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B.A. PART - I MATHEMATICS : PAPER-I
(SEMESTER-I) CALCULUS

LESSON NO. 1.1 Author : Dr. Chanchal

SUCCESSIVE DIFFERENTIATION

Structure :
I. Objectives
II. Introduction
III1. Successive Differentiation of Some Standard Functions
IV. Some Important Examples
V. Leibnitz's Theorem
V.(a) Some Important Examples
VI. Self Check Exercise
VII. Suggested Readings

I. Objectives
The prime goal of this unit is to enlighten the basic concepts of successive
differentiation, multiple points and asymptotes, concavity and convexity etc. During
the study in this particular lesson, our main objectives are
* To obtain n* order derivatives of some standard functions by the method
of mathematical induction.
* To discuss Leibnitz's theorem for finding the n® order derivatives of the
product of two functions.
II. Introduction
We are already familiar with the concept that derivative of a function of x is also a
function of x. Thus the derivative of a function may have its derivative without any
loss of genrality.

Ify = fx),
dy _ lim f(x +6x) - f(x) _ £(x)
dx 5x—0 Ox

is called the first differential coefficient or first derivative of f(x). If the process of
differentiation be continued in succession, we obtain second, third and higher order
derivatives, as follows :
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2 ' _f
dy:i[d_yj:hmf(erSX) f(x):f,,(x)’
dx? dx\dx) &0 dx

3 2 " Al
d}slzi d}QI :Hmf(x+8x) f(X):f”'(x)
dx® dx|(dx x>0 ox

and so on. These are also denoted by
dy d?y 2 d%y
=— =Dy, =— = Dy, L= =D"

Y dx Y, Y2 ax y ax" y

III. Successive Differentiation of Some Standard Functions
Art 1.1 : Prove the following results :
(i) Ify = (ax + b)™, then y,=m (m-1) (m-2).... (m—-n +1) (ax + b)™™an.
Proof : Here y = (ax + b)™
Differentiating both sides w.r.t. x, we get,
y,=m (ax + b)™'. a=m (ax + b)™'. a'
result is true forn =1
Assume that the result is true for n = k, where k is positive integer.
y,=m (m-1) (m-2) ... (m -k + 1) (ax + b)™*. a*
Differentiating both sides w.r.t.x, we get,
Vi, = m (m-1) (m-2) ... (m -k + 1) (m-k) (ax +b)™*"'. a . a*
or Vi, = m (m-1) (m-2) ... (m -k + 1) (m - k) (ax + b)m* &1, ak*!
result is true for n = k + 1.
if the result is true for any positive integer k, then it is also true for the next
higher integer k + 1.
But the result is true for n = 1 also.
By method of induction, the result is true for all positive integers n.

Cor. I. If m is a positive integer > n, then

or Vo =

Ifm=n,theny =n(n-1)(n-2)... 2.1 (ax+ b)°. a"

or y,=[n.a"
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yn+1=yn+2=...=0
y,=0Vn>m.
(i) Ify-—" ,thenynzm,xi—g.
ax+b (ax + b)™" a
Proof : Here y = =(ax +b)"’
ax+b
_ ) a'
v, = (Dax+b)?.a- D L2
(ax + b)’

the result is true for n = 1.
Assume that the result is true for n = k, where k is a positive integer.

_ (1)~ . |k . a“ - (-1 k a* (ax + b) !

(ax + b)<*
Differentiating again w.r.t. X, we get,

Vi = (1) [ka® (-k-1) (ax +b) " . a

1 [k 1% (ax + b)) = (N Ik_+11§ -zakﬁ
(ax + b)**
result is true forn =k + 1.
if the result is true for n = k, then it is also true forn = k + 1.
But the result is true for n = 1.
By method of induction, the result is true for all positive integers n.

(iii) Ify=log (ax + b), then y, =~ - ,x>—3.

Proof : Here y = log (ax + b)
Differentiating both sides w.r.t.x,

1 _ytp-ial

ax+b’ (ax + b)'

y. =

the result is true for n = 1.
Assume that the result is true for n = k, where k is a positive integer.

v, = ()" [k-1.a" =(-1)'|k-1.a".(ax+b)"

(ax + b)*
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Differentiating both sides w.r.t.x, we get,

Vien = (1" e=1a* (k) (ax +b)*" . a

0 (o e - 1 e

- (aX + b)k+1

result is true forn =k + 1

MATHEMATICS PAPER-I

if the result is true for n = k, then it is also true forn =k + 1

But the result is true forn = 1.

By the method of induction, the result is true for all positive integers n.

Note : Same result will hold even if y = log |ax + b| where x > — E

(iv)

Ify =a™, a >0, theny_=a™. (loga)". m".

Proof : Here y = a™

Cor.

Differentiating both sides w.r.t.x,
y,=a™, loga.m=a™. (loga)'. m'
the result is true for n = 1.

a

Assume that the result is true for n = k, where k is a positive integer.

y, = a™. (log a). m*
Differentiating both sides w.r.t.x,

yk+1= [am". (log a) . (m)] . (log a)k. mk= gmx (log a)k+1 Cmk+!

result is true forn =k + 1.

if the result is true for n = k, then it is also true forn = k + 1.

But the result is true forn = 1.

By the method of induction, the result is true for all positive integers n.

l.Putm=1
y, = ar. (log a)"
y=a* = y_=a*. (loga)"

Cor. 2. Puta=-¢

y,= e™. (log €)". m"= e™. m"
y=ew=y =e™. m"

Cor. 3. Puta=e, m=1

(v)

y,=€*. (loge)*. (1)"= e~
y=e=y, =e.

If y = sin (ax + b), then y_= a”sin (ax+b+%)VxeR.
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Proof : Here y = sin (ax + b)
Differentiating both sides w.r.t. x,

y,=cos (ax + b) . a=a'sin [ax+b+1.g}

the result is true for n = 1.
Assume that the result is true for n = k, where k is a positive integer.

y, =af sin[ax+b+kg}

Differentiating again w.r.t.x,

Vi =akcos[ax+b+kg}.a:ak“sinKax+b+kg)+g}

=a""! sin[ax+b+(k+1)g}

result is true forn =k + 1.
if the result is true for n = k, then it is also true forn = k + 1.

But the result is true for n = 1.
By the method of induction, the result is true for all positive integers n.

(vi) If y = cos (ax + b), then y_= a”cos (ax+b+ngJVxeR.
Proof : The proof is left as an exercise for the reader.

> . a b
(vij Ify = e**sin (bx + c), then y, = (@ +b’)? €™ sin [bx +c+ntan’ —j
a
Proof : Here y = e**sin (bx + ¢)
Differentiating both sides w.r.t.x,

y, =e*. a4 [sin (bx + c)] + sin (bx + ¢). a4 (™)
dx dx

=e*.cos (bx+c).b+sin (bx+c).e*.a

y, = e*[a sin (bx + ¢) + b cos (bx + ¢]]

Put a=rcosaandb=rsinawherer > 0.
Squaring and adding (2) and (3), we get,

a?+b?=r’>=>r=+a’+b?
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Dividing (3) by (2), tan o =2 = = tan

ab
a a

from (1), y, = e [r cos a sin (bx + ¢) + r sin a cos (bx + ¢)]

e®®. r [sin (bx + c¢) cos a + cos (bx + ¢) . sin q]

r e®*sin (bx + ¢ + q)

1
o . a4 b
y, =(a®> +b%)? . e* sm(bx+c+1.tan l—j
a
the result is true for n = 1.
Assume that the result is true for n = k, where k is a positive integer

k

¥, =(@? +b?)? . e* sin [bx +c+ktan™! gj
or y, = r*e®sin (bx + ¢ + ka)

Differentiating again w.r.t. X, we get,

Ve.,= 1. [e®. cos (bx + ¢ + ka) . b + sin (bx + ¢ + ka) . ae*

=k, e®[a sin (bx + ¢ + ka) + b cos (bx + ¢ + ka)]

=1k, e®[r cos a sin (bx + ¢ + ka) + r sin a cos (bx + ¢ + ka)]

=rk*! e™sin [(bx + ¢+ ka) + a] =r**!. e™sin [bx+c+ (k + 1) o]

)
Vg =(@°+Db%) 2 e sin (bx+c+(k+1) tanlEj
a

the result is true forn =k + 1

if the result is true for n = k, then it is also true forn = k + 1.

But the result is true for n = 1.

By the method of induction, the result is true for all positive integers.
(viii) Ify = e*cos (bx + c), then

y, =(a? +b?)? .e* cos [bx +c+ntan’ E)
a

Proof : The proof is left as an exercise for the reader.
IV. Some Important Examples
Example 1 : If y = cosh (log x) + sinh (log x), prove that y_= 0 for n > 1.
Sol. y = cosh (log x) + sinh (log x)
Differentiating both sides w.r.t.x, we get
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y, =sinh (log x). 1 + cosh(log x). 1
X X

xy, = sinh (log x) + cosh (log x)
or Xy, =y
Again differentiating w.r.t.x, we get
Xy,*y,=y, or xy,= 0
y,=0
y,=Oforx>1.

Example 2 : If p>= a?cos®0 + b?>sin?0, prove that p+ ol

Sol. Here p?= a?cos?0 + b?sin?0

- p? = a? (1+cgs 26]+b2 [1—0;5 26]

= 2p?=a?(1 + cos 20) + b2 (1 — cos 26)
= 2p?— (a?+ b?) = (a?- b?) cos 20 (1)
Differentiating w.r.t. 6, we get,
dp 2 2) i
4p —=-2(a” —b") sin 20
P s ( )
or —2p %P _ (a2 _1?) sin 20 .. (2)

de
Squaring (1), (2) and adding, we get,

2
4p* +(@% +b’)? —4p® (@% + b*) + 4p° (%) =(a® -b*y

2
or 4p* —4p*(a® + b?) + 4p° (%) +@%+b’)P -(@*-b*)P* =0
4 4202 2 2 (dp ’ 212 _
or 4p” —4p~(a” +b*)+4p a0 +4a“b* =0
Dividing both sides by 4p?, we get,

2 21,2
pz—(a2+b2)+(d—pj +a}23 =0
de p
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Dividing by 2%, we get,

d’p a’b’

d0?  p°

P+

Example 3 : Find the nth derivative of fax + b -

1

Sol. Let y=+ax+b =(ax+b)?

1 51 1 AN
y;=—(ax+b)?2 .a==(ax+Db) (RO
2 2 ?

2—1(——j(ax+b)2a2= UL bt
2 2
1( 1\( 3 >,
n=g(-3)(-3) v
3_(—1)221.3( cop &

(-1)*'1.3.5...2n-1)(ax + b)?  a”

Vo = >
g EUT35.00-Y b
a
2" (ax + b) 2
2x +1
Example 4 : Findy if y=—"——.
P e Y Ty -1
2x +1
Sol. - =T
Yo k-2 (x-1]
ox +1 A B c

D

x-2) (-1 x-2 x-1 (x=17 (x-17

MATHEMATICS PAPER-I
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Multiplying both sides by (x-2) (x—1)%, we get
2x+ 1=A(x-1)*+ B (x-2) (x-1)2+ C (x - 2) (x-1) + D (x-2) ... (1)
Putting x -2 =0 i.e. x = 2 in (1), we get
S=A=A=5
Putting x -1 = 0i.e. x =1 1in (1), we get
=-D=D=-3
(1) can be writing as
2x + 1=A (x*- 3x?+ 3x-1) + B (x*-4x?+ 5x-2)+C (x*-3x+2)+D (x - 2)

.. (2)
Equating coefficients in (2) of
x3) A+B=0=5+B=0=B=-5
x?) -3A-4B+C=0=-15+20+C=0=C=-5
2x +1 5 5 5 3

x-2)(x-1F x-2 x-1 x-1f x-1

5 5 5 3
Y2 x-1 x-17 (x-17°
V., = 5 (_I)HI'E_I -5 (_l)nllll -5 (_l)n |n +21 -3 (_1)n|n+32
1
T 5 B S _Sn+]) 3n+2)(n+
yn - ( 1) Ill (X _ 2)n+1 (X _ 1)n+1 (X _ 1)n+2 (X _ 1)n+3

Example 5 : Find the nth derivative of y = €3 sin?2x.

3x 1 —Cos4x

Sol. y=e*sin®? 2x =™ ——— = = _¢*

Lo _ le3x cos 4x
2 2 2

w| s

v, :%e‘gx .3" —% (9 +16)2 €** cos 4x +n tan™

v, _ L% 37 _57cos 4x +ntan i
2 3

V. Leibnitz's Theorem
Statement : If u and v are functions of x possessing nth order derivatives, then
(uv),=*C,ju, v+"C,u_,v,+°Cu ,v,+..+2Cu_v+. +°C uv,

where u_denotes the rth order derivative of u and "C_denotes the number of
combinations out of n different things taken r at a time.
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Proof : We have
= =1 1
(uv),=uyv +uv, ='Cuv+'C uv,
theorem is true for n = 1.
Assume that the theorem is true for n = m, where m is a positive integer.
— m m m
(uv) Cu v+™Cu v +2Cu ,v,+ ..
+2C _u v +™Cu_ v +..+™mC uv
r-1 m-r+1 " r-1 r m-r r m m

Differentiating both sides w.r.t.x, we get,
(uv) =mC,u_

m+ 1

m
1V+ Coumvl

+

m, m,
Cl um Vl + Cl um—l V2

mC u v, t7°C_u v

r-1 m-r+2 " r-1 m-r+1 "1

mnC u v+ u v
r r m

r  m-r+1 -r r+l

+ + + + + o+

mCm u v _+ mCm uv

m+1

. = m m, m, m, m
c(av) Cu_,, v+t ((™C,+mC)u v, ("C, +"C)u_ v,
m m, m
+..+(C_+™C)u_ vyt .. +7C uv_,
But =C,=1=""1C/
m, m — m+1
CO+ Cl Cl
m, m — m+1
C1+ C2 C2
m, m — m+ 1
Cr—1+ Cr Cr
m, = = m+ 1
c. =1 C..,
. we have
m+ 1 m + 1 m + 1
(uv),_ ., Cou_,, v+ Cu v + C,u_,v,+ ..
m + 1 m+ 1
+ Cu_ ,v+..+ C..,uv_,,

theorem is true forn = m + 1.

if the theorem is true for n = m, then it is also true forn=m + 1

But the theorem is true forn = 1.

By the method of induction, theorem is true for all positive integers n.

V.(a) Some Important Examples

da° [log x}:(—l)“lg[ 1 1 1}
3

Example 6 : Prove that — —
X X

Given that x > 0.

loﬂzlogx.l
X X

Sol. Here y=
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1
Let V = log x u %
1 -1 2
Vi==x U, = (1) x
V,=(-1) x? U,= (-1) (-2) x3
(<13
V,=(-1) (-2) x?° Uy =—73 13
X
and so on and so on
_ 1)1 _ _ 1\
v, -0 a1 y, LVl
X X
By Leibnitz's rule
dy _d (U.V):d (long
dx® dx® dx” X
1\ _ n-1 _
="C, El'In 121+1|2.10gx+“C1 ) nn l.l
X X X

Example 7 : If y = (sin' x)?, find y, (0).
Sol.

y = (sin™! x)?

Differentiating w.r.t. x,

Squaring and cross-multiplying
(1 -x?)y,?=4 (sin'x)?

