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B.A. PART - I MATHEMATICS  : PAPER–I

(SEMESTER-I)  CALCULUS–I

LESSON NO. 1.1 Author : Dr. Chanchal

SUCCESSIVE DIFFERENTIATION

1.1.1 Objectives

1.1.2 Introduction

1.1.3 Successive Differentiation of Some Standard Functions

1.1.4 Some Important Examples

1.1.5 Leibnitz's Theorem

1.1.5.1 Some Important Examples

1.1.6 Summary

1.1.7 Key Concepts

1.1.8 Long Questions

1.1.9 Short Questions

1.1.10Suggested Readings

1.1.1 Objectives

The prime goal of this unit is to enlighten the basic concepts of successive

differentiation, multiple points and asymptotes, concavity and convexity etc. During

the study in this particular lesson, our main objectives are

* To obtain nth order derivatives of some standard functions by the method

of mathematical induction.

* To discuss Leibnitz's theorem for finding the nth order derivatives of the

product of two functions.

1.1.2 Introduction

We are already familiar with the concept that derivative of a function of x is also a

function of x. Thus the derivative of a function may have its derivative without any

loss of genrality.

If y = f(x),

x 0

dy f(x x) f(x)
lim f '(x)

dx x 

  
 


1
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is called the first differential coefficient or first derivative of f(x). If the process of

differentiation be continued in succession, we obtain second, third and higher order

derivatives, as follows :

2

2 x 0

d y d dy f '(x x) f '(x)
lim f "(x),

dx dx xdx  

   
   

 

3 2

3 2 x 0

d y d d y f "(x x) f "(x)
lim f " '(x)

dx xdx dx  

    
   

 

and so on. These are also denoted by

2 n
2 n

1 2 n2 n

dy d y d y
y Dy, y D ,..., y D y

dx dx dx
     

1.1.3 Successive Differentiation of Some Standard Functions

Art 1.1 : Prove the following results :

(i) If y = (ax + b)m, then y
n 
= m (m–1) (m–2).... (m–n +1) (ax + b)m–n an.

Proof : Here y = (ax + b)m

Differentiating both sides w.r.t. x, we get,

y
1 
= m (ax + b)m–1. a = m (ax + b)m–1. a1

 result is true for n = 1

Assume that the result is true for n = k, where k is positive integer.

 y
k 
= m (m–1) (m–2) ... (m – k + 1) (ax + b)m–k. ak

Differentiating both sides w.r.t.x, we get,

y
k + 1 

= m (m–1) (m–2) ... (m –k + 1) (m–k) (ax +b)m–k–1. a . ak

or y
k + 1 

= m (m–1) (m–2) ... (m – k + 1) (m – k) (ax + b)m + (k + 1). ak + 1

 result is true for n = k + 1.

 if the result is true for any positive integer k, then it is also true for the next

higher integer k + 1.

But the result is true for n = 1 also.

 By method of induction, the result is true for all positive integers n.

Cor. I. If m is a positive integer > n, then

m n n
n

m(m 1) (m 2).....(m n 1) m n
y (ax b) . a

m n
    

 


or m n n
n

m
y (ax b) . a

m n
 



yD2y
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If m = n, then y
n 
= n (n – 1) (n – 2) .... 2.1 (ax + b)0 . an

or n
ny n . a

y
n + 1 

= y
n + 2 

= ... = 0

 y
n 
= 0 n > m.

(ii) If 
n n

n n 1

1 ( 1) n . a b
y , then y , x

ax b a(ax b) 


   

 
.

Proof : Here 11
y (ax b)

ax b
  




1 1

2
1 2

( 1) . 1. a
y ( 1) (ax b) . a

(ax b)


 

   


 the result is true for n = 1.

