce

a
eez

x
a

x
a

x
a )(

.1)(
1

)(
1

1

1

1

1

1

1 




Let )(1 cd   and  )()(
1

1 cc
a

 

)()()()( 11211121
1 yaxßyaxßxcxcez
x

a

l

 


))()(( 112111
1

1

yaxßyaxßxez
x

a 





.....(xi)

Combining (x) and (xi)

)(.....)()()(( 111311211
1

1

yaxßyaxßyaxßyaßxxez nn

x
a 






is general sol of (ix) and hence of (iii)         (  it contains n arbitrary functions)

correct

Similarly   if  01 ß
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Let )()( 11111
1

1

yaxßeuzDßDa
y

ß

yx 





zyaxßeqßpa
y

ß

11111 )(1

1







which is Lagrange's linear equation

its A.E.'s are

zyaxße

dz

ß

dy

a

dx

y
ß

111

11
)(1

1







  taking first two members

we get '1111 cyaxßdyadxß 

Now taking IInd and IIIrd members

we get 




















zce

ßdy

dz

zce

dz

ß

dy y
ß

y
ß

1

1

1

1

)'(
1

)'(

1

1

1

1








)'(
1

1

1

11

1 ce
ß

z
ßdy

dz y
ß 








which is linear equation.

Its I.F. = 
y

ß
dy

ß
ee 1

1

1

1 




   sol is   


'
)'(

')'(
1

')'(
1

1

1

1

1

1

1

dy
ß

c
ddyc

ß
ddyece

ß
ez

y
ß

y
ß

y
ß 




Let )'(' 2 cd     and   )'(
)'(

1 c
ß

c





)()()'()'( 11211121
1

1

yaxßyaxßycycez
y

ß  


)()(( 112111
1

1

yaxßyaxßyez
ß 






...(xii)

Combining (x) and (xii)



  B.A -PART-I(SEMESTER-II) 16            MATHEMATICS : PAPER-V

))(....)()()(( 333112111
1

1

yaxßyaxßyaxßyaxßyez nnn

y
ß 






is general sol of (ix) and hence of (iii)    (  it contains n arbitrary functions)

Note: If 111  yx DßDa  is repeaed K times, Then general solution is

)}(......)()({( 11112

2

111

11

1

yaxßxyaxßxyaxßxez K

KK
x

a  





))(.......)( 111 yaxßyaxß nnnKKK   

OR

)(.....)()(( 11112

2

111

11

1

yaxßyyaxßyyaxßyez K

KK
y

ß  





))(.....)( 111 yaxßyaxß nnnKKK   

Case (ii).  When ),( yx DDf  can not be factorized into linear factors

Let 
yßxaeAz  ,      where Aßa ,,  are constants   ...(i)

be C.F. of 0),( zDDf yx ...(ii)

           Here 
yßxa

x eaAzD  and   
yßxa

y eßAzD 

           
yßxa

x eaAzD  ²2 yßxa

y eßAzD  ²2

........................... ............................................

yßxall

x eaAzD  yßxamm

y eßAzD 

)( yßxam

y

l

x

m

y

l

x eADDxDD 

= 
yßxalmyßxalmyßxal

x

myßxaml

x eaßAeaßAeDßAeßAD   )()()(

))(,(),( yßxa

yx eAßafzDDf 

so that 
yßxaeAz   is sol of (ii) if 0),( ßaf

where A is arbitrary constant. For any value of a, we can find ß  such that

0),( ßaf  or for any value of ß , we can find a such that 0),( ßaf

 there are infinite pairs ),( ii ßa  such that 0),( ii ßaf .

Therefore 
yßxa

i
iieAz



where 0),( ii ßaf  is general sol.