(1-x))y?2-4y=0

Differentiating w.r.t.x, again we get,

(1-x?)2yy,-2xy2-4y,=0

= (1-x%)y/?=4y

MATHEMATICS PAPER-I
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Dividing by 2y,, we get
(1-x)y,-xy,-2=0 ... (3)

Differentiating n times (3) by Leibnitz's rule,

n nn-1 n
1. Yoz (1—X2)+Tynﬂ (—2X)+%yn(—2)—l-ym1 X=TYa .1-0=0

1-x)y, ,,~2n+1)xy , —-n’% =0 ... (4)
Putting x = 0 in (1), (2), (3) and (4) we get,

y (0)=0 ... ()
y,(0)=0 ... (6)
¥,(0) = 2 . (7)
Ya.o= 0%y, (0) ... (8)
Puttingn =1, 2, 3, 4 ... in (8), we get,

y,(0) = 1%y, (0) =0 ... (9) [ of (6)]
v, (0) = 2%y, (0) = 2.22 ... (10) [ of (7)]
y5(0)=3%y,(0)=0 . (11) [ of (8)]
¥e(0) = 4%y,(0) =2 .2%. 47 [ of (10)]
and so on.

2.2°.4%...(n-2) whennisevenandn # 2
In general y,(0)=

0 when n is odd
VI. Self Check Exercise
1. If y = e®*sinh bx prove that y,— 2ay, + (a*~ b* y = O.
2. If y = log (1 + cos x), prove thatyy, +y,= 0.
2
3. If x = sin 0, y = sin m0, prove that (1 — x?) d—};—xd—y+m2y=0 .
dx dx

4. Find the n* derivative of

. X-a .

(i) xlog( j,x>a>0 (ii) e*cos x cos 2x

X+a
(iii) sin x sin 2x (iv) 2*. e*
ln

5. Ify = x"log x, prove that y,, = =

0. If y = sin (m sin™'x), prove that
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1-x)y,.,-@Cn+1xy  ,-@0-m’)y =0
7. Ify = (x*- 1), prove that (x>~ 1)y_,,+2xy_,, —-n(n+ 1)y =0.
8. If x = tan (log y), prove that

1+x)y ,*20+1)x-1}y ,,+n(n+1)y =0.
VII. Suggested Readings

1. Ahsan Akhtar & Sabita Ahsan : Differential Calculus

2. UP Singh, RJ Srivastava & : Differential Calculus
NH Siddiqui

3. Gorakh Prasad : Differential Calculus

4. Malik and Arora : Mathematical Analysis

S. Thomas and Finney : Calculus and

(Ninth Edition) Analytic Geometry
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LESSON NO. 1.2 Author : Dr. Chanchal

SINGULAR POINTS

Structure :
I. Objectives
II. Introduction
III. Working Method for Concavity, Convexity and Points of Inflexion
IV. Some Important Examples
V. Double Points and their Classification
V.(a) Classification of Double Points
V.(b) Working Method for Finding the Nature of Origin which is a Double
Point
V.(c) Working Method for Finding the Position and Nature of Double
Points of the Curve f(x, y) = O
VI. Some Important Examples
VII. Self Check Exercise
VIII. Suggested Readings

I. Objectives
The prime goal of this lesson is to gain knowledge about the singular points of the
curve y = f(x). During the study in this lesson, our main objectives are
* To discuss about the types of singular points viz., points of inflexion
and multiple points particularly double points, alongwith their
classification and respective nature.
* To study about the concavity and convexity of the curve y = f(x).

II. Introduction

Singular Point : A point on the curve at which the curve behaves in an
extraordinary manner is called a singular point.
There are two types of singular points :
(i) Points of inflexion
(ii) Multiple points
Firstly, we study points of inflexion for which we must be familiar with the concepts

of concavity and convexity of a curve, as discussed below :
14
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Consider the curve y = {(x) in [a, b]. Let it be continuous and possessing tangents at

every point in (a, b).

Draw a tangent at any point P (c, f(c)) on the curve. Let us assume that this tangent

is not parallel to Y-axis so that f'(c) is some finite number.

Now there are three mutually exclusive possibilities to consider :

Y

A

Y Y

A

(if)

(iii)

) (i)

(i)

A portion of the curve on both side of P, however small it may be, lies
above the tangent at P (i.e. towards the +ve direction of Y-axis). In this
case we see that the curve is concave upwards or convex downwards
at P. Such curves "hold water" [See fig. (i)].

As x-increases, f'(x) is either of the same sign and increasing or changes
sign from -ve to +ve. In either case, the slope f'(x) is increasing and
f'(x)>0. Such graphs are bending upwards or bulging downwards and
the portion lies below chord.

A portion of the curve on both sides of P, however small it may be, lies
below the tangent at P (i.e., towards the negative direction of Y-axis).
In this case, we say that the curve is concave downwards or convex
upwards at P [see fig. (ii)].

As x increases, f'(x) is either of the same sign and decreasing or changes
sign from +ve to —ve. In either case, the slope f'(x) is decreasing and
hence f'(x) < 0.

The graph in this case is bending downward or bulging upwards.

The two portions of the curve on the two sides of P lie on different
sides of the tangent at P i.e., the curve crosses the tangent at P. In
this case we say that P is a point of inflexion on the curve [see fig. (iii)].

So, at a point of inflexion, the curve changes from concave upwards to concave

downwards or vice-versa.

So at a point of inflexion f"(x) = O.

Concavity or Convexity of a Curve : A curve is said to be concave downwards

(or convex upwards) on the interval (a, b) if all the points of the curve lie below any
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tangent to it on that interval. It is said to be concave upwards (or convex downwards)
on the interval (a, b) if all the points of the curve lie above any tangent to it on that
interval.

Note : A curve convex upwards is called a convex curve and a curve convex
downwards is called a concave curve.

Point of Inflexion : A point that separates the convex part of the curve from the
concave part of the curve is called a point of inflexion.

Now, we define a multiple point.

Multiple Point : A point on the curve through which more than one branches of
the curve pass is called a multiple point.

III. Working Method for Concavity, Convexity and Points of Inflexion

2

y
dx?

1. Evaluate

2

2. Find the interval (a, b) for which j Yso0.

X2

Then (a, b) is the interval of being convex downwards.

2

3. Find the interval (a, b) for which j 327 <0.
X

Then (a, b) is the interval of being convex upwards.

2
4. Find the values of x which satisfy d_32’:0, and also the values of x
dx
d2
(if any) where Zdoes not exist.
X
Such values x = a, b, c, ... (say) are the possible points of inflexion.
S. x = a will be a point of inflexion

2

Y changes sign at x = a

if (i) either
g dx?

3
exists and is non-zero at x = a.

or (ii
(ii) o

2
d 327 =0 is not a sufficient condition for graph of f to have a point of inflexion.

Note 1.

dx
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Note 2. If at a point, x = ¢, f (c) # O when n is even, then x = c is not a point of
inflexion.

Note 3. If at a point, x = ¢, f (c) = O for some even n and f**) (c) # 0, then the curve
has a point of inflexion at x = c.

IV. Some Important Examples

Example 1 : Find the intervals in which the curve y = (cos x + sin x) e*is concave
upwards or downwards in (0, 2 «). Find also the points of inflexion.

Sol. Here y = (cos x + sin x) e*

j—yz (cos x + sin xX) e*+ (-sin X + cos X) e*= 2e*cos X
X
d’y . .
d?ZQ (e*cos x — e*sin x) = 2 e*(cos X — sin Xx)
d’y .
Now > >0 when 2e*(cos x — sin x) > 0
X
i.,e., cosx—sin x>0 [ 2e* > 0}
1 1 1 1
= \/5 —CoSX———=sinx |[>0= —=cos x——sinx >0
(ﬁ V2 j V2 V2
= sin Fcosx —cos ~sinx >0 = sin| = -x |>0
4 4 4
= sin(x—£j<0 = X—%e(—n, 0) U (r, 2n) and x € (0, 27)

ju[ﬁ,%) and x € (0, 2n)
4 4

. . . e Sn
given curve is concave upwards in (0, Zj U(T, 27:)
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d2y

X2

Again

<0 when 2e*(cos x - sin xX) < 0

i T ST
i.e., wh i XxX-—|>0=>xe|—,—
ie., w ensm( 4) 6[4 4)

given curve is concave downwards in (E,ﬁj.
4
Points of Inflexion
3
d 337 :Q[ex.i(cosx—sinx)+(cosx—sinx)i(ex)}
dx dx dx
= 2e*[-sin X — cos X + cos X — sin x| = —4e*sin x
2
Also d—Z:O = 2e*(cos x —sin x) = 0
dx
= cosx—-sinx=0=sinx=cosx=tanx=1
tanx:tanﬁ,tanﬁ :>x:£,2
4 4’ 4
3 L
When X:E, d 337 - 4etsin 20 #O
4 dx 4
3 5t
When Xzﬁ, 337=—4e4 sin —
4 dx
i
Now when xX=—
4
T . W) = 1 1) 2 z
y=|cos—+sin—|e? =| =+—= et =2 e
4 4 2 2
5
and when x=2
4
50 . 5n) > 1 1 Sz Sz
y=|cos—+sin— |e* =| ——=—-——=|e* =J2e*
( 4 4j ( V2 ﬁj

MATHEMATICS PAPER-I
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ki Sn
given curve has points of inflexion at [%, J2 e“Jand (%, ~J2e* J .

Example 2 : Find the values of x for which y = x*- 6x®+ 12x*>+ 5x + 7 is concave
upwards or downwards. Also determine the points of inflexion.
Sol. Herey =x*- 6x3+ 12x2+ 5x + 7

d—y:4X3 ~18x* +24x +5
dx

d2y

e =12x2% - 36x + 24
X

d2y
Now 2 >0 iff 12x%2- 36x + 24 > 0
X

iff x2-3x+2>0
i.e., iff x2— 3x > -2

9 9
ie. iff x> -3x+=—>-2+—
ie.,i 4 4

i iff (x—§j2>l—2
i.e.,1 B 4

3 (1Y
. . _2 o2
i.e., iff (X 5 (2)
i.e., iff X—é >l

2| 2

. . 3 1 3 1
e, iff x——>—orx-—<-—
2 2 2

ie.iff x>2o0rx<1
curve is concave upwards in (-, 1) U (2, )
2

Similarly j Y <0

X2
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iff <31
2 2
fe,iff —Lox-3c1
2 2
if 1l<x<2
curve is concave downwards in (1, 2)
2
4Y _0 when x2-3x+2 = 0
dx
i,e., whenx=1orx=2
3
9Y _24x 3620 whenx =1, or x = 2
X

x=1,y=191i.e., (1, 19)
x=2,y=23ie., (2, 23)
are the points of inflexion.
V. Double Points and their Classification
As we have already defined a multiple point, on the basis of which we can define a
double point as
Double Point : A point on the curve through which two branches of the curve
pass is called a double point.
V.(a) Classification of Double Points
There are three kinds of double points.
(i) Node : A node is a point on the curve through which pass two real
branches of the curve and two tangents at which are real and distinct.
Thus P is a node.

>
»
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(ii) Cusp : A double point on the curve through which two real branches
of the curve pass and the tangents at which are real and coincident is
called a cusp. Thus P is a cusp.

Y

A

(iii) Conjugate Point or Isolated Point : A conjugate point on a
curve is a point in the neighbourhood of which there are no other real
points of the curve.

>
»

sl

The two tangents at a conjugate point are in general imaginary but sometimes they

may be real.

V.(b) Working Method for Finding the Nature of Origin which is a
Double Point

Find the tangents at the origin by equating to zero the lowest degree terms in x and
y of the equation of the curve. If the origin is a double point, then we shall get two
tangents which may by real or imaginary.
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(1) If two tangents are imaginary, then origin is a conjugate point.

(ii) If two tangents real and coincident, then origin is a cusp or a conjugate
point.

(iii)  If the two tangents are real and distinct, then origin is a node or a

conjugate point.
To be sure, examine the nature of curve in the nbd. of origin. If the curve has real
branches through the origin, then it is a node, otherwise a conjugate point.
To be sure, we test the nature of curve in the nbd. of the origin as above.
Note. Test for nature of curve at origin.
If the tangents at origin are y?= 0, solve the equation of the curve for y, neglecting
all terms of y containing powers above two. If the values of y, for small values of x
are found to be real, the branches of the curve through the origin are real, otherwise
imaginary.
If the tangents at origin are x?= 0, solve the equation for x and proceed as above.

V.(c) Working Method for Finding the Position and Nature of Double
Points of the Curve f(x, y) = 0

2 2 2
Step I. Find %f o of of of

oy’ ox?’ oxdy  oy?
St . of of . .
ep II. Solve the equations P Oand %: 0 to get possible double points.
X

Reject those points which do not satisfy the equation f (x, y) = O of the curve.
Remaining are the double points

2¢ )2 20 A2
Step III. At each double point, calculate D :[ of j o't of

oxdy ) ox? oy

(a) If D is positive, double point is a node or conjugate point

(b) If D = 0, double point is a cusp or conjugate point.
In these cases (a) and (b), find the nature by shifting the origin to the double points
and then testing the nature of tangents and existence of the curve in the nbd. of
new origin.
(c) If D is negative, double point is a conjugate point.
VI. Some Important Examples

Example 3 : Prove that the curve y?= (x-a)? (x-b) has at x = 0, a node if a > b, a
cusp if a=b and a conjugate point if a < b.
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Sol.

The equation of curve is y?= (x-a)? (x-b) ... (1)
When x = a, from (1), y =0

point under discussion is (a, 0)

Shifting origin to (a, 0) by transformationx=X+a,y=Y+0=Y

(1) becomes Y?=X?(X + a-bh) ... (2)

Equating to zero, the lowest degree terms, the tangents at the new origin are given

by

Y?2=X?%(a - D) or Y=xX+a-b ... (3)

Case I. When a>b
From (3), two tangents at new origin are real and different
new origin (a, 0) is a node or a conjugate point

From (2), Y=+ X+vX+a-b

For small non-zero value of X, Yisrealasa-b >0
new origin (a, 0) is a node

Case II. Whena =b

From (3), tangents are Y =0,Y =0

two tangents are real and coincident

origin is a cusp or a conjugate point

From (2), Y?= X3 or Y=+ XX

For small positive values of X, Y is real

new origin (a, 0) is a cusp.

Case III. When a<b

From (2), two tangents at new origin are imaginary
(a, 0) is a conjugate point.

Example 4 : Determine the position and nature of the double point on the curve

Sol.

x3—y?2—- 7x*+ 4y + 15x - 13 = 0.
The equation of curve is
f(x,y) =x°-y>-7x>+4y + 15x - 13 =0 .. (1)

a—f:3x2—14x+15,a—f:—2y+4
ox oy

of

For the double points o =0,—=0,f(x,y)=0
ox oy
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Now a—f=0 =3x?>-14x+ 15=0

ox

= (x—3)(3x—5)=0:>x=3,§

of
and %=0 =>-2y+4=0=>y=2

the possible double points are (3, 2), [E’QJ
3

But (%’ 2) does not satisfy (1)

(3, 2) is the only double point

Nature of the point (3, 2) : Shifting the origin to the point (3, 2) by
transformations x =X + 3,y =Y + 2
(1) becomes (X + 3)°— (Y +2)2-7 (X +3)2+4 (Y+2)+15(X+3)-13=0
or X3+ 9X2+ 27 X+ 27 -Y?-4Y -4 -7X?-42 X - 63 + 4Y

+8+ 15X +45-13 =0.
or X3+2X?*-Y2=0 ... (2)
Equating to zero, the lowest degree terms, the tangents at the new origin are given
by

2X2-Y?2=0 or Y=++2X

which are real and distinct

new origin is either a node or a conjugate point

From (2), Y=+ X+/X+2

which gives real values of Y for small values of X, positive or negative
real branches of the curve exist in the nbd. of the new origin (3, 2)
(3, 2) is a node.