Assume that the result is true for n = k, where k is a positive integer.


k k

k k k 1
k k 1

( 1) . k . a
y ( 1) k a (ax b)

(ax b)

 




   



Differentiating again w.r.t. x, we get,

k k k 2
k 1y ( 1) k a ( k 1) (ax b) . a 
     

k 1 k 1
k 1 k 1 (k 2)

k 2

( 1) k 1. a
( 1) k 1 a (ax b)

(ax b)

 
   



 
    



 result is true for n = k + 1.

 if the result is true for n = k, then it is also true for n = k + 1.

But the result is true for n = 1.

 By method of induction, the result is true for all positive integers n.

(iii) If y = log (ax + b), then 
n 1 n

n n

( 1) n 1. a b
y , x

a(ax b)

 
  


.

Proof : Here y = log (ax + b)

Differentiating both sides w.r.t.x,

1 1 1

1 1

1 ( 1) . 1 1. a
y . a

ax b (ax b)

 
 

 

 the result is true for n = 1.

Assume that the result is true for n = k, where k is a positive integer.
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
k 1 k

k 1 k k
k k

( 1) . k 1. a
y ( 1) k 1. a . (ax b)

(ax b)


  

    


Differentiating both sides w.r.t.x, we get,

k 1 k k 1
k 1y ( 1) k 1a ( k) (ax b) . a  
     

k k 1
k k 1 (k 1)

k 1

( 1) k . a
( 1) k a (ax b)

(ax b)


  




   



 result is true for n = k + 1

 if the result is true for n = k, then it is also true for n = k + 1

But the result is true for n = 1.

 By the method of induction, the result is true for all positive integers n.

Note : Same result will hold even if y = log |ax + b| where x > – 
b

a
.

(iv) If y = amx, a > 0, then y
n 
= amx. (log a)n . mn.

Proof : Here y = amx

Differentiating both sides w.r.t.x,

y
1 
= amx, log a . m = amx. (log a)1 . m1

 the result is true for n = 1.

Assume that the result is true for n = k, where k is a positive integer.

 y
k 
= amx . (log a)k . mk

Differentiating both sides w.r.t.x,

y
k + 1 

= [amx . (log a) . (m)] . (log a)k . mk = amx . (log a)k + 1 . mk + 1

 result is true for n = k + 1.

 if the result is true for n = k, then it is also true for n = k + 1.

But the result is true for n = 1.

 By the method of induction, the result is true for all positive integers n.

Cor. 1. Put m = 1

 y
n 
= ax . (log a)n

 y = ax  y
n 
= ax . (log a)n

Cor. 2. Put a = e

 y
n 
= emx . (log e)n. mn = emx . mn

 y = emx y
n 
= emx . mn

Cor. 3. Put a = e, m = 1

 y
n 
= ex . (log e)n . (1)n = ex

 y = ex y
n 
= ex.
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(v) If y = sin (ax + b), then y
n 
= an sin 

n
ax b x R

2

 
    

 
.

Proof :Here y = sin (ax + b)

Differentiating both sides w.r.t. x,

y
1 
= cos (ax + b) . a = a1 sin ax b 1.

2

 
  

 

 the result is true for n = 1.

Assume that the result is true for n = k, where k is a positive integer.


k

ky a sin ax b k
2

 
   

 

Differentiating again w.r.t.x,

k k 1
k 1y a cos ax b k . a a sin ax b k

2 2 2




      
         

    

k 1a sin ax b (k 1)
2

  
    

 

 result is true for n = k + 1.

 if the result is true for n = k, then it is also true for n = k + 1.

But the result is true for n = 1.

 By the method of induction, the result is true for all positive integers n.

(vi) If y = cos (ax + b), then y
n 
= an cos ax b n x R

2

 
    

 
.

Proof : The proof is left as an exercise for the reader.