=
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Example 4.  Find the general solution of   0222  qptsr

Sol.   We have 0222  qptsr

i.e. 022
²

²
2

²

²

²






















y

z

x

z

y

z

yx

z

x

z

             In symbol form,     0)222( 22  zDDDDDD yxyyxx

0))(222( 22  zDDDDDDDD yxyyxyxx

0))(2)2()2((  zDDDDDDDD yxyxyyxx

0)22)((0))(2)2)(((  zDDDDzDDDDDD yxyxyxyxyx

0)221)(011(  zDDDD yxyx

     The general solution is given by

(Here )2,2,10,1,1 222111   ßaßa

)12()11( 2
1

2

1
1

0

xyexyez
xx






)2()( 2

2

1 xyexyz x       where 
21,   are arbitrary functions.

2.1.7  Exercise

Solve the following differential equations:

(i)
yx

yyxx ezDDDD 3222 )2( 

(ii) )2(sin10
²

²
3

²
10

²

²
3 yx

y

z

yx

z

x

z














(iii) yßxatr coscos

(iv) yxtsr 3223 

)(sin²6 yxxtsr 
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(v) yxzDDDD yyxx 2)24( 22 

(vi) )2(sin4)44( 223 yxzDDDDD yxyxx 

(vi) )2(tan)44(
22

xyzDDDD yyxx 

(vii) Solve the following partial diff. equation

(viii)    0 zqpsr
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 PARTIAL DIFFERENTIAL EQUATIONS

LESSON  NO. 2.2           AUTHOR: DR.RAJ KUMAR

PARTIAL DIFFERENTIAL EQUATIONS -V

2.2.1 Methods to find P.I. Of non-homogenous linear partial differential

equations with constant coefficients

2.2.2 Heat, wave and Laplace’s equation

2.2.3 Method of separation of variables

2.2.4 Heat diffusion equation

2.2.5 Vibrations of stretched string-wave equation

2.2.6 D’ Alembert’s solution of the wave equation

2.2.7 Solution of Laplace’s equation in two dimensional

2.2.8 Exercise

2.2.1 METHODS TO FIND P.I. OF NON-HOMOGENOUS LINEAR PARTIAL

DIFFERENTIAL EQUATIONS WITH CONSTANT CEFFICIENTS

Here we are discussing some rules (methods) to find P.I. of

),(),( yxFzDDf yx 

TYPE-I       When 
yßxa

eyxF
),(     form

Then P.I. = 
yßxayßxa

yx

e
ßaf

e
DDf

 
),(

1

),(

1

if 0),( ßaf      i.e., change xD  by a  and yD  by ß .

TYPE-II       When )(sin),( yßxayxF   or  )(cos yßxa 

Then P.I. = )(sin
),(

1
yßxa

DDf yx



19
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or   ßabyDDandßbyDabyDchange
yßxa

yxyz 


²²,

1
)(cos

22

)(cossin( yßxaoryßxa  if denominator 0

TYPE-III       When 
ml yxyxF ),(

Then P.I. = )()),((
),(

1 1 ml

yx

ml

yx

yxDDfyx
DDf



Here expand 
1)),(( 

yx DDf  in as cending powers of

x

y

y

x

D

D
or

D

D
.

TYPE-IV       When ),(),( yxUeyxF
yßax

Then P.I. = ),(
,(

1
),(

),(

1
yxU

ßDaDf
eyxUe

DDf yx

yßxayßxa

yx 
 

Note: If 
yßxaeyxFßaf  ),(when0),(

Then )1(
),(

1

),(

1 ßyxa

yx

yßxa

yx

e
DDf

e
DDf

  Here U(x, y)=1

=  )1(
),(

1

ßDaDf
e

yx

yßxa




.

Example 1. Find the general solution of   
yx

eyxqptr
2

33
 .