Alter. The equation of the curve is
f(x,y) =x-y?-7x2+ 4y + 15x - 13 =0

a—f:3x2—1x+15,a—f:—2y+4
ox oy

For the double points o _ 0, a_ 0, f(x,y)=0
ox oy
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Now %f=03 3x>-14x + 15 =0

5
= (x—3)(3x—5)=0:>x=3,§

and 6—f:03—2y+4:02>y:2
oy
the possible double points are (3, 2), (%, 2]

But (g, 2) does not satisfy (1)

(3, 2) is the only double point
Nature of the point (3, 2) :

2 2 2
0 g :6x—14,a—£:—2,—a f =0
ox oy 0x 0y
At (3, 2)
2 2 2
0T 18-14-4,21_ 5 % _y
X 0x 0y
’f Y of of
——2.—2=(O)2 -4 (2)=8>0
0x 0y ox® oy
(3, 2) is node.
VII. Self Check Exercise
1. Examine the curve y = x*— 2x3+ 1 for concavity upwards, concavity downwards
and points of inflexion.
2. Show that the points of inflexion of the curve y?>= (x — a)? (x — b) lies on the
line 3x + a = 4b.
3. If y = ax®+ bx%?has a point of inflexion (-1, 2), find a and b.
4. Show that the curve y?= 2 x sin 2x has a node at the origin.
5. Examine the curve x®+ 2x2+ 2xy — y?>+ 5x — 2y = O for a double point and

show that it is a cusp.
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6.

VIII.

Prove that the only singular point on the curve (y — b)2= (x — a)®is a cusp and
find its co-ordinates.

Suggested Readings

Ahsan Akhtar & Sabita Ahsan : Differential Calculus
UP Singh, RJ Srivastava & : Differential Calculus
NH Siddiqui

Gorakh Prasad : Differential Calculus
Malik and Arora : Mathematical Analysis
Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry
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LESSON NO. 1.3 Author : Dr. Chanchal

ASYMPTOTES

Structure :
I. Objectives
II. Introduction
III. Rules for Finding Asymptotes
III.(a) Rectangular Asymptotes
II1.(b) Oblique Asymptotes
III.(c) Asymptote of the General Rational Algebraic Curve
IV. Some other Methods for Finding Oblique Asymptotes
V. Intersection of a Curve and its Asymptotes
VI. Self Check Exercise
VII. Suggested Readings

I. Objectives
During the study in this particular lesson, our main objectives are

* To study the rules for finding rectangular asymptotes (horizontal and

vertical asymptotes).

* To discuss the methods for finding the oblique asymptotes to the curve.
II. Introduction
We are familiar with the plane curves like parabola and hyperbola. Such types of
curves, if drawn completely, will extend to infinity. Suppose that a tangent is drawn
at any point of a curve which extend to infinity. Further suppose that the point of
contact of the tangent moves along the curve in such a manner that its distance
from origin tends to infinity. We may then find a definite straight line (a straight line
at a finite distance from the origin) to which the tangent approaches. Such a straight
line is called an asymptote of the curve. In other words a straight line is said to be
an asymptote of a curve, if the perpendicular distance of any point P on a branch of
the curve from this straight line tends to zero as the point P tends to infinity along
the curve. We now give a formal definition of the asympotote.

27
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Definition : A straight line at a finite distance from the origin to which a tangent
to a curve tends as the distance from the origin of the point of contact tends to
infinity, is called an asymptote of the curve.

III. Rules for Finding Asymptotes
III.(a) Rectangular Asymptotes

If an asymptote to a curve is either parallel to x—axis or parallel to y—axis, then it is
called a rectrangular asymptote. An asymptote parallel to x—axis is usually called
horizontal asymptote and an asymptote parallel to y—axis is called a vertical
asymptote. We discuss below the rules to find these asymptotes :

1. Rule to find asymptotes parallel to x-axis.

Equate to zero the real linear factors in the coefficient of highest power of x in the
equation of the given curve.

It should be noted properly that if the coefficient of highest power of x in the equation
of the given curve is a constant or has no real linear factor, then the curve has no
asymptote parallel to x-axis.

2. Rule to find asymptotes parallel to y-axis.

Equate to zero the real linear factors in the coefficient of highest power of y in the
equation of the given curve.

It should be noted properly that if the coefficient of highest power of y in the equation
of the given curve is a constant or has no real linear factor then the curve has no
asymptote parallel to y-axis.

Example 1 : Find the asymptotes parallel to the axes of the curve x?y*+ y*>= 1.

Sol. The equation of the given curve is x2y2+ y2= 1 ... (1)
The coefficient of highest power of x in (1) is y?
y?= 0 i.e., y = O is the only asymptote parallel to the x-axis
The coefficient of highest power of y in (1) is x2+ 1. Now x?>+ 1 has no real linear
factor.
. given curve has no asymptote parallel to y-axis.
III.(b) Oblique Asymptotes
An asymptote, which is neither parallel to x-axis nor parallel to y-axis is called an
oblique asymptote. Such type of asymptotes can be determined under the following

rule :

Rule to find oblique asymptotes

(1) Find Lt 2 in the equation of the curve and denote it by m.

X—0 X

(i) Find XI;tw (y - mx) in the equation of the curve and denote it by c.
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Then y = mx + ¢ is an asymptote of the curve f (x, y) = 0.

III.(c) Asymptote of the General Rational Algebraic Curve
Let the equation of the curve be

x"0,, (ij +x", (ij +x"0, , (%) F o + X0, (ij +dy (%) =0

where ¢, (XJ represents a polynomial in Y of degree n.
X X

Then, its asymptote can be obtained as
Rule to find oblique asymptotes of a rational algebraic curve :

Step I. Find ¢_(m), ¢_, (m) by putting x = 1 and y = m in the nth degree terms and in
the (n-1)th degree terms respectively of the given curve f(x, y) = 0.
Step II. Find all the real roots of ¢_(m) = 0.

Step III. If m, is a non-repeated root of ¢ (m) = 0, then the corresponding value of
c is given by c¢'  (mq) + ¢_, (ml) = 0, provided ¢', (m,) # 0.

If ¢' (m,) = O, then there is no asymptote to the curve corresponding to the value m,
of m.

Step IV. If m, is a repeated root occurring twice, then the corresponding values of
c are given bym, m, m,

CQ

E 0" . (m)+c, ¢' , (m)+ ¢, ,(m)=0, provided ¢" (m,)=0-
In this case there are two parallel asymptotes to the curve.
Similarly we can proceed when m, is repeated three or more times.

Note : A rational algebraic curve of degree n cannot have more than n asymptotes.

Example 2 : Find all the asymptotes of the curve
X3+ 2x%y — xy?— 2y®+ 4y?+ 2xy + y -1 = 0.

Sol. Given equation is
X3+ 2x%y — xy?- 2y3+ 4y?+ 2xy +y -1 =0 ... (1)
(1) is an equation of degree 3 in x and y
Since coefficient of x®is 1, which is constant
So there is no asymptotes parallel to x-axis
Similarly coefficient of y®is -2, which is constant
there is no asymptote parallel to y-axis.
For oblique asymptotes, put y = mx + c in (1), we get,
x3+ 2x?(mx + ¢) - x (mx + ¢)?—- 2 (mx + ¢)®+ 4 (mx + ¢)?
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+2x (mx +¢) + (mx +¢c)-1=0.
or x3(1 + 2m — m?- 2m3) + x2(2 ¢ — 2 mc —-6m?c + 4m? + 2m)
+x (—c2- 6mc? + 8mc + 2c+m) + (-2 ¢+ 4c?+ ¢ - 1)=0.
Equating the coefficient of x®and x?to zero, we get,
1+2m -m?-2m3=0 ... (2)
2c-2mc-6m? +4m?+ 2m =0 ... (3)
From (2), 1 (1 + 2m) - m?(1 + 2m) =0
(1-m? (1 +2m)=0
1-m)(1+m)(l+2m)=0

m=1,-1,- *

When m = 1, from (3), we have
2c-2c-6c+4+2=0
6c=6o0rc=1.

Corresponding asymptote is y = x + 1
When m = -1, from (3), we have,
2c+2c-6c+4-2=0
2c=2o0rc=1

corresponding asymptote isy = x + 1

When m =%, from (3), we have,
3
20+C—§c+1—1:0 or c=0

Corresponding asymptote is y = —%X .
Example 3 : Find the asymptotes of the curve
x3— X%y — xy?2+ y3+ 2x%2- 4y?2+ 2xy + x +y + 1 = 0.
Sol. The equation of given curve is
X3 - X%y - xy?+ yi+ 2x°-4y?+ 2xy +x+y + 1 =0.
The coefficient of highest power of x in (1) is 1, which is constant.
there is no asymptote parallel to x-axis.
The coefficient of highest power of y in (1) is 1, which is constant
there is no asymptote parallel to y-axis
For oblique asymptotes, we have
¢,(m)=1-m-m?*+m® s ¢'y(m) =-1 -2 m + 3m?
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Ul

¢,(m) =2 -4 m?>+ 2m S9", (m) = -2 + 6m
¢,(m) = 1+m ), (m) = -8 m + 2
o, (m) =1

¢, (m) = O gives
l-m-m?+m3=0
1(1-m)-m?(1-m)=0
(1-m)(1-m? =0
(1-m)(1-m)(l+m)=0

m=1,1,-1
1
When m = -1, ¢ :__¢?(m) =——¢,2( )
o3(m)  5(1)
_ 2-4-2 1
-1+2+3
Corresponding asymptote isy = -1 x+lie., x+y =1

uJ

IV.

When m = 1, 1, the values of c are given by

CQ " ’ _
B ¢3(m) + oy (m) + ¢, (m) =0

CQ

?(_2+6)+C(_8+2)+(1+1):O

2c’-6¢c+2=0
c?2-3c+1=0

C_3¢J9—4_3i¢§
2 2

and corresponding asymptotes are given by

3+4/5 3-45
2 2

y=1x+

,y=1x+

Hence the required asymptotes are

3+\/§_ 3-5
2

O,x-y+

Xx+y=Lx-y+

Some Other Methods for Finding Oblique Asymptotes

Here, we discuss some special methods of finding asymptotes of f(x, y) = O when the

equation f (x, y) = O is of some special types.
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Method I. If the equation of the curve is of the form
(ax+by +c)f  (x,y)+g, ,(x,y)=0
then the asymptote parallel to ax + by + ¢ = O is given by

ax+by+c+ Lt
XX_)OQE fn—l (X’y)

x b

=0, provided the limit exists

Method II. If the equation of the curve is of the form

(ax + by)*f , (%, y) + &,,(x,¥) =0
then the two asymptote parallel to ax + by = O are given by

Lt gn—2 (X7Y)

;{—m; n-2 (X’ Y)

X b

(ax + by)2 + =0, provided the limit exists

Method III. If the equation of the curve is of the form
(ax + by)*f, , (x,y) + (ax + by) g, (x,y) + h,_, (X, 5) =0
then the two asymptotes parallel to ax + by = O are given by

h
(ax + by)2 +(ax +by) Lt 8o %,3) + Lt =222 &y _ 0
X%ﬁ fn72 X:Y) X%i fn—z (X7Y)
y y
x b x b
provided the limit exists
Note. Working Method
(i) Factorize the highest degree terms
(i) Retain one linear factor and divide by the product of other factors.

(iii)  Take limits when x — o, y — « in the direction of the retained factor.
Note. If limits does not exist, then there is no asymptote parallel to ax + by + ¢ = 0.

Method IV. Asymptotes by Inspection
If the equation of the curve can be written as
F (x,y)+F _,(x vy =0.

where F_(x, y) is a rational integral function in x and y of degree n and
F__,(x, y) of degree (n — 2) at the most then every linear factor ax + by + c of F_(x, y)
equated to zero determines the asymptote of the curve, provided no two asymptotes
so obtained are either parallel or coincident.
Example 4 : Find all the asymptotes of the following curve :

X3+ X%y - xy?-y®+ 2xy + 2y’-3x+y =0
Sol. The given equation is x®+ x%y — xy?- y3+ 2xy + 2y>- 3x +y = 0
or X x+y)-y*(x+y) +2xy +2y?-3x+y=0
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or x+y) (x2—y?) +2xy + 2y2-3x+y=0
or x-y) (x+y)2+2xy + 2y?— 3x+y =0
The equation (1) can be written as

2_
Jr2xy+2y 23x+y:0
(x+y)

X-y

asymptote (if it exists) parallel to x — y = 0 is given by

2xy+2y2—3x+y_o

x-y+ Lt
o (x+y)
2 2
or x—y+ Lt 2x° +2x 23x+x:O
X (x+x)
4x” - 2x
x-y+ Lt ————=0
or y X—>0 4X2
4_2
or x-y+ Lt X-0 orx—y+4_0=0

X—0

x -y + 1 =0 is one asymptote.
The equation (1) can be written as

(x+y)2+(x+y).2—y—3x—_y:0
X-y X~y

asymptotes (if they exist) parallel to x + y = O are given by

(x+yP +(x+y). Lt =¥ _ 1t XY _g
e x-y r x-y

or x+y) +(x+y). Lt _2X—Lt 3X+X=O
X5 X + X X0 X+ X

or x+y)P-x+y)-2=0 or x+y-2)(x+y+1)=0

: Xx+y—-2=0,x+y+ 1=0 are the other two asymptotes.

V. Intersection of a Curve and its Asymptotes

Art 3.1 : Prove that an asymptote of a rational algebraic curve of the nth degree

cuts the curve in atmost (n — 2) points.
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Proof : Lety = m x + ¢ ... (1) be an asymptote of the curve

X", (Zj x| (Xj +x"2 g, [Xj +..=0 . (2)
X X X

We are to find the points of intersection of (1)and (2),

From (1), ¥ -m +5
X X

Substituting the value of Y in (1), we get,
X

c _ c _ c
x"0,, [ml +;1J+x“ RO (ml +;1j+x“ > 0,5 [ml +;1j+... =0

Using Taylor's Theorem, we get

X", (my)+x"" [c,0),(m,) + ¢, (m,)]

X" {C— O (my) + ¢y ¢y (m,) + 4,5 (ml)} +..=0 - B

Since ¢_(m,) = 0 and ¢ ¢' (m) + ¢_, (m,) = O, (3) becomes

2
x"? {— o (m,)+c,0. | (m)+d, , (ml)} +...=0

which is an equation of degree (n — 2) and correspondingly (1) and (2) intersect

in (n — 2) points.

asymptote (1) cuts the curve (2) in at the most (n — 2) points.

Hence the result.
Cor. 1. Prove that all asymptotes of a curve of nth degree cut the curve in atmost
n(n-2) points.
Proof. We know that a curve of nth degree has atmost has atmost n asymptotes
and each asymptote cuts the curve in atmost (n — 2) points.

all the asymptotes of a curve of nth degree cut the curve in atmost n (n - 2)
points.
Cor. 2. If the equation of the curve of nth degree is of the form F_+ F_,= 0 and
curve has no parallel asymptotes, then the points of intersection of the curve and

its asymptote lie on the curve F_,= 0.

Proof. The equation of curve is F_+ F_,= 0
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The equation of asymptote is F_= 0

the points of intersection of the asymptote and the curve satisfy the equations
F_+F_,=0and F_= 0 and therefore they will satisfy
(F,+F _)-F =0ie,F _ =0.

Hence the result.

n

Example 5 : Find the equation of the cubic which has the same asymptotes as
the curve x®- 6x% + 11xy?- 6y>+ 4x + 5y + 7 = 0 and which passes through the
points (0, 0), (-2, 0) and (0, -2).
Sol. The equation of given curve is x*- 6x%y + 11xy?>- 6y3+ 4x + 5y + 7 = 0
.. (1)
It is of the form F,+ F =0
. asymptotes are given by F,= 0
or x3— 6x%y + 11xy?— 6y>= 0 or (x-y) (x-2y) (x-3y) =0
: asymptotes of (1) are x-y=0,x-2y=0,x-3y=0
The equation of the cubic curve which has the same asymptotes is of the

type

x-y) x-2y) (x-3y)+ax+by+c=0
12

Now (2) passes through (0, 0), c=0

(2) passes through (-2, 0), .-8-2a=0=a=-4

(2) passes through (0, -2), .48 -2b=0=Db =24

Substituting values of a, b, c in (2), we get,
x-y) (x-2y) (x-3y)-4x+ 24y =0

or x3— 6x%y + 11xy?- 6y°— 4x + 24y = 0.

VI. Self Check Exercise

1. Find all the asymptotes of the following curves :
(i) yi- 3x%y + xy?- 3x3+ 2y?+ 2xy + 4x + S5y + 6 = 0
(ii) ay?= x?(a - x)
(iii) y3+ 4xy?+ 4x%y + 5y?+ 15xy + 10x2-2x + 1 =0
2. Show that the parabola y?= 4ax has no asyptotes.
3. Find the asymptots of the curve
(xty) (x+2y) (x+3y)+3x2+ 12xy + 11ly2+x+y+2=0
4. Find asymptotes of the curve x%y — xy?+ xy + y2+ x -y = 0.
S. Find the asymptotes of the curve x%y + xy?+ 2x%- 2xy —y?—- 6x -2y + 2 =0

and show that they cut the curve in almost three points which lie on the
straight line 2x — 3y - 4 = 0.
0. Find the equation of the cubic curve which has the same asymptotes as the
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curve x°— 6x%y + 11 xy?- 6y°+ x + y + 1 = 0 and which passes through the
points (0, 0), (2, 0) and (O, 2).
VII. Suggested Readings

1. Ahsan Akhtar & Sabita Ahsan : Differential Calculus

2. UP Singh, RJ Srivastava & : Differential Calculus
NH Siddiqui

3. Gorakh Prasad : Differential Calculus

4. Malik and Arora : Mathematical Analysis

S. Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry
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LESSON NO. 1.4 Author : Dr. Chanchal

CURVE TRACING AND CURVATURE

Structure :

I. Objectives

II. Introduction

III. Rules for Tracing Cartesian Curves
IV. Rules for Tracing Parametric Curves
V. Rules for Tracing Polar Curves

VI. Curvature

VI.(a) Radius of Curvature

VI.(b) Centre of Curvature

VI.(c) Some Important Results of Curvature
VII. Self Check Exercise
VIII. Suggested Readings

I. Objectives
In this lesson we will deal with the graphs of the curves of given equations in Cartesian
or polar systems of coordinates. The main purpose of this chapter is to point out
those rules which are used in tracing the graph of a curve. After describing the
main rules of curve tracing and afterwards we will use them in tracing the graph of
aforesaid curves.
II. Introduction
The graph of a given function is helpful in giving a visual presentation of the
behaviour of the function involving the study of symmetries of asymptotes, the
intervals of rising up or falling down and of the cavity upwards and downwards etc.
Curve tracing means that the equations of curves which we trace and are generally
solvable for y, x or r. The case may come that some equations are not solvable for y or
X, then we solve them for r by transforming from Cartesian to polar system.
III. Rules for Tracing Cartesian Curves
For tracing the curve of the equation f(x, y) = 0, the following important points should
be considered :

I. Symmetry : Curve given by f(x, y) = 0 is symmetric about

(i) x-axis if it is unchanged on changing y to -y i.e., if f(x, -y) = {(x, ¥)
(ii) y-axis if it is unchanged on changing x to —x i.e., if f (-x, y) = f (X, ¥)
(iii)  the origin if it is unchanged on changing x to -x and y to -y

37
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ie., iff(=x,-y)=1f(x,y)

(iv) the line y = x if it is unchanged on changing x to y and y to x

ie., iff(x,y) =1y, x

(v) the line y = —x if it is unchanged on changing x to -y and y to —x

ie., iff(-y, =x) =1(x,y).
II. Domain and Range : Find the domain and range.
III. Origin : Check whether origin lies on the curve. If curve passes through
origin, then find the tangents at the origin and also determine whether origin is
node, cusp or an solated point.
IV. Asymptotes : Find all the asymptotes of the curve and the position of the
curve relative to its asymptotes.
V. Points of Intersection : Find the points of intersection of the curve with co-
ordinate axes and obtain the equations of the tangents at these points. If any of
these is a double point, then find the nature of the double point.
Also find some other points on the curve by giving suitable values to x.
VI. Maxima and Minima : Find the points where the function has maximum
value or minimum value. Also find the maximum and minimum value at each point.
VII. Points of Inflextion : (a) Find the intervals of

(1) increase and decrease of the curve
(ii) concavity and convexity of the curve.

(b) Also find the points of inflexion, if any.
VIII. Discontinuities : Find the points at which function is discontinuous. Also
discuss the behaviour of the function near these points.
The method of tracing curves in cartesian co-ordinates can be made more clear
with the help of following suitable examples :
Example 1 : Trace the cure x = (y -1) (y - 2) (y - 3).
Sol. The equation of the curveis x = (y - 1) (y - 2) (y - 3) ... (1)

(i) Symmetry : The curve is neither symmetrical about axes nor about origin.
Also the curve is neither symmetrical about y = x nor about y = —x.
(ii) Origin : The curve does not pass through the origin.

(iii) Point of intersection with axis : The curve meets x-axis where y = 0
putting y = 0 in (1), we get, x = -6
curve meets x-axis in (-6, 0)
The curve meet y-axis where x = 0
putting x = 0 in (1), we get, (y—1) (y—2) (y-3) = 0
y=1,2,3.
curve meets y-axis in (0, 1), (0, 2), (0, 3).
(iv) Asymptotes : The curve has no asymptotes.
(v) Tangents : Now x = y°- 6y*>+ 11y - 6
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=3y° -12y +11

%:Ogives3y2—12y+11:0
y

12+4/144-132 124243 6+1.732
- 6 -6 3
When y = 2.6, x = -0.384 (nearly)
When y = 1.4, x = 0.384 (nearly)
tangents to the curve at (-3.84, 2.6) and (3.84, 1.4) are parallel to the y-
axis.
(vi) Additional Points Nowy <0 =x<0
no portion of the curve lies in the fourth quadrant.

=2.6 (nearly), 1.4 (nearly)

O<y<1 = x<0
l<y<2 = x>0
2<y<3 = x<0
3<y = x>0
X — © = y > o

A rough sketch of the curve is given in the figure.

©,3)

(-.384, 2.6)
©, 2)

(.384, 1.4)

(_6’ O)

Example 2 : Trace the curve x*+ y*=3 axy, a> 0.
Sol. The equation of the curve is x*+ y*=3 axy,a>0
(i) Symmetry : The given equation (1) does not change when x is changed to y

and y is changed to x.
curve is symmetrical about the line y = x.
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(ii) Origin : The curve passes through the origin.

The tangents at origin are given by xy = 0
i.,e., x = 0, y = 0. These tangents are different.

origin is a node.
(iii) Asymptotes : (1) can be written as
(x +y) (x*-xy +y? - 3axy = 0
Asymptote (if any) parallel to x + y = O is given by

x+y—- Lt % =0
xo® X — XY +y
—3ax’ 3ax?
X+y-Lt ————=0o0orx+y+ Lt =0
or y X—>0 X2 + X2 + X2 y X—>00 3X2
or x+y+a=0
This is the only asymptote of the curve.
(iv) Points of intersection with axes
Putting x = 0 in (1), we get y = 0
Puttingy = O in (1), we get x =0
curve meets axes in (0, 0) only.
Putting y = x in (1), we get,
x3+ x%= 3ax? orx*(2x-3a)=0
c_03 .y o8
2 2
.. line y = x meets the curve in (0, 0) and (%, %J

(v) Region
From (1), it is clear that x and y both cannot be negative as in that case L.H.S. of (1)
is negative whereas R.H.S. of (1) is positive.
no portion of the curve lies in the 3rd quadrant.
A rough sketch of the curve is shown in the figure.
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IV. Rules for Tracing Parametric Curves

Case I. Eliminate the parameter if possible and get the corresponding cartesian
equation of the curve which can be traced as done earlier.
Case II. If the parameter cannot be easily eliminated from the given equations,
then we proceed like this :
(i) Symmetry
(1) If x = f(t) is an even function of t and y = ¢ (t) an odd function of t, then
the curve is symmetrical about x-axis.
(ii) If x = {(t) is an odd function of t and y = ¢ (t) an even function of t, then
curve is symmetrical about y-axis.
(iii) If x = f (t) and y = ¢(t) are both odd functions of t, then the curve is
symmetrical in opposite quadrants.
(ii) Origin : If by putting x = 0, we get a real value of t, which makes y equals zero,
then the curve passes through the origin.
(iii) Axes Intersection : Find the points of intersection of the curve and coordinate
axes.
(iv) Limitations : If possible, find the greatest and least values of x and y which
give us lines parallel to axes between which the curve lies or does not lie.

(v) Points : Find the points where y_ 0, Y,
dx dx

(vi) Region :

(1) Find the regions in which curve does not lie.

(ii) Consider the signs of dx and dy .

dt dt
(iii) Consider the values of x, y, d_X, d_y’ dy .
dt dt dx

(vii) Asymptotes : Find the asymptotes, if any.
Example 3 : Trace the curve x = a (0 + sinf); y =a (1 + cos 0), - n<0 <.
Sol. The equations of the curve are x = a (0 + sin 8), y = a (1 + cos 0)
Here the parameter 0 cannot be easily eliminated.
(i) Symmetry : The curve is symmetrical about the axis of y for (0 + sin6) is an
odd function of 6 and (1 + cos 60) is an even function of 0.
(ii) Origin : The curve does not pass through the origin.
(iii) Intercepts : It meet the x-axis when
y=0 i.e., 1+cos06=0
or cos 6=-1 i.e., 0=mn-n
the points of intersection with the x-axis are A (a &, 0), A' (-a &, 0).
Again it meets the y-axis when x = 0.
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i.e. 0+sin®=0o0rsin®=-0or6=0
it meets the axis of y at B (0, 2 a).
(iv) Asymptotes : There are no asymptotes.

(v) Points : We have & _, (1+cos 6);d—y =-a sin 0
de de

ZSingcosg
dy -asinb :—tang

dx a(l+cos6) 2cos? 2 2
2

ﬂ:OWhenO:O
X

i.e., at (0, 2 a), the tangent is parallel to the axis of x.

Also j—y—> o when 0 =7, -1

X

at (ar, 0) and (-a &, 0), the tangent is perpendicular to the axis of x.
(v) Region : For all values of O,Z—zis +ve
x always increases with 6.
dx .
Also —is +ve for—-<0<m.
do

Hence y increases when 0 increases from —n to Oand y decreases when 6 increases

from O to m.
Hence approximately, the shape of the curve is as shown in the diagram.

Y

>
>




B.A. PART - 1

43 MATHEMATICS PAPER-I

V. Rules for Tracing Polar Curves
We shall keep in mind the following points for tracing the graphs of the equation f(r,

0) = 0.

1. Symmetry :

(1)

(i)

(iii)

(iv)

(v)

II. Pole
(1)

(ii)

(i)

Symmetry about the initial line or x-axis : If the equation of the curve
remains unchanged when 0 is changed to -0, the curve is symmetrical
about the initial line.

Symmetry about the line g =" or y-axis : If the equation of the curve
2

remains unchanged when 0 is changed to n - 6 or when 0 is changed to

-0 and r to -1, the curve is symmetrical about the line ¢ = g

Symmetry about the line 0 =% or y = x : If the equation of the curve

remains unchanged when 6 is changed to g— 0, the curve is said to be
symmetrical about the line 0 :%.

Symmetrical about the line ¢ = 37: or y = —x; if the equation of the curve

3
remains unchanged when 0 is changed to ?n -0, the curve is said to be

symmetrical about the line 0 = %

Symmetry about the pole : If the equation of the curve remains
unchanged when r is changed to -r, the curve is said to be symmetrical
about the pole.

Find whether the curve passes through the pole or not. It can be done
by putting r = 0 in the equation and then finding some real value of 0. If
it is not possible to find a real value of 0 for which r = 0, then the curve
does not pass through the pole.

Find the tangents at the pole. Putting r = 0, the real values of 6 give the
tangents at the pole.

Find the points where the curve meets the initial line and the line

0=".
2
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III. Value of ¢

de
Find ¢ from the result tan ¢=r e Then find the points where ¢=0 org.

IV. Asymptotes

If r > o as 0 - 0, (any fixed number), then there is an asymptote. Find it by the
method given below :

(i) Write down the given equation as l: (0), say.
r

(ii) Equate f(0) to zero and solve for 6. Let the roots be 6, 0,,.......
(iii)  Find f'(0) and calculate itat0=10,,0,,.........

. . 1 . 1
(iv)  Asymptotes are rsin(0-6,)= 7o)’ rsin (0 -6,)= £6,)

gees

V. Special Points
Find some points on the curve for convenient values of 0.
VI. Region
Solve the given equation for r or 0. Find the region in which the curve does not lie.
This can be done in the following manner.
(1) No part of the curve lies between 6 = a and 6 = B if for a < 6 < B, r is
imaginary.
(ii) If the greatest numerical value of r be a, the curve lies entirely within
the circle r = a. If the least numerical value of r be b, the curve lies
outside the circle r = b.
Example 4 : Trace the curver = a (1 + cos 0), a > 0.
Sol. The equation of the curve is r = a (1 + cos ) .. (1)

1. Symmetry : The equation of the curve remains unchanged when 0 is
changed to -0.
o curve is symmetrical about the initial line.
II. Pole : Putting r = 0 in (1), we get
a(l+cosB)=0orcosf=-1
0=mn
pole lies on the curve and tangent at the pole is 6 = =.

The curve cuts the initial line 6 = 0 at (2 a, 0) and the lines 0= ig at (a, gj, (a,——j .