Sol. We have 
yxeyxqptr 233 

yx

yxyx eyxzDDDD
222

)33(


yx

yxyx eyxzDDDD
2

)3)((


        C.F. is given by
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).1.1()11( 2
1

3

1
1

0

yxeyxez
xx





  )()( 2

3

1 yxeyx x  

  )()( 2

3

1 yxeyx x  

where 
21,  are arbitrary functions

And P.I. = )(
)3()(

1 2 yx

yxyx

eyx
DDDD




=  
yx

yxyxyxyx

e
DDDD

yx
DDDD

2

)3()(

1

3)((

1 




          ...(1)

Here yx
DDDD yxyx )3()(

1



=  

)(

3
1)3(1

1
yx

DD

D

D
D

yx

x

y

x 






 











=  )(
3

11
3

1
11

yx
DD

D

D

D

yx

x

y

x










 













=  )()²(
9

1
)(

3

1
11

1

3

1
yxDDDD

D

D

D
yxyx

x

y

x








 









=  0)(
9

2
))((

3

1
1

1

3

1








 







 yxDDyxDDyx
D

D

D
yxyx

x

y

x

=  






 












9

2

3
1

1

3

1 xy
yx

D

D

D x

y

x
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=  














 








 


3

1

9

2

3

1

3

1 xy
yxD

D

xy
yx

D
y

xx

= 














 



3

11

9

2

3

1

3

1
x

D

xy
yx

D xx

=  






 



32

²

9

2

3

1

3

1 xxyx
yx

Dx

=  






 
6

²

6

³

39

2

6

²

2

²

3

1 xxyx
x

x
y

x

=  
18

²

18

³

927

2

18

²

6

² xxyx
x

xyx


=  x
xyxxyx

27

2

18

³

99

²

6

²
 .

And    
yx

yxyx

e
DDDD

2

))(3(

1 



  
yx

yxyx

e
DDDD

2

))(3(

1 




 =  
yx

yx

e
DD

2

1

1

3

1 







         (It is case of failure)

    = )1(
321

12


 

yx

yx

DD
e

   =  )1()( 12   yx

yx DDe

   =  )1(1
1

1

2















x

y

x

yx

D

D

D
e
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   =  )1(1
12









 

x

y

x

yx

D

D

D
e

    =  







  )01(

12

x

yx

D
e

     = )(2 xe yx

Put in (i)

P.I. = 
yxexx

xyxxyx 2

27

2

18

³

99

²

6

² 

Hence the general solution is
yxx ex

xxxyx
yxeyxz 2

2

3

1
27

2

18

³

9

²

6

²
)()(   . correct

2.2.2  HEAT, WAVE AND LAPLACE'S EQUATION

Physical applications of partial differential equations involve the setting

up and solution of differential equations which involve physical problems like

waves on string, heat diffusion in metal bar etc. The differential equation together

with these boundary conditions, constitute a boundary value problem.

A number of problems in engineerng give rise to the following well known

partial differential equations:

(i) Wave equation : .
²

²
²

²

²

x

y
c

t

y








(ii) One dimensional heat flow equation : .
²

²
²

x

u
c

t

u








(iii) The dimensional heat flow equation which in steady becomes the two

dimensional Laplace's equation :

0
²

²

²

²









y

v

x

v
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(iv) Transmission line equations.

(v) Vibrating membrane. Two dimensional wave equations.

(vi) Laplace's equation in three dimensions.

Beside these, the partial differential equations frequently occur in the theory of

elasticity.

2.2.3 Method of Separation of Variables

The method is used in solving second order linear partial differential

equations i.e. of the form wTtSsRrQqPp             ...(1)

where P, Q, R, S, T, W are functions of x, y only

Put z = X(x) Y (y)            ...(2)

Then  equation (1) becomes

YDg
Y

XDf
X

)'(
1

)(
1

           ...(3)

It can be solved by method of separation of variables. In this case, equation

(1) is known as separable in x, y.

Now equation (3) is possible only when each side is constant  (say) because

L.H.S. is a function of x only and R.H.S. is a function of y only

Then X and Y are given by XXDf )(            ...(4)

and YYDg )'(            ...(5)

Equations (4) and (5) are ordinary linear second order differential equations

and can be solved.