III. Value of ¢
dr

—=-asinb
do
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0
2
de 2cos 2
tan¢p=r— =a (1+cos 0)x — = 5 5
dr —asin6 2sin2 cos 2
2 2
‘t.and):cotg:tand):tan(£+9j:>(1>=£+9
2 2 2 2 2

¢=%When6=0,r:2a

. at (2a, 0), the tangent is perpendicular to initial line.

IV. Asymptotes : Since r does not tend to infinity for any finite value of 0.
curve has got no asymptote

V. Special Points : We have

e

r
4

1
r: 2a a[1+ﬁJ a 0

VI. Region : Sincer =a (1 + cos 0)

max. value of r = 2a

curve lies entirely within the circle r = 2a
When 6 increases from O to n, r remains positive and decreases from 2a to O.
When 6 increases from 7 to 27, r remains positive and increases from O to 2a.
The shape of the curve is as shown in the figure.



B.A. PART - 1 46

VI. Curvature
VI.(a) Radius of Curvature

MATHEMATICS PAPER-I

Let P and Q be any two neighbouring points on a curve AB such that are AP = s and
arc AQ = s + 8s so that arc PQ = 3s. Let the tangents to the curve at P and Q make

angles y and y + dy with x-axis so that ZRST = dy. Then

37
A
B
Q
3s 5 N
A P S
Y+ 3y
5 T R > X
(i) dy, measured in radians, is called the total curvature or total bending of
the arc PQ,
(ii) the ratio E;—W is called the average curvature of the arc PQ,
S
oy ... . . .
(iii) BLtog, if it exists, is called the curvature of the curve at P and is
denoted by k
(iv)  The reciprocal of curvature at any point P is called the radius of

curvature and is denoted by Greek letter p

_ 1 _ds
PTav Tay
ds

VI.(b) Centre of Curvature

The centre of curvature of a curve at a point P is the point C which lies on the
positive direction of the normal at P and which is at a distance p from it.



B.A. PART - 1 47 MATHEMATICS PAPER-I

The circle with centre C and radius CP = p is called circle of curvature of the curve
at P.

Any chord of the circle of curvature at P passing through P is called chord of
curvature through P.

VI.(c) Some Important Results of Curvature

Result I : The curvature of a circle is constant and is equal to the reciprocal of the
radius.

Result II : The radius of curvature at any point of the curve y = f(x) is given by
3

1+7v2)? d
p=M where ¥, = and ¥, =
y2 dX

2

d7y
2

Result III : Rule to find the radius of curvature at the origin.

(a) Put y = px + ¢ % Foen in equation of curve, where
2
p=(L) _rjandq=|LIL| -t
d dx?
X J(0,0) X (0,0)

(b) Equate the coefficients of like powers of x on both sides and find p, q.
2\3/2

(c) p (at the origin) = +p)
q

Result IV : The radius of curvature at any point of the curve x = f(t), y = g(t) is
given by
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BGOREONE
P e m-g 0

Result V : The radius of curvature at any point p(r, 0) of the curve r = f(0) is given
by
(v )’
r’ 417 )? dr d’r
=—— 7/  where ,=—andr, =—
Pery 2r7 -1, 'de > de?

Result VI : The co-ordinates of the centre of curvature for any point P(x, y) of the

. vy (1+y7 >
curve y = f(x), are given by (X,y) where X = x—g, y= y+1+—YI.

Yo Y2
Further, the equation of circle of curvature at P(x, y) is (x —§)2 +(y —?)2 =p°.

Now, we clerify the above result with the help of following suitable examples:
Example 5 : Find the radius of curvature of the parabola y?>= 4 ax at the point (x,

y)-
Sol. The equation of the parabola is y*>= 4ax ... (1)
Differentiating both sides w.r.t x, we get,
2yﬂ:4aord_y:2_a (2)
dx dx vy
2 2
dy _2ady 2a 2a 4a (3)

pot [- of (2) and (3)]
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3 3
2+ 4a%)2 4ax + 4a?)?
:_(y k ) :_( . ) [ of (1)]
4a 4a
2 3
- (x+a),
Ja
Example 6 : Find the radii of curvature at the origin of the curve
y?2-3xy + 2x2-x3+ y*=0
Sol. The equation of curve is y2-3xy + 2x*>- x3+ y*= 0 .. (1)

Clearly (0, 0) lies on (1).
Equating to zero the lowest degree terms, we get,

y2-3xy + 2x%2=0
or y=x) y2x)=0=>y=x,y=2x
Here, neight x-axis nor y-axis is the tangent at origin

X2
puttingy =px+q =—+......... in (1), we get,
12
x’ ’ x> x’ *
px+q—+-| -3x|px+q—+—-|+2x° —-x’ +|px+q—+-| =0
2 2 2

= (p2—3p+2)x2+(pq—3%—1jx3+ ......... =0 .. (2)

Equating coefficients of x%in (2), we get,
p?-3p+2=0o0r(p-1)(p-2)=0=p=1,2
Equating coefficients of x%in (2), we get,

pq—3%—1=0

When p=1,q—3%—1=0 =q=-2

Whenp=2,q—3%—1=0 =q=2
When p=1,q=-2

L+p’? 1+’ _ g5

at origin) =
p (at origin) >

(in magnitude)

Whenp=2,q=2
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(+p)2 (1+4> _5V5
2 2

p (at origin) =

Example 7 : Find the circle of curvature at the point (% %) of the curve

\/; + ,\/§ = \/a .
Sol. The equation of curve is \/§+\/§ —Ja

Differentating both sides of (1) w.r.t.x.

1 1 dy ., _dy_ 4y

2% 2fydx - dx  x

ey el
dx* X
_1{_£ ﬁ_ﬁ}

25 Vs
_1, J_ 1 Vx+fy 1 (Va
“ox Vs 2x dx x|k [ of 0]
_Aa
ox?2

a a B \/5 _4
AtP(Z’ZJ’“ B

4

_(1+yf)g (1+1)§_ a_ a
P= Yo - 4 —2\/§X——E

Let ()_(, SI) be the centre of curvature
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(1+v7) a (pa+y 3a
X=X- =—- =—4+—=—
Yo 4 i 4
a
3
(1+¥7) a @+1 3a
N 4 a 4
a
3a 3a
centre of curvature is T’ T

equation of circle of curvature at P (%,%j is

( Satj2 [ 3aj2 a2

or x— | 4ly-=2| ==
4 4 2

VII. Self Check Exercise

2

+1
1. Trace the curve y = X
xX+1
2. Trace the curve x = a(0 + sinf), y = a (1-cos0)
3. Trace the curve r = a (1+sin0)
. . 2a
4. Find the radius of curvature for the parabola < - l1+cos6.

VIII. Suggested Readings

1. Ahsan Akhtar & Sabita Ahsan : Differential Calculus

2. UP Singh, RJ Srivastava & : Differential Calculus
NH Siddiqui

3. Gorakh Prasad : Differential Calculus

4. Malik and Arora : Mathematical Analysis

S. Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry
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LESSON NO. 2.1 Author: Dr. Chanchal

LIMIT, CONTINUITY AND PARTIAL DIFFERENTIATION OF
FUNCTIONS OF TWO VARIABLES-I

Structure:
Objectives
I. Introduction
II. Limit of a Function of Two Variables
III. Simultaneous and Iterated (or Repeated) Limits
Iv. Continuity of Functions of Two Variables

V. Self Check Exercise

Objectives
The prime goal of this lesson is to enlighten the basic concepts of real valued
functions of two variables f(x,y). During the study in this particular lesson, our

main objectives are
e To discuss the limit of function f(x,y) and how this limit can be classified.
e To discuss the continuity of function f(x,y).

I. Introduction

From our previous study, we are already familiar with the concepts of limit,
continuity and differentiability of the real valued functions f(x). In this unit, we

have introduced the concept of real valued functions of two real variables. In this
lesson, we start with the study of limit and continuity of the function f(x,y) as already

highlighted under the objectives of this lesson. Before starting the main part of this
lesson, we define some basic concepts below :

R* : Mathematically, R>=RxR= {(x, y):xeR,ye SR} and geometrically, R’
represents two dimensional plane.

Here ‘R represents the set of real numbers.

Square Neighborhood of a Point : A square neighborhood of a point (a,b) in
R’ is the set of points (x,y) that lie inside an open square region with centre at

(a,b) and sides parallel to the co-ordinate axes such that

|x—a|<§ and |y—b|<5 for some 0 >0.
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y-b< 5},

Circular Neighborhood of a Point : A circular neighborhood of a point (a,b)

In other words, it may be represented as {(x,y) : |x — a| <0,

in R* is the set of points (x,y) that lie inside a circle with centre at (a,b) such
that

(x—a)2 +(y—b)2 < ? for some 6>0.

It may also be represented as {(x, yi(x—a) +(y-b) <o’ }

Functions of Two Variables : A real valued function of two variables x and y
is a rule which associates a unique real number f(x,)) to every possible ordered
pair (x,y) of real numbers.

Note : Usually, we write z= f(x,y) where x and y are independent variables and
z is the dependent variable.

II. Limit of a Function of Two Variables

A function f(x,y) is said to tend to a limit / as the point (x,)) tends to a point
(a,b) if for any pre-assigned positive number €> (0, however small, we can find a
number & such that

|f(x,y)—l| <e

for all points (x,y) other than (a,b) for which a—d0<x<a+0d,b—0<y<b+0 ie.
|x—a|<5 and |y—b|<5.

The above definition of limit is based on square neighborhood of a point. It may also
be defined as :

A function f(x,y) is said to tend to a limit / as the point (x,)) tends to a point
(a,b) if for any pre-assigned positive number €> (0, however small, we can find a

number 6 such that

f(x,0)~1|<e
for all points (x,y) other than (a,b) for which

(x,3)—(a,b)| <.

This definition is based on circular neighborhood of a point.

Note : 1. If the limit ( )lt( ) f(x,y) exists finitely, then it is unique.
x,y)—~>(a,

2. If ( )lt( ) f(x,y) exists, then the limit is independent of the path along
x,y)—>(a,

which we approach the point(a,b).
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Example 1 : By using definition, prove that lzfo(x2 +? ): 0.

y—0

Sol. Here, f:R> —> R is defined by f(x,y)=x"+ )’

Let €>0 and take & =+/e

L) =(0,0)<5 ie P +y* <6

:>|f(x,J’)—0|=‘x2 +yz‘=x2 +y? <o% =€

.. for €>0, there exists 0 >0 such that |(x,y)—(0,0)| <o = |f(x, y)— 0| <e
so, It f(x,y)=0.

(x,3)—(0,0)

Hence, the result is proved.
Example 2 : Let f:R° >R be defined as : f(x,y)=1 if x is rational and

f(x,y)=0if x is irrational. Show that It f(x,y)does not exist.

(x,9)=>(x0.0)

Sol. If possible, suppose that ( It f(x,y)=I1

x,1)>(x0,)0)

So, there exist reals 0, > 0,0, >0 such that

0<|x—x0|<51,0<|y—y0|<52, where (x,y) #(x,,7,)
1

= |f(x,y)—l|<5 (say)

Let x, be any irrational number and x, be any rational number in (x, —d,,x, +9,)

and let y be any real number different from y, in (y,-9,,y,+9,).

1 1
-‘-If(xl,y)—l|<5 and If(xz,y)—l|<5 (1)
Since x, is irrational and x, is rational,
S(x,)=0 and f(x,,y)=1 (2)

1 1
From (1) and (2), |—l|<§ and |1—l|<5

Or | <+ and -1 < % ©)
2 2
Further, 1=|(1=0)+{|<[1-{|+]]
< %% -1 [using (3)]

~.1<1, which is absurd and our supposition is wrong.



B.A. PART-II 4 MATHEMATICS : PAPER-I

Hence,

III.

It f(x,y)does not exist.

(x,5)>(x0,¥0)
Simultaneous and Iterated (or Repeated) Limits

If f(x,y) is a function of two variables x and y and then (a,b) is the limiting point

of a set of values on two dimensional space, then we have

L.

II.

III.

Note:

4,2
Example 3 : If a function f be defined by f(x,y)= x2 4 5
X" +y

show

Simultaneous Limit :

It fGey) or o f(xy)
y—b

Iterated or Repeated Limits :

Ha[ It f(x, y)] or It It f(x.y)

ML” f(x,»)|or Il f(x.y)

1. The two 1terated limits may exist but may not be equal.
2. The two iterated limits may exist and may be equal but the simultaneous

limit may not exist.
3. If simultaneous limit exists and two iterated limits also exist, then they

must be equal.
4. Criterion for Non-Existence of Simultaneous Limit :

If we find two functions y=¢(x) and y=w(x) such that
It p(x)= 1t y(x)=>b
and It f(x,¢(x)# It f(x,p(x)),

then, It f(x,y) does not exist.
xX—>a

y—b

a(xay) # (0,0) 5 then

that the two iterated limits lto[ lto f(x, y)} and ltOtho f(x, y)J exist but the
x>0y y—> >

simultaneous limit It  f(x,y) does not exist.

Sol.

(x,7)—(0,0)

2 2 2
-y X
It =1It| It = It 1
|: f(x y)} xa0|:ya0 x + y2 j| xao(x ]

2 2 2
~ s P I
R A R
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Therefore, two iterated limits lto[ lto f(x, y)} and ltOthO f(x, y)J exist.
x—0[ y— =0k —

Let (x,y) — (0,0) along the line y = mx , then

2 2 2 2.2 2 2
x° - x°—mx 1-m 1-m

i foy= Ut - - =
(x,y)—(0,0) (x,»)—(0,0) x +y S>0x  4+mx x901+m 1+m

which is not unique as it takes different values for different values of m .

. simultaneous limit [/t  f(x,y) does not exist.
(x,9)—(0,0)

IV. Continuity of Functions of Two Variables
A function f(x,y) is said to be continuous at (x,,y,) if for every €>0, there exists
0 >0 such that

|x—x0|<5, y—y0|<5

:>|f(an’)_f(xoayo)|<€

Or f(x,y) is said to be continuous at (x,,y,) if the simultaneous limit

It f(x,y) exists and is equal to the functional value f(x,,y,) at (x,,¥,)-

(x,3)=>(x0,¥0)
Example 4 : Discuss the continuity of f(x,y) at (0,0) where

2

2xy
f(x,y) = ma(xay) #(0,0)
0,(x,») =(0,0)
Sol. Here,
2xy’
f(x,y) = m,(an’) #(0,0)
0,(x,y)=(0,0)
Let (x,y) — (0,0) along the line y = mx , then
2xy° 2m*x’ 2m’ 2m®
It = It = It =1t =
<x,y)»<o,0>f(x’y) @200 X7 + 37 0t 4’y 0lem’ 14m?

which is not unique as it takes different values for different values of m .

. simultaneous limit [/t  f(x,y) does not exist.
(x,9)—(0,0)

Hence, the function f(x,y) is not continuous at (0,0).
. (1
Example S5 : Examine the function f(x,y)=xy sm(—j,x #0,y#0 and
X

£(0,0) =0 for continuity at the origin.
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Sol. For the given f(x,y), D, = R’

Let £ >0 be arbitrary, then |x - 0| < \/E, y— 0| < \/E, where (x,y)#(0,0).

= |f(X,y)—0| =|xy Sinl = |xy| sinl < |x||y| { sinl < 1}
x x x
< \/E\/; =&
S|fGy)-0<e
= I fxy)=0=1(0.0)

Hence, f is continuous at (0,0).

Example 6 : Let /:R> >R be a continuous function. Define g:R> >R as
g(x,)=f(x,9),x#0,y#0 and g(x,y)=f(x,y)+1,x=0,y=0 . Show that the
function g is not continuous at the origin.

Sol. Being a continuous function, f is continuous at the origin (0,0).

= It f(x,y) and f(0,0) bothexistand [t f(x,y)=f(0,0)

(o200 (x,y)—(0,0)
Now g(0,0)= £(0,0)+1 )
Al Py lt , = lt , — 0,0 2

S0 o 8N= o/ (6= 1(0.0) @)

From (1) and (2), ( It )g(x,y) # g2(0,0).

x,y)—>(0,0
So, g is not continuous at the origin.
V. Self Check Exercise
1. By using definition, prove that
0) It Goy+5v-4)=T @) It (3x+y?)=10

y—2 y—>-1
2. Let f:R*> >R be defined as f(x,y)=1 if x is irrational and f(x,y)=0 if
X is rational. Show that for any point (x,,),) , ( >hé : f(x,y) does not
X,y)>(Xg,)o
exist.
x2y2
3. Show that for the function f defined by f(x,y)=—— >, the two
X'yt +(x-y)

repeated limits exist and are equal but the simultaneous limit does not exist.
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4. Evaluate the following limits (if they exist):
4 2
X X
(i) It ——F (ii) It 3#
(x0)=(0,0) x* 4 p* —x (x)(0,0) x” + 2y —3x
3 3

+
5. Examine the function f(x,y)= YTV s 0,y#20 and f(0,0)=0 for
RS

2+y2’

continuity at (0,0).
6. Show that f(x,y)=x"+y—1 is continuous at (1,-2).
Suggested Readings

1. RK Jain, SRK Lyenger Advanced Engineering Mathematics
2. JR Sharma Advanced Calculus

3. Malik and Arora Mathematical Analysis

4. Shanti Narayan Mathematical Analysis

5. Thomas and Finney Calculus and Analytical Geometry
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LESSON NO. 2.2 Author: Dr. Chanchal

LIMIT, CONTINUITY AND PARTIAL DIFFERENTIATION OF
FUNCTIONS OF TWO VARIABLES-II

Objectives
I. Partial Derivative
I.(a) First Order Partial Derivatives
I.(b) Second Order Partial Derivatives
II. Change of Independent Variables

III. Interchange of Order of Differentiation
III.(a) Sufficient Condition for the Interchange of Order of
Differentiation
IV. Self Check Exercise
Objectives

e To learn about the first order and second order partial derivatives.
e To study the conditions for the interchange of order of differentiation.

I. Partial Derivative

Let z= f(x,y) be a function of two independent variables x and y . Then, the
partial derivative of z with respect to x is the ordinary derivative of z when y is
regarded as a constant. Similarly, the the partial derivative of z with respect to y
is the ordinary derivative of z when x is regarded as a constant.

For example : If z=3x"y” +5x°)’

then, partial derivative of z w.r.t. x is equal to

3y2(3x2)+ 5y3(2x)= 9y°x” +10y°x

Similarly, partial derivative of z w.r.t. y is equal to

3x3(2y)+5x2(3y2)= 6x°y +15x%y?
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I.(a) First Order Partial Derivatives
Let z= f(x,y) be a real valued function of two independent variables with an open

LG+~ [(y)

domain D, R? | then
' ox

if it exists, is called the partial

o

0
derivative of z w.r.t. x. Itis denoted by 8_2 or a—or f.or f(x,y)or Df.
X

X
. f :g: It f(x"'éxa)’)—f(xa)’)
* ax ox—0 &x
Also, the partial derivative of f w.r.t. x at any point (a,b)€ D, is denoted by

GZJ (afj
— or | — or f (a,b).
(8)6 (a.b) OX ) ()

Thus, f,(a,b)= It fla+ habz —f(a,b)

On similar lines, [t , if it exists, is called the partial derivative

Sy +9) - f(x,9)
0 %

H—>

. Oz of
of f w.r.t. y.Itis denoted by — or ——or f, or f (x,y) or D,f.

o
+ -
Thus, fy:@: p Ly +) - f(xy)
dy a0 W
The partial derivative of fw.r.t. y at any point (a,b) € D, is denoted by (Z—ZJ
Y an)
of .
or | — or f, (a,b) and it may be expressed as
(a.b)
_ ,, fla,b+k)—f(a,b)
fi(ab)= It )
I.(b) Second Order Partial Derivatives
If z= f(x,y) and the first order partial derivatives Zl and g exist, then they are
X v

. . o of o .

themselves functions of x and y . The partial derivatives of 8_ and a—, if they
X v

exist, are called second order partial derivatives of f(x, ). It is denoted as
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o(of o°f 2 0’z
I. a a = P or f or f_or 8x_2
2 2
II. —gzaforfxoraz
oy\ox) Oyox 4 OyOx
2 2
1. igzaforfxoraz
ox\ oy ) oOxoy 7 Ox0y
2 2
IV. i1:8J;orfzorf ora—f
oy\ay) oy g T oy

These second order partial derivatives may be further expressed as

aZf: It fx(x+é}cay)_fx(x’y)

Ox? a0 o
az_f: It fx(x’y"f'@})_fx(x’y)
Oyox -0 o
of _, LEra)-f,00y)
axay ox—0 o
82f: It fy(xay—’_@})_fy(xay)
oy’ a0 &

Example 1 :If /(x, )= sin ﬁyyz}(x,y)i(0,0),
0,(x,)=(0,0)

then evaluate f (0,0) and f,(0,0).

Sol. For the given function f(x,y), we have

f(O0+h,0)-£(0,0) _ sin0—-0 _ 0-0

OO A
and f,(0,0)= It f(0,0+k)-1(0,0) _ , Sin0-0_ 0-0_,
k—0 k—0 k k-0 k

Example 2 : Let f(x,)=log(xy+2y> —2x). Find f,(2,3) and f,(2,3).
Sol. Here f(x,y)= log(xy +2y° - Zx)

1 (y=2)=—2=2

So, f. :(,ﬁ—(’jc[log(xy+2y2 —Zx)]:mx
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3-2 1 1
L f(23)= : _ _1
2)B3)+(2)3)" —2(2) 6+18—4 20
0 1 x+4y
Also, f.=Lllogley+2y7 —2x)|=—— x(x+4y)=— TV
s, J, ay[ g(xy 4 x) xy+2y° —2x (v+4) xy+2y° —2x

Lfey=—2tlz T

6+18—-4 20 10
II. Change of Independent Variables
Consider the two relations : x=rcosf,y=rsind connecting the four variables
x,y,r and 6. Here, each variable can be expressed in terms of two of the remaining
three variables.
For example : x can be expressed in terms of (i) r,6 (i) €,y (iii) r,y

0
Now, if we have to ﬁnda—x, then it is meaningful in (i) and (iii) while it has no
r

meaning in (ii).

0 0.
Note : _6x in (i) keeping @ constant is not equal to _6x in (iii) keeping y constant.
r r

o T ox )
So, it is necessary to distinguish between the two values of 8_ which can be done
r

o 0
by denoting them as (_xj and (_xj respectively.
or), or),

ox
Thus, (—j = partial derivative of x where r and @ are independent variables and
rJe

X
[—J = partial derivative of x where r and y are the independent variables.

6ry

Example 3 : If x=rcosd,y=rsind, the prove that

0’6 0o’ 0’ 1
axay 8x2 ( Ogl") ayz ( Ogr) 7"2 cos 9

Sol. Given: x=rcosf,y=rsind

on dividing y by x, we get tanf = 2
X

which gives € =tan™' 2

X
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00 1 RS

a_— 2.
4 1+(yj
X

0’0 (X +y>)1-x2x  y’-x* _r’sin®@-r’cos’d  cos’f—sin’ @

!
x x*+y’

= = which
Ox0y (xz +yz)2 (x2 +y2)2 (rz)z r?
2
gives oo z—izcos29 (1)
Ox0Oy r
Now, squaring and adding x and y, we have rP=x+ y2
= logr® = log(x2 +y2) = 2logr = log(x2 +y2)
:>10gr:—log(x +y2)
0 1 1 X
. —(logr)=— 2x =
ax( g) 2 x>+’ x>+ y?
2 2 2)q 2 2
= 2(logr)z Xy )1 2x.2x: Yy —% > :—%00529 ee(2)
(x2+y2) (xz +y2) r
1 1 y
Now, —(logr)=— 2y=
( g) 2 x*+y? 4 x4y’
2 2 2)q 22
:>8—2(10gr)= (x Y )1 3}'2)} T 4 > :chos29 .(3)
y (x2+y2) (x2+y2) r
From (1), (2) and (3), we get
0’0 o’ 0’ 1
=—(logr)=——logr)=——cos26.
axay axZ( g ) ayZ( g ) 7"2

III. Interchange of Order of Differentiation

For some functions, f, and f, both exist and equal i.e. we can change the order

of differentiation. But this result is not always true. For all classes of functions, we
cannot interchange the order of differentiation

ie. f,(a,b)# f,(a,b) (In general)
Here, f,,(a,b)= It f(a,b+ k]z — f.(a,b)

fla+hb+k)-f(a,b+k) and
h

where f (a,b+k)= hlz‘0
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. fla+h,b)-f(a,b)
fx(a’b)_hl_t)o ]’l

.. on substituting, we get

f(ab)=1It It f(a+h,b+k)—f(a,b+k)—f(a+h,b)+f(a,b): I #(h,k)

—04h—0 hk k—>0h->0  hk
where @(h,k)= f(a+h,b+k)— f(a,b+k)— f(a+h,b)+ f(a,b)
- _ ¢(h, k)
Similarly, f, (a,b)= hl_t) . kl_t) —

Thus, f, (a,b) and f (a,b) appear as repeated limits of the same function and we

know that these limits may or may not be equal. Therefore, the equality of the two
derivatives may not be taken surely.
II1.(a) Sufficient Condition for the Interchange of Order of Differentiation

The below stated theorems give the sufficient condition for the equality of fxy and
o
A. Statement of Schwarz's Theorem : If (a,b) is a point of the domain
D, c R? of a function f such that
i.  f..f,,f, allexistin a certain neighborhood of (a,b),
ii.  f, is continuous at (a,b),
then f (a,b) exists and f, (a,b)= [, (a,b).
B. Statement of Young's Theorem : If (a¢,b) is a point of the domain
D, c R’ of a function f such that
i.  f.,f, both exist in a certain neighborhood of (a,b),
ii. f.,f aredifferentiable at (a,b),
then f (a,b) = f,(a,D).
We will prove these theorems in the next lesson of this unit.

2 2
X -y
2

x4y

Example 4 : Let f(x,y)= xy( j , where (x,y)#(0,0) and f(0,0)=0. Show

that £,(0,0)# £,.(0,0).

Sol. We have f,,(0.0)= Ir £.(0,0+k)— £.(0,0)

k

(1)
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n -k’
hk k hk(hz kz]_o s
Now, fx(oak):hltof(0+ D lz—f(o’ ): It + :k(o— J

h>0 h 0+k°
S f(0k)=—k (2)
Also, £.(0,0)= 1 LOFRO=F(00)_, 0=0
h—0 -0k
= £.00,00=0 ...(3)
-k-0

From (1), (2) and (3), we get f, (0,0)= klto . =-1 ...(4)
Similarly,

. f‘y(o—’_hao)_fy(oao)_ h—O_
fyx(oﬂo)_h{t)o h _hl—t)o h _17 ...(5)

W -k
hO+k)— f(h hk(hz sz_O K
— + _
where fy(h,O):kltof( ’0+Iz J( ’O)Zkho k :h(hz gj:h’
—> —> =+

and £.(00)= 1 LOO+O-7(00) _, 0-0_,
g k—0 k

k=0 [k
It is clear from (4) and (5) that f, (0,0) # f,(0,0).

IV. Self Check Exercise
1. Find the first order partial derivatives for z =

() log(x® +y?) (i) sin(x® +y?) (i) sin‘l(fj
y

2. Let f(x,y)=+/x*+y*+1. Evaluate f.(1,2) and f,(1L2).

3. For the following f(x,y), find the second order partial derivatives

(i) sin(ZJ () x>sin(x+y) (i) e
X

2 2 2 2
4. Verify that of = of where f =log Xty .
o0yox  0Ox0Oy xy

5. If x=rcosf,y=rsind, prove that

(orY (or ’ L 0'r 0'r o Y
Q)| =] +| =] =1 (i) —x =
ox oy ox~ Oy OxOy
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6. Let f(x, y):xy(u], where (x,)#(0,0) and £(0,0)=0 . Show that
)C+y

/5(0,0) = £,,(0,0).

7. For the function, f(x,y)=x"tan™ (Zj —y’tan” (i}xy #0 and f(x,y)=0 if
X Y

xy =0, show that f, (0,0) = f,.(0,0).
Suggested Readings

1. RK Jain, SRK Lyenger Advanced Engineering Mathematics
2. JR Sharma Advanced Calculus

3. Malik and Arora Mathematical Analysis

4. Shanti Narayan Mathematical Analysis

5. Thomas and Finney Calculus and Analytical Geometry
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LESSON NO. 2.3 Author: Dr. Chanchal

SOME BASIC THEOREMS ON DIFFERENTIABILITY OF f(x,y)

Structure:

Objectives
L. Introduction
II. Some Important Results
III. Some Important Theorems
IV. Homogeneous Function
V. Implicit Function

V.(a) Statement of Implicit Function Theorem

V.(b) Statement of Inverse Function Theorem
VI. Composite Functions and their Differentiation
VII. Taylor's Theorem for Functions of Two Variables
VIII. Summary
IX. Self Check Exercise

Suggested Readings

Objectives
The prime goal of this lesson is to understand the concept of differentiability of real
valued functions of two or more variables and to study some basic theorems
concerning these such as
e Schwarz's theorem and Young's theorem that illustrates the sufficient
conditions for the interchange of order of differentiation and already stated
in the previous lesson.

e Euler's theorem of homogeneous functions of the form z=x"f (lj and
X
Taylor's theorem for function of two variables.
I. Introduction
As we have already discussed about the first order and second order partial

derivatives of the function f(x,y) in the previous lesson. So at this level, we have

the enough knowledge to discuss about the differentiability or derivability of the

16
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function f(x,y)and to understand various important results and theorems which
are concerned with the partial derivatives and differentiability of f(x,y) . Before

starting the main part of this lesson, it is required to define the differentiability
of f(x,y).
Def : Differentiability of f(x,y): A function f(x,y) with domain D, c R’ is

known as differentiable at a point (x,,y,) € D, , if in a neighborhood of (x,,y,), it
can be represented as f(x,+h,y,+k)=f(x,,y,)+Ah+Bk+¢€, h+e, k

Here, A,B are independent of variables 4,k and €,,€, tend to zero as h,k tend to
zero independently.
II. Some Important Results

A. If a function f(x,y) is differentiable at a point (x,,y,)€ D, cR’ , then

prove that it is continuous at that point (the proof is left for the reader).

B. If a function f(x,y) is differentiable at a point(x,,y,) , then prove that
f. (xo, yo) and f, (xo, yo) both exist (the proof is left for the reader).