Knowing X, Y the solution of (1) is given by (2)

2.2.4 Heat Diffusion Equation

Consider a homogenous bar of uniform cross-section a. Suppose that the

sides are covered with a material imperivious to heat so that the stream lines of

heat-flow are all parallel and perpendicular to the area a. Take one end of the bar

as the origin and the direction of flow as the positive x-axis. Let p be the density,

s  the specific heat and k the thermal conductivity.



  B.A -PART-I(SEMESTER-II) 25            MATHEMATICS : PAPER-V

Let ),( txu  be the temperature at a distance x  from 0. If u  be the temperature

change in a slab of thickness x  of  the bar then the quantity of heat in this slab.

uxaps 

Hence the rate of increase of heat in this slab is

,21 RR
t

u
xaps 





where 
1R  and 

2R  are respectively the rate of inflow and out flow of heat.

These rates are given by

xxx x

u
kaRand

x

u
akR

























 21







 





 

x

xuxu

sp

k

t

u xxx


 )/()/(

Writing ²,/ cspk   called the diffusivity of the substance and taking the

limit as ,0x  we get

²

²
²

x

u
c

t

u








This is one dimensional heat-flow (diffusion) equation.

Example 2. Find the solution of 
²

²
²

x

u
c

t

u








 satisfying boundary conditins

),(0),0( tlutu   and .0,)()0,( lxxxlxu 

Sol. by using the method of variable separation  we get,

R
1

R
2

xx

a

O
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







1

²

²²²

sin),(
n

t
l

nc

n e
l

xn
atxu


   ....(1)          satisfying ),(0),0( tlutu 

Using intitial condition 0)(  twhenxxlu

we get 





1

sin)(
n

n
l

xn
axxl



 
l

n dx
l

xn
xxl

l
a

0

sin)(
2 

  



































 
 

l

l
n

l
xn

l

l
n

l
xn

xlxxl
l

00

cos
)2(

cos
²

2


















 

l

dx
l

xn
xl

n

l

l
0

cos)2()00(
2 






















 
l

l
n

l
xn

l

l
n

l
xn

dxxl
n

l

l
00

sin
)2(

sin
)2(

2






























 


l

l
n

l
xn

n
l

xn
nl

n

l

n
0

cos21
0sin)(

1
sin)(

2

















 )0coscos(

²²

²2
00

2



n

n

l

n

 
³³

))1(1²(4
1)1(

³³

²4

 n

l

n

l n
n 



Putting in (1), we, get















 


1

²

³²²

sin
³

)1(1

³

²4
),(

n

t
l

ncn

e
l

xn

n

l
txu


  is the required solution.

2.2.5  Vibrations of Stretched String-Wave Equation

Consider a tightly stretched elastic string of length l and fixed ends A and

B subjected to constant tension T. The tension T will be considered to be large as
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compared to the weight of the string so that the effects of gravity are negligible.

Let the string be released from rest and and allowed to vibrate. We shall

study the subsequent motion of string, with no external forces acting on it,

assuming that each point of the string makes small vibrations at right angles to

the equilibrium position AB of the string entirely in one plane.

Take the end A as the origin, AB as the x-axis and AY perpendicular to it as the y-

axis; so that the motion takes place entirely in the xy-plane. The above fig shows

the string in the position APB at time t. Consider the motion of the element

PQ of the string between its points P (x, y) and Q ),,( yyxx    where the tangents

make angles   and    with x-axis. Clearly the element is moving upwards

with the acceleration ²/² ty  . Also the vertical component of the force acting on

this element.

 sin)(sin TT 

  sin)(sin T

  smallissincetan)(tan  T
































 xxx x

y

x

y
T



If m be the mass per unit length of the string, then by Newton's second law

of motion, we have

mass X acceleration = Net force
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


































 xxx x

y

x

y
T

t

y
xm




²

²
)(

i.e.










































 

x

x

y

x

y

m

T

t

y
xxx




²

²

Taking limits as ,0..,  xeiPQ   we have

²

²
²

²

²

x

y
c

t

y








,                  .....(1)               where 
m

T
c ²

This is the partial differential equation giving the transverse vibrations of

the string. It is also called the one dimension wave equation.