C. Sufficient Condition for Differentiability : If f, (x, y) and f, (x, y) are
defined in a neighborhood of (x,,),) and are continuous at (x,,),), then f
is differentiable at (x,, y,) (the proof is left for the reader).

Example 1 : Show that f(x,y)=sinx+cosy is differentiable at every point of R°.
Sol. Here, f(x,y)=sinx+cosy

S fe=cosx, f, =—siny

= flr+hy+k)= f(x.9) = hf (x.9) = K (x.)

=sin(x+h)+cos(y+k)—sinx—cosy—hcosx+ksiny

_ h[sm(x+Z)—smx _Cosx}+k[cos(y+llz)—cosy +siny}

he, +k e,

inh(x + /) —si +k)— .
where el:sm (x+h) SIY _ cosx and €,= cos(y + k) COsy+smy

h k
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h) . h
. 1) —sinx 2cos x+5 smE
sin(x+h)—
Now, It €= lt[ ( —cosx}z It —COSX
h,k—0 h—0) h h—0)
. h
sin—
=1t cos(x+—j —cosx |=cosx—cosx =0
h—0 2

h
2

: [ k}. k
—2sin| y+— [sin—
2 2
It

k—0

[cos(erk)—cosy +siny
k

Also, It e,= It
h,k—0 k—0

+sin y}

k

sin—
_ : k 2 . _ L
= klio sm(erzj A +siny siny+siny =0
2

So, both €,,e, tend to zero as h,k tend to zero independently. Hence, f is
differentiable at every point of (x,y) e R>.

III. Some Important Theorems
Schwarz's Theorem

Statement : If (a,)) is a point of the domain D, c R’ of a function f such that

i.  f..f,,f, allexistin a certain neighborhood of (a,b),

ii. f,, is continuous at (a,b),

then f (a,b) exists and f, (a,b)= [, (a,b).

Proof : From the given conditions, it is clear that there exists a certain nhd. of
(a,b) at every point of (x,y) of which f.,f,f, -
Let (a+ h,b+ k) be any point of the nbd.
Consider ¢(x)= f(x,b+k)— f(x,b) (1)
sgla+h)—da)= f(a+hb+k)— f(a+hb)— f(a,b+k)+ f(a,b)=A f (say)

By Lagrange’s mean value theorem
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dla+h)—d(a)=h¢'(a+6h),0<O<1 2)
From (1), ¢'(x) = f,(x,b+ k) - f.(x,b)

~@(a+6h)=f (a+6h,b+k)— f (a+6h,b)

So, from (2), we have ¢(a+h)—¢(a)=h[f,(a+6Oh,b+k)—f.(a+6h,b)] (3)
Again by Lagrange’s mean value theorem, we get

Sfla+Oh,b+k)- f (a+6h,b)=kf (a+6hb+ 0%),0<6' <1

Now, from (3), we get

#(a+h)—p(a)=hkf, (a+6hb+0%k)=hk|f, (a,h)+& | whereg, —0 as hk—0.
LR =hk[f,(a,b)+ & ]

Az
= hl{ = [ (a,D)+¢& (4)
2
Similarly, Ah/{ = fy(a,b)+ ¢, (5)

whereg, >0 as h,k — 0.
From (4) and (5), we get, f, (a,b)+¢ = [, (a,D)+¢,
Taking limits as 4,k — 0 , we get, f, (a,0)+0=f (a,b)+0
= f.(a,b)= 1, (a,b)
Young's Theorem
Statement : If (a,b) is a point of the domain D, c R of a function f such that
i.  f..f, both exist in a certain neighborhood of (a,b),
ii. f,,f, are differentiable at (a,b),
then f (a,b) = f, (a,b).
Proof : Since f,, f, are differentiable, so f..,f, . ... f,, existat (a,b).
Let (a+h,b+h) be any point of the nbd.
Consider @¢(x)= f(x,b+h)— f(x,b) (1)
da+h)—g(a)= f(a+hb+h)— f(a+hb)— f(a,b+h)+ f(a,b)=Af (say)

By Lagrange’s mean value theorem

d(a+h)—d(a)=he'(a+6h),0<0<1 2)
From (1), ¢'(x) = f,(x,b+h)— f.(x,b)
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~f(a+Oh)=f.(a+Ohb+h)— f.(a+6hDb)

So, from (2), we have @(a+h)—¢(a)=h[f.(a+6Ohb+h)— f.(a+6h,b)] (3)
Since f,,f, are differentiable,

f.(a+6hb+h)— f.(a,b)=6hf, +hf, +he', (4)
whereg’' > 0 as h— 0.

Similarly, f.(a+6h,b)— f.(a,b)=6hf. +he", (5)

whereg” -0 as h— 0.
Subtracting (5) from (4), we get
fi(a+6hb+h)— f.(a+6hb)=hf, +h(e ")

So, from (3), we get, ¢(a+h)—¢(a) = hlhfyx + h(g' - 6‘”)]

:>A2f=hzfyx+hz€l where ¢, =¢g'-¢" >0 as h— 0.

AZ
= hzf —fate (6)
Let w(y)=f(a+h,y)=-f(a,y)
. N f
Proceeding as above, we get, h—2 = fxy + &, (7)

Where ¢, >0 as 7 —> 0.

From (6) and (7), we get, f, (a,b)+¢ = [ (a,D)+¢,
Taking limits as 7 — 0 , we get, f, (a,0)+0=f, (a,b)+0
:> .fyx (a7b) = fxy (aﬂb)

Theorem on Total Differentials
Statement : If z= f(x,y) possesses continuous partial derivatives of the first

order, the total differential of z is given by

dz :%dx+%dy
ox oy

Proof : The proof is left as an exercise for the reader.
IV. Homogeneous Function

If any function z can be expressed in the form x"f (X], then it is said to be
X

homogeneous function of x and y . Here n represents the degree of the function.
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For example : If z =

e
X -y _ X 24 Y
13)

Xty ) x[1+yJ
X

then, z is homogeneous function of degree 2.
Euler's Theorem of Homogeneous Functions
Statement : If z is a homogeneous function of x and y of degree n, then

15} 0
x—Z+ ya—z =nz; Vx,y ethe domain of the function.
y

ox

Proof : Since z is a homogeneous function of x and y of degree n.

.‘.Z:x"f[%J (1)

Partial differentiating w.r.t x, we get

]

ox X x )\ x

:%:nxn—l (lj_yxn—Zf/(lj
Oox X X

Multiplying both sides of the above equation by x, we get

x% = nx"f(lj - yx"_lf'(lj
ox X X

:xg—zznz—yx”_lf'(lj (2)

X X

Now, partial differentiating (1) w.r.t. y, we have

S
oy x N\ x X

Multiplying both sides of the above equation by y, we get

0z it o

Y= lf[ZJ -(3)
oy X

Now, adding (2) and (3), we obtain the required result as
0z oz

X—+y—=nz
ox yay
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Corollary : If z is a homogeneous function of x and y of degree n, then prove

that
Bz, 0
o oxdy
2 2
PRI S |2
oyox = Oy oy

2 2 2
20 Z+2xy oz +y8 fzn(n—l)z
Ox0y

0z
=(n-1)—
( )ax

Proof : It is given that z is a homogeneous function of x and y of degree n, so by

Euler's theorem
X%Jr oz _ . (1)
ox ay

i.  Differentiating (1) partially w.r.t. x, we get

0’z oz 0’z oz

X—+—.1+ =n—
ox>  ox yaxay n@x
0’z 82
=>x—+ =(n- )— .(2)
ox 8 oy

ii.  Differentiating (1) partially w.r.t. y, we get
0’z 0’z oz 0z

X ty—+_—l=n—
oyox =~ oy- Oy oy
0’z 0’z
=X —2—( — )— ...(3)
0yox 8

iii.  Multiplying (2) by x and (3) by y and adding, we get

2 2 2
xa f+2xy 0z era fz(n—l) xa—Zer% =n(n—1)z.
ox oxoy = 0Oy ox = Oy

W | =
W | =

X~ +
Example 2 : Verify Euler's theorem for the function z = yl

x4 4yt
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X

w |

[—

+
N\
==
~—_

1 1
3 3
x> +y o
Sol. Here, z= T <=x2f
4 4 4
X"+
Y X

N}
[S—
+
7\
=<
N—
N

1
.. z is a homogeneous function of x and y of degree E

1
So, we have to verify that xZ s y% =—z
oy 12

1
x3+y3
1 1

x4+ y4

Now, z =

Taking log on both sides
1 1

logz:log%:bg(x;+y;J—log(x‘l‘+y‘l‘J (1)
x4 yZ
Differentiating (1) partially w.r.t. x
1 2 -
1oz 5’“ B Zx
;

1

1 4
1oz gx Zx
= X—— = - . (2)

1 1 1 1

x3+y3 x4+y4

Now, differentiating (1) partially w.r.t. y, we have

15 13
ree_3* 4’
P [
z2oy x3+y3 x4+y4
1 5 1
12 37 4
B R (3)
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Adding (2) and (3), we get
1 1 1 1

1{62 62}_lx3+y3_lx4+y4_1 11

ox yay

z 3L gl L34 2
x3 +y3 x4 +y4
= x%-f- y% =—z and hence the result is verified.
ox oy

V. Implicit Function
Let f(x,y) be a function of two variables and y =¢(x) be a function of x such that

f(x,4(x)) vanishes identically, then y =¢(x) is an implicit function defined by the
functional equation f(x,y)=0.
Art. : Assuming that f(x,y)=0 satisfies the conditions under which y is defined

as a derivable function of x, show that

dy _~ /o
o 7 ,f, #0

i Ly ) V=21 S 410
dx ()

provided f, = f,.
Proof : The proof is left as an exercise for the reader.
V.(a) Statement of Implicit Function Theorem
Let f(x,y) be a function of two variables x and y and (a,b) be a point in its

domain of definition such that (i) f(a,b)=0, (i) f,,f, both exist and are
continuous in a certain neighborhood of (a,b), (iii) f,(a,b) # 0, then there exists a
rectangle (a—h,a+h;b—k,b+k) about (a,b) such that for every x in interval
[a—h,a+h] , f(x,y)=0 determines one and only one value y =¢(x), lying in the
interval [b—k,b+ k], with the following properties:

(1) b=¢(a),

(2) f(x,4(x))=0 for every x in interval [a—h,a+h] and

(3) #(x) is derivable, and both ¢(x) and ¢'(x) are continuous in [a—h,a+h].

V.(b) Statement of Inverse Function Theorem

Let A be an open subset of ‘R”, f is a continuously differentiable mapping of A4

into R", f'(a) is invertible for some a € A and b = f(a). Then
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(1) There exists open sets G and H in R" such that ae G,be H. f is one-one on G
and f(G)=H.

(2) If g is the inverse of f defined in H by g(f(x))=x,(xeG), then g is
continuously differentiable mapping in H.

VI. Composite Functions and their Differentiation

Composite Function : If z is a function of x,y and x,y are themselves

functions of ¢, then z is said to be composite function of 7. Similarly, if zis a

function of x,y and x,y are themselves functions of u,v, then z is said to be

composite function of u,v.

Differentiation of Composite Function : If a function z= f(x,y) has

continuous partial derivatives w.r.t. x and y and x,y have derivatives w.r.t. ¢,

then

d:_ozds ozdy

dt oOxdt oOydt

Example 3 : If z=x" —xy+)° and x=rcosf,y =rsiné, then find % and 2—2
0z _Ozox 0z0y

Sol. = =274 3 Dt (x s 3025k
or Oxor aya =(3x —y)(cos@)+(—x+3y~)(sind)

= [3(r cos@)’ —rsin H]cos 0+ [— rcos@+3(rsin @) ]sin 0

=3r’cos’ @—rsinfcos@—rsinfcos@+3r°sin’ 6

= 31”2(0053 0 +sin’ 9)— 2rsinfcosd

Now 2_2 Z)ZC 2’; + ZZ gye (3x? — y)(=rsin @) + (—x+3y*)(rcos )

= (3r cos” @ —rsin HX— rsin @)+ (— rcos@+3r’ sin’ HXr cosd)

=-3r’cos’ @sin@+r*sin’ @ —r* cos® 6+ 3r’ sin’ fcos O

=37 cos@sin O(cos @ —sin )+ r* (sin2 0 —cos’ 6’)

VII. Taylor's Theorem for Functions of Two Variables

Statement : If f(x,y) and all its partial derivatives upto order n be continuous
in all neighborhoods of the point (x, ), then

_ Lo 28f o’f Lo f
f(x+h,y+k)—f(x,y)+( 6x+k8y] 42(/1 5 2hkaxay +k 5 ]
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3 3 3
+%(k3af+3h2k O L 3mie o'f +k3af]+

3 2

ox ox~ 0oy oxoy® oy’

Proof : Applying Taylor’s theorem to f(x+h,y+k), where y+k is regarded as

constant, we have,
2 2 3 3

f(x+hy+k)=f(x, y+k)+h f(x y+k)+%a—f( ,y+k)+%a—f(x yv+k)+...

Again, applying Taylor’s theorem to f(x,y+k), where x is regarded as constant,

2 3 3

k* o k> 0
Sy +k)= f(xy)+kayf(xy) ng( X, )+ ng( X, y)+ (2)

From (1) and (2), we get

_ 9 LA i
f@+hm+k}{}tnw+kayf@»o+éz@;f(do Loy @I }

{ﬂxw+k®f@y)§§§7ﬂ,w+ }
h2 62 3

Za—{f( ,y)+kayf(x 1)+ }L%%[ﬂx [N T

i k_Z_ k_s_ of L Of WK Of
_f(xy)+kayf(xy) T WACSIE ZY TS+ }{haijhk@x@y 72 oxty”

72 A2 2 3 3
N L S S L
| L2 0x" /2 Ox"Oy 23 ox’

R f+k8f hzaf haf kzaf
ox Oy £2 ox? oxdy L2 oy’

(}f Of Wk Of W Of K 83fJ

Ba naty nady B

ox Oy o’ Ox0y

h3af 3hk82f 3hk28f+k3af
43 o’ Ox~0y oxoy’ oy’

_ [ AN 2, 0°f O’f .0 f
So, f(x+h,y+k)—f(x,y)+(h +k j 42(/1 +2hk L+ k ﬁyj

o]
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Corollary 1 : Put a=0,b=0,h=x,k =y, in the above Taylor’s theorem, we obtain

the Maclaurin’s theorem as

o 0 1( o6 oY
f(x,y)—f(O,O)J{xaﬂ’gjf(oﬁhz(xaﬂ/aJ £(0,0)+.....+

n—1 n
1 0 0 1 0 0
X—+y— 0,0)+—| x—+y— ,ty),0<t <1
Ln—l( ox y@y} 7(0.0) én( ox y@y} S ()

Corollary 2 : Put a+h=x,b+k =y, we obtain the Taylor’s expansion of f(x,y) in

powers of x—a and y—b as

_ NN i)
f(x,y)—f(a,b)+((x a)6x+(y b)ay]f(a’b)+42((x a)6x+(y b)ﬁy) f(a,b)+....+
1 8 o\ | 8 oY
Ln_l((X—a)aJr(y—b)aj f(a,b)+Z((x—a)a+(y—b)§j fla+t(x—a),b+t(y—b)),

Where 0<7¢<1.
VIII. Summary
In this lesson, while discussing about the differentiability of the function f(x,y),

we have studied about several functions such as homogeneous function, implicit
function and composite function and their important results. During the study, it is
also learned about the differentiation of composite functions or about the chain rule.
Further, through this lesson, we are now familiar with the generalization of the
Taylor's theorem on function of two variables.