(II) Solution of the wave equation :

Assume that a solution of (1) is of the form

)()( tTxXy  ...(2)

Where X is a function of x a nd T is a function of t only.

Then ''
²

²
TX

t

y





 and TX
t

y
''

²

²





      Substituting these in equation (1), we get

TXcTX ''²''         i.e.           
T

T

cX

X ''

²

1''
  .....(3)

Clearly the left hand side of (3) is a function x only and the right side is a

function of t only. Since x and t are independent variables, (2) can hold good if

each side is equal to a constant k (say). Then (3) leads to the ordinary differential

equations:

0
²

²
 kX

dx

Xd
...(4)

and 0²
²

²
 Tkc

dt

Td
...(5)
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Solving (4) and (5), we get

(i) When k is positive and ²,pk  say

xpxp ececX  21      and     
cptcpt ececT  43

(ii) When k is negative and ²,pk   say

pxcxpcX sincos 65        and     .sincos 87 cptccptcT 

 (iii) When k is zero

109 cxcX        and      
1211 ctcT 

            Thus the various possible solutions of wave-equation (1) are

))(( 4321

cptcptxppx ececececy   ...(6)

)sincos()sincos( 8765 cptccptcxpcxpcy  ...(7)

)()( 1211109 ctccxcy  ...(8)

Of these three solutions, we have to choose that solution which is consistent with

the physical nature of the problem. As we will be dealing with problems on

vibrations, y must be a periodic function of x and t. Hence their solution must

involve trigonometric terms. Accordingly the solution given by (7) i.e. of the form.

)sincos()sincos( 4321 cptccptcpxcpcy  ...(9)

is the only suitable solution of the wave equation.

Example 3. A string fixed at ends distant   is initially in the shape of the string


 )(

)0,(
xx

xy


  and is released from rest. Find ).,( txy

Sol. The displacement ),( txy  is solution of wave equation

²

²
²

²

²

x

y
c

t

y








...(1)

with boundary conditions ),(0),0( tyty   for all 0t  and initial displacement

is given by


 )(

)()0,(
xx

xfxy


   for  x0
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and initial velocity = 0

by using method of separation variable we get,

Here l
We have






















1

sincos),(
n

n

xntcn
Etxy













1

)(sin)(cos
n

n xntcnE

where  













0

sin)(
2

dx
xn

xfEn











0

sin
)(2

dxxn
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






























  





00

cos
)2(

cos
)(

²

2
dx

n

xn
x

n

xn
xx











 






0

cos)2(
1

)00(
²

2
dxxnx

n















 






00

sin
2

sin
)2(

²

2
dx

n

xn

n

xn
x

n


















 


 0

cos2
)00(

²

2

n

xn

nn

)0cos(cos
1

²²

4








 xn
nn 













12.e.i)³12²(

if8

evenif0

)1)1((
²³

4

pnpn

oddn

n

n

n












1

).)12((sin))12((cos
)³12(²

8
),(

p

xpctp
p

txy

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2.2.6 D' Almebert's Solution of the Wave Equation

The wave equation is

²

²
²

²

²

x

y
c

t

y








...(1)

Let us introduce the new independent variables ctxvctxu  ,  so that

y becomes a function of u and v.

And    















































v

y

u

y

vuv

y

u

y

xx

y

²

²

11 
































v

y

u

y

vv

y

u

y

u

²

²²

²

²

v

y

uu

y

u

y















Similarly       .
²

²²
2

²

²
²

²

²

























v

y

vu

y

u

y
c

t

y

Substituting this in equation (1), we get

0
²





vu

y
...(2)

Integrating (2) wrt v, we get )(uf
u

y





...(3)

Where )(uf is an arbitrary function of u. Now integrating (3) w.r.t. u we obtain.

  )()( vduufy  .

Where )(v  is an arbitrary function of v. Since the integral is a function of

u alone, we may denote it by ).(u . Thus

v

y

u

y

x

v

v

y

x

u

u

y

x

y



























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)()( vuy  

i.e. )()(),( tcxctxtxy   ...(4)

This is the geneal solution of the wave equation (1)

Now to determine   and  , suppose initially

)()0,( xfxu   and .0
)0,(





t

xy

Differentiating (4) w.r.t.   t, we get )(')(' tcxctcxc
t

y







At )(')(',0 xxt   ...(5)

and )()()()0,( xfxxxy   ...(6)

.)()(gives kxx  

)()(2becomes xfkx  

or     kxfx  )(
2

1
)(    and   kxfx  )(

2

1
)(

Hence the solution of (4) takes the form

   ktcxfkctxftxy  )(
2

1
)(

2

1
),(

))()((
2

1
),( ctxfctxftxy  ...(7)

which is the d'  Alembert's solution of the wave equation (1).

Example 4. Using D' Alembert's method, find the deflection of a vibrating string

of unit length having fixed ends with initial velocity zero and initial deflection

³)()( xxaxf 

Sol. The vibrations of an elastic string are governed by

²

²
²

²

²

x

u
c

t

u








under conditions ),1(0),0( tutu 

Here ³)()()0,( xxaxfxu 

and 0)0,( xut
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By D' Alembert's method, the solution is

))()((
2

1
),( ctxfctxftxu 

)³)(()³)(((
2

1
ctxctxactxctxa 

²)²6³2(2(
2

tcxxx
a



²)²3²1( tcxax 

)(²)1()0,( xfxaxxu 

and ))2²(3(
),(

tcax
t

txu





,0
),(

0










tt

txu
  i.e. boundary conditions are satisfied.

Hence solution is ²)²3²1(),( tcxaxtxu 

2.2.7 SOLUTION OF LAPLACE'S EQUATION IN TWO DIMENSIONAL

The Laplace's Equation is 0
²

²

²

²









y

u

x

u
...(1)

Let         )()( yYxXu   be a solution of (1)

Putting in (1), we get 0
²

²

²

²


dy

Yd
X

dx

Xd
Y

²

²1

²

²1

dy

Yd

Ydx

Xd

X
 ...(2)

Since x and y are independent variables so (2) can hold good only if each

side of (2) is equal to constant k (say). Then (2) leads to the ordinary differential

equations.

0
²

²
 kX

dx

Xd
   and     0

²

²
 Yk

dx

Yd
...(3)
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Solving these equations, we have to discuss three cases

Case I.  When k  is +ve i.e. ²k

Equation (3) becomes 0²
²

²
 x

dx

Xd
    and   0²

²

²
 y

dy

Yd


A.E.'s are     0²² D and 0²'²  D

 D and iD '

so that 
xx

eaeaX
  21

and ybybY  sincos 21 

Or

xaxa  sinhcosh 21 

)sinhcoshandsinhcosh xxexxe
xx    



Thus solution of (1) is











 

)sincos()sinhcosh(

)sincos()(),(

2121

2121

ybybxaxa

or

ybybeaeayxu xx





...(4)

Case II. When 0k

Equation (3) becomes 0
²

²


dx

Xd
   and     0

²

²


dy

Yd

Solving 43 axaX    and   43 bybY 

Thus solution of (1) is

)()(),( 4343 bybaxayxu  ...(5)

Case III. When k is -ve i.e. ²k
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Equation (3) becomes 0²
²

²
 x

dx

Xd
   and  0²

²

²
 y

dy

Yd


A.E.'s are 0²² D and 0²'² D

, D and 'D

so that

xaxaX  sincos 65    and
yy

ebebY
   65

OR

ybyb  sinhcosh 65 

Thus solution of (1) is











 

)sinhcosh()sincos(

)()sincos(),(

6565

6565

ybybxaxa

Or

ebebxaxayxu yy



 

      ...(6)