IX. Self Check Exercise
1. Show that f(x, y):|x|+|y| is continuous at (0,0) but not differentiable at
(0,0).

1
2. Discuss the differentiability of the function f(x,y)= (xy)? at (0,0).
2

3. Discuss the differentiability at (0,0) of f(x,y)= YV When f(x,y)#(0,0)
X

2+y2

and £(0,0)=0.

4. Verify Euler's theorem
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o

1 1

x4+ py4
1 1
x>+ y3

(i) z = (i) z=x"log
X

2 2
. + 0 16}
If u=sin'| =22 | then show that x 2+ = tanu.
X+y ox oy

Ifuzxz—yz, x=2r-3s+4, y=—r+8s—35, then find Z—u
r

v

z is a function of x and y. Prove that if x=¢"+¢"

0z 0z Oz Oz

and y=e " —¢’, then

———=x——y—.
ou oOv ox y@y
2 2 2 4
Xy d’y -b
If —+==1, prove that = .
a2 b2 p dx2 a2y3

State Taylor's theorem for functions of two variables. Use it to expand

xp° +3x—2 in powers of x+2 and y—1.

10.Expand x* +xzy2 - y4 about the point (1,1) upto the terms of the second

degree.

11.Obtain Taylor's expansion for f(x,y)=e" at (1,1) upto the third term.

Suggested Readings

aAeh=

RK Jain, SRK Lyenger Advanced Engineering Mathematics
JR Sharma Advanced Calculus

Malik and Arora Mathematical Analysis

Shanti Narayan Mathematical Analysis

Thomas and Finney Calculus and Analytical Geometry
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SEMESTER-III ADVANCED CALCULUS

LESSON NO. 2.4 Author: Dr. Chanchal

SOME BASIC FUNCTIONS CONCERNING PARTIAL

DERIVATIVES
Structure:
Objectives
I. Introduction

II. Working Method for Maxima and Minima of a Function f(x,y)
III. Lagrange's Method of Undetermined Multipliers
IV. Jacobian of » -Functions
V. Some Important Articles Concerning Jacobian
VI. Self Check Exercise
Suggested Readings

Objectives

During the study in this particular lesson, our main purpose is to study the rules
and methods such as Lagrange's method, under which the maximum and
minimum of the function f(x,y) can be obtained. Further, an important function
known as Jacobian and its important properties are also elaborated under the same.
I. Introduction

Before introducing the main part of this lesson, we firstly define the extreme values
of the function f(x,)), below:

A. Maximum Value : A function f(x,y) is said to have a maximum value at
x=a,y=>b if f(a,b)> f(a+h,b+k) for small values of & and k, positive or
negative.

B. Minimum Value : A function f(x,y) is said to have a maximum value at
x=a,y=>b if f(a,b)< f(a+h,b+k) for small values of & and k, positive or

negative.
C. Extreme Value : A maximum or minimum value of a function is called an
extreme value.
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II. Working Method for Maxima and Minima of a Function f(x,y)
Let f(x,y) be the given function

of of

Step I: Find — and —.
ox oy

0 0
Step II : Solve 81:0 and al:O simultaneously for x and y . Let
X v

(1), (X5, 0 ) v be the points.

2 2 2
6]2”’B:8f’C:6]2”
ox oxoy oy
Step IV : (i) If for a point (x,,,), AC—B>>0 and 4<0, then f(x,y) has a

Step III : Calculate the values of 4= for each point.

maxima for this pair and maximum value is f(x;,,).

(ii) If for a point (x,,y,), AC—B*>>0 and 4> 0, then f(x,y) has a minima for this
pair and minimum value is f(x,,),).
(iii) If for a point (x,y,), AC—B><0 , then there is neither maximum nor
minimum of f(x,y) and f(x,y) is said to have a saddle point at (x,,y,) .
(iv) If AC — B* =0 for some point (a,b), then we have the following cases:
(a) if f(a,b)— f(a+h,b+k)>0 for small values of & and k, positive or negative,
then f has maxima at (a,b).
(b) if f(a,b)— f(a+hb+k)<0 for small values of 4 and k , positive or
negative, then f has minima at (a,b).
(c) if f(a,b)— f(a+h,b+k) does not keep the same sign for small values of &

and k£, then there is neither maxima nor minima.
Example 1 : Find all the maxima and minima of the function

f(x,y)= x* +y3 —63(x+y)+12xy.

Sol. Step I. gz?)xz +12y—-63 and 1=3y2 +12x-63
ox oy

Step II. Let us solve g =0 and g =0
ox oy

ie., 3x*+12y—63=0 and 3y*+12x-63=0
or x’+4y-21=0 (1)
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and y> +4x-21=0 (2)
Subtracting (2) from (1), we get
¥ =y +4y—dx=0=(x—p)(x+y)—4(x-»)=0= (x—y)(x+y—4)=0
= either x — y =0 which gives x=y, or x+y—4=0 which gives x=4—-y
For x =y, (1) becomes
X 4+4x-21=0= (x+7)(x-3)=0=>x=3,-7
As y=x,s0 y=3,-7
For x=4—-y, (1) becomes

(4-y)" +4y-21=0
or y°—8y+16+4y-21=0
or ' —4y-5=0=(y-5)(y+1)=0=>y=5-1
Further, from x=4-y, x=-1,5.
so, the four critical points are (3,3), (-7,-7), (-1,5) and (5,-1).
Step III. Azaz—{=6x,B:82—f=12,C=az—{=6y

ox ox0y oy

- AC — B> =36xy —144.
Step IV. At (3,3), AC—B>=36(3)(3)-144=180>0 and 4=6(3)=18>0
- f(x,y) is minimum at (3,3) and the minimum value is given by
f(33)=27+27-63(3+3)+12(3)(3)=-216
At (-7,-7), AC—B* =36(-7)(-7)—144=1764-144=1620>0 and A=6(-7)=-42<0
- f(x,y) is maximum at (-7,-7) and the maximum value is given by
f(=7,-7)=-343-343+882+588 =784
At (-1,5), AC—B* =36(-1)(5)—144=-180-144=-324<0
- f(x,y) has neither maximum nor minimum at (-1,5) and therefore, (-1,5) is a
saddle point.
At (5,-1), AC—B* =36(5)(-1)—144=-180-144=-324<0
- f(x,y) has neither maximum nor minimum at (5,-1) and therefore, (5,-1) is a
saddle point.
Example 2 : Find the extreme value (if any) of f(x,y)=2x"*-3xy+ >
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Sol. Step I. g =8x’ —6xy and g =-3x"+2y
ox oy

Step II. Let us solve g =0 and @ =0

ox oy
or 8x’—6xy=0 (1)
and —3x+2y=0 (2)

From (1), 2x(4x> —3y)=0=> x = 0,x? :373’

For x=0, from (2), 0+2y=0= y=0.
So, the point is (0,0).

For x’ 2% , from (2), 3x?—£—2y:0:>y:0

..(0,0) is the only critical point.
2 2
Step III. A= 0 { =24x* —6y,B = of =—6x,C =
ox Ox0y oy
s AC—B* =(24x* —6y)(2) - (-6x)°.
Step IV. At (0,1), AC-B* =(0-0)(2)-0=0.

So, at (0,0) further investigation is required.

Consider

f(a,b)— f(a+hb+k)=£(0,0)— f(hk)=0-(2h* —3h2k+k2):%k2 —2(/12 —%j

which does not keep the same sign for small values of 4 and k, so there is neither
maximum nor minimum at (0,0).

III. Lagrange's Method of Undetermined Multipliers

Let f(x,y,z) be a function of x,y,z which is to be examined for maximum or
minimum values and let the variables be connected by the relation

P(x,y,2)=0 (1)

Since f(x,y,z) is to have maximum or minimum value,

g—o, gzo andgzo

S ox oy 0z
:gdx+gdy+gd220 (2)
Ox oy oz
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Differentiating (1), we get
%dx+%dy+%dz =0

Ox oy oz

(3)

Now, adding A times of (3) into (2), we get

(g+ l%jdx + (g + l%]dy + (g + ﬂ%jdz =0
ox ox oy oy oz oz

In order to satisfy this equation identically, coefficients of dx,dy,dz should be zero

separately
e., g + )u% =0 4)
ox ox
and g + /1% =0 (5)
d oy
and g + /1% =0 (6)
0z 0z

Equations (1), (4), (5) and (6) will give the values of x,y,z,4 for which the function

f(x,y,z) has maximum and minimum values.

Example 3 : Find the maximum and minimum value of the function x* + )
subject to the condition 3x> +4xy +6y° =140.

Sol. Let f(x,y)=x"+)’

The constraint is

3x% +4xy+6y° =140

(1)

Let F(x,y)=x"+y>+ 1(3)62 +4xy+6y° — 140) where A is Lagrange’s multiplier.
For extreme points,

a—F=2x+/1(6x+4y):0
ox

and %=2y+1(4x+12y)20

or (1+34)x+24y=0 (2)
and 2Ax+(1+64)y =0 (3)

Since x,y are both non-zero,
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1431 24
22 1+6z‘:
= (1+34)(1+62) 44 =0
= 142 +94+1=0

:l_—9i\/81—56 _-9+5 11
28 28 27 7

Taking A= —%

From (2), x=-2y
And from (1), 12y* -8y° +6y° —140=0= y* =14

sxt=4y* =56
Which gives x* +y° =56+14=70
Taking A = —%

From (2), y =2x

And from (1), 3x> +8x> +24x> —140=0= x* =4

Syt =4x" =16

Which gives x° +y*> =16+4=20

Hence, the maximum value of x° + y* is 70 and the minimum value is 20.

IV. Jacobian of »-Function

If £, frrememeane , f,, be n functions of n variables X,,X,,........... ,X, possessing partial

derivatives of the first order at every point of the domain of definition of the function,
then the determinant

S % S
ox, Ox, ox,
9 & D
ox, Ox, ox,
o, o o,
ax1 a ...... axn
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Is called the Jacobian of f, f,,..cccoc... o f WLte X)X, e ,x,. It is denoted by
Ofys frsemennenn 1o
(1.1, )or (0 S 1)
Ax;, Xy v ,x,)
Example 4 : Find Mif f=x>—xsiny and g=x"y" +x+y.
o(x.»)

Sol. Here, f=x>—xsiny and g=x"y> +x+y.

g:2x—siny, 1=—xcosy

ox oy
And a—g=2xy2 +1, a—g:2x2y+1

Ox
g g

o(f,g) |ox ay| |2x—siny —xcosy
ox,y) (02 08| |20 +1 2x7y+1
ox Oy

Now,

=(2x—sin »)2x*y +1)+ (2xy* +1)(xcos y)
V. Some Important Articles Concerning Jacobian
Art. 1 : Jacobian of Composite Functions

Statement : If f:R" > R" and g:R" > R" differentiable functions, then
J (%) =J (f(x))J,(x), where I = gof.
Art. 2 : Let D be an open subset of R" and f: D — R" be differentiable at every

point of D . Suppose that f is invertible on D and let f~' be differentiable at
every point of the range of f, then

1
Jf,, (f(x)) e VxeD.
Art. 3 : Jacobian of Implicit Functions
Statement : If u ,u,,........... ,u, are functions of x,,Xx,,........... ,x, defined implicitly
by n equations
Fl(ul,uz, ........ Uy s Xy 3 Xy e ,x,,):o,
Fz(ul,uz, ........ T S S ,xn):O,
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Fn(ul,uz, ........ 7 S SR ,xn)zO,
OF,Fypeeee... F)
8(u U gereeennn, 7 ) 8(x,x pererrees X )
h 1°7"2 n _1 n 1°7*2 n
then, R x,) (=D F,Fypeee.n, JF))
Aoty 1ty )

Art. 4 : Functional Dependence (Necessary and Sufficient Condition for a
Jacobian to Vanish)

Statement : Let u ,u,,.......... ,u, be n functions of n independent variables
X3 Xy geeiinnnn ,X,. In order that there may exist between these functions a relation
F (ul,uz, ........ ,un)ZO , it is necessary and sufficient that the Jacobian
Out, sty yene.n. )

Note : The proof of above articles is easy and left as an exercise for the reader.
Example 5 : Prove that J p= (f,n)z & for any (f,n) belonging to the range of f,

where f(x,y)= (1/)&'2 +y”,tan” ZJ .

X

Sol. Here f(x,y)z(q/xzjtyz,tan 1)’} (f1,12)

Where f;(x,y)=+/x>+)° and fz()c,y)ztan_IZ
x
o _ 2x _
ox 2\/xz+y2 \/szry2
9h__ 2y
Ox 2\/x2+y2 \/x2+y2

og, _ 1 (ij: -y
Oox 2\ x? x4 92
1+(yj Y

X

1

agz _

1+

i)Uxiy
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w2 o Fy 7
of, f,) lox  ay| _|Yx2+y? Jxr+)?
Now, J, (x,y)=——%= =
oW j(x y) a(x’y) % % —y X
ox oyl | X+t xXP+)?
x? 2 1
(x2+y2)2 (x2+y2)2 X" +y
1
:E l'.‘(f,ﬂ)=f(x,y):>§=\/x2+y2J
1
Now, J ({,n)=——=¢
f( ) J(x,»)

Example 6 : Show that the functions u =x-2y+z,v=x"+2xy—xz,w=3x+2y—z

are not independent of one another. Also find the relation between them.
Sol. For the given functions, we have

o ou
ox 0Oy Oz 1 2 1
ou,v, w) = v v =2x+2y-z 2x -—-x
o(x,y,z) |Ox Oy Oz
8_w 6_w 8_w 3 2 -1
ox Oy Oz
1 -2 1
=2x+2y-z 2x -x|, by R;+R,
4 0 0
=4(2x-2x)=0
. u,v and w are not independent of one another.

Further,
w—u’ =Cx+2y—2) —(x-2y+2)  =Bx+2y —z+x-2y+2)Bx+2y—z—x+2y—2)

=4x(2x+4y—22)=8x(x+2y—2z) =8(x* +2xy —zx) = 8v

2 2 . . .
So, w™—u~ =8v is the required relation between u,v and w.
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VI.

Self Check Exercise

Find all the critical points of the function f(x,y) =x’ +xy and examine for
maxima, minima or neither.

Find the minimum value of f(x,y,z)=x"+ y”> +z* subject to the condition
yz +zx + xy = 3a’.

Find the point on the plane 2x+3y—z =35 which is nearest to the origin in
R

Ax,y,z2)

a(r, g, z) '

Prove that J, (x,y) =e™ sin(x + y) where f(x,y)= (e" sin y,e” cos x)

If x=rcos#,y=rsinf,z =z, then evaluate

Evaluate Jf,, (é’, n) , where f(x,y)= (x -y, X+ y).

ou,v) 1 y>—x’
o(x,y) 2'uv(u—v)'

Show that the functions u=x+y—z,v=x—y+z,w=x"+y>+z°-2yz are

If u> +v° =x+y,u2 +vi =y’ er3 , then show that

not independent of one another. Also find the relation between them.
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