Example 5. Solve 0
²

²

²

²









y

u

x

u

subject to   yyuyu 0;0),(),0(

and   xxxuxu 0;²sin)0,(,0),(

Sol. Do as in Example 2

Here xxFxu ²sin)()0,( 

Here  ml

 













0

sin²sincosech
2

dxx
n

xAn

 






 







0

)(sin
2

2cos1
cosech

2
dxxn

x
n









  

 




0 0

2cossinsincosech
2

2
dxxxndxxnn
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

















  





00

))2(sin)2((sin
2

1cos
cosech

1
dxxnxn

n

xn
n

  































 02

)2(cos

2

)2(cos

2

1
1)1(

1
cosech

1

n

xn

n

xn

n
n n

  



































2

)2(cos

2

)2(cos

2

1
1)1(

1
cosech

1

n

n

n

n

n
n n 




where 2n

 








































 






2

1

2

1

2

)1(

2

)1(

2

1
1)1(

1
cosech

1

nnnnn
n

nn
n



nnnn )1(2cos)1()2(cos2(cos(  

   and cos   nnnn )1(2cos)1()2(cos)2(  
































4²

2

2

1

4²

2

2

)1(
)1(1(

1
cosech

1

n

n

n

n

n
n

n
n



oddisif
4²

2

2

1

4²

2

2

12
cosech

1
n

n

n

n

n

n
n 




























 


oddisif
4²

22
cosech

1
n

n

n

n
n 










 


.oddisif
)4²(

cosech8
n

nn

n









And 0nA  if n is even

And when ,2n  then  
 

0 0

2sin²sinsin²sin dxxxdxxnx




0

)cossin2(²sin dxxxx
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=  









 

0 0

4

0
4

sin
2cos³sin2

x
dxxx

Hence sol is given by












1

)(sin))((sin
)4²(

cosech8
),(

n

xnyn
nn

n
yxu 




where n is odd

 
 

 










1

.)12(sin))(12(sinh
4)²12()12(

)12(cosech8

p

xpyxp
pp

p




2.2.8 EXERCISE

1.  Solve 0
²

²

²

²









y

u

x

u
   subject to myyluyu  0;0),(),0(

and lxxxlxumxu  0²,)0,(,0),(

2. A rectangular plate with insulated surface is 8 cm wide and so long

compared to its width that it may be considered infinite in length without

introducing an appreciable error. If the temperature along one short edge 0y

is given by

80,
8

sin100)0,( 






 x
x

xv


3. A long rectangular plate of width a cms withinsulated surface has its

temperature v equal to zero on both the long sides and one of the shortsides so

that

xkxvxvyavyv  )0,(,0),(,0),(,0),0(

show that the steady state temperature within the plate is









1

1

sin
)1(2

),(
n

a

ynn

a

xn
e

n

ka
yxv






(4)   Solve ,²
²

²

t

u
c

x

u








 given that

(i) 0u  when 0x  and l for 0t            (ii)       .0;
100

lx
l

x
u 



  B.A -PART-I(SEMESTER-II) 38            MATHEMATICS : PAPER-V

 
(5) A homogeneous rod of conducting material of length 100 cms has its

ends kept at zero temperature and temperature initially is










10050,100

500
)0,(

xx

xx
xu

(6) Find the deflection ),( txu  of the vibrating string )1²and(length  c

corresponding to zero initial velocity and initial deflection.

(7) A string is stretched and fastened to two points l apart. Motion is started by

displacing the string in the form 
l

x
ay


sin  from which it is released at

time t=0. Show that the displacement of any point at a distance x from one

end at time t is given by

.cossin),( 















l

ct

l

x
atxy



(8) A tight string of length l has its ends lxx  ,0  fixed. The point where

3

1
x  is drawn aside a small distance h and released at time .0t  At any

subsequent time 0t  the displacement ),( txY  of the string satisfies the

one dimensional wave equation

²

²
²

²

²

x

Y
c

t

Y








Determine ),( txY  at any time .0t