(vii) If y = eax sin (bx + c), then 
2 2 ax 12

n

b
y (a b ) e sin bx c n tan

a


 

    
 

Proof : Here y = eax sin (bx + c)

Differentiating both sides w.r.t.x,

ax ax
1

d d
y e . [sin (bx c)] sin (bx c) . (e )

dx dx
   

= eax . cos (bx + c) . b + sin (bx + c) . eax . a

 y
1 
= eax [a sin (bx + c) + b cos (bx + c)]

Put a = r cos and b = r sin where r > 0.
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Squaring and adding (2) and (3), we get,

2 2 2 2 2a b r r a b    

Dividing (3) by (2), tan 1b b
a tan

a a
   

 from (1), y
1 
= eax [r cos sin (bx + c) + r sin cos (bx + c)]

= eax . r [sin (bx + c) cos + cos (bx + c) . sin ]

= r eax sin (bx + c + )



1
2 2 ax 12

1

b
y (a b ) . e sin bx c 1. tan

a
 

    
 

 the result is true for n = 1.

Assume that the result is true for n = k, where k is a positive integer



k
2 2 ax 12

k

b
y (a b ) . e sin bx c k tan

a
 

    
 

or y
k 
= rk eax sin (bx + c + k)

Differentiating again w.r.t. x, we get,

y
k + 1 

= rk . [eax . cos (bx + c + k) . b + sin (bx + c + k) . aeax]

= rk . eax [a sin (bx + c + k) + b cos (bx + c + k)]

= rk . eax [r cos sin (bx + c + k) + r sin cos (bx + c + k)]

= rk + 1 . eax sin [(bx + c + k) + ] = rk + 1 . eax sin [bx + c + (k + 1) ]



k 1
2 2 ax 12

k 1

b
y (a b ) . e sin bx c (k 1) tan

a






 
     

 

 the result is true for n = k + 1

 if the result is true for n = k, then it is also true for n = k + 1.

But the result is true for n = 1.

 By the method of induction, the result is true for all positive integers.

(viii) If y = eax cos (bx + c), then

n
2 2 ax 12

n

b
y (a b ) . e cos bx c n tan

a
 

    
 

Proof : The proof is left as an exercise for the reader.

1.1.4 Some Important Examples

Example 1 : If y = cosh (log x) + sinh (log x), prove that y
n 
= 0 for n > 1.

Sol. y = cosh (log x) + sinh (log x)



7B.A. PART - I MATHEMATICS PAPER–I

Differentiating both sides w.r.t.x, we get

1

1 1
y sinh (log x) . cosh(log x) .

x x
 

 xy
1 
= sinh (log x) + cosh (log x)

or xy
1 
= y

Again differentiating w.r.t.x, we get

xy
2 
+ y

1 
= y

1
or xy

2 
= 0

 y
2 
= 0

 y
n 
= 0 for x > 1.

Example 2 : If p2 = a2 cos2 + b2 sin2 , prove that 
2 2 2

2 3

d p a b
p

d p
 



Sol. Here p2 = a2 cos2+ b2 sin2

 2 2 21 cos 2 1 cos 2
p a b

2 2

      
    

   

 2p2 = a2 (1 + cos 2) + b2 (1 – cos 2)

 2p2 – (a2 + b2) = (a2 – b2) cos 2 ... (1)

Differentiating w.r.t. , we get,

2 2dp
4p 2 (a b ) sin 2

d
   



or
2 2dp

2p (a b ) sin 2
d

   


... (2)

Squaring (1), (2) and adding, we get,

2

4 2 2 2 2 2 2 2 2 2 2dp
4p (a b ) 4p (a b ) 4p (a b )

d

 
       

 

or
2

4 2 2 2 2 2 2 2 2 2 2dp
4p 4p (a b ) 4p (a b ) (a b ) 0

d

 
        

 

or
2

4 2 2 2 2 2 2dp
4p 4p (a b ) 4p 4a b 0

d

 
     

 

Dividing both sides by 4p2, we get,
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2 2 2
2 2 2

2

dp a b
p (a b ) 0

d p

 
     

 

Dividing by 
dp

2 ,
d

 we get,

2 2 2

2 3

d p a b
p

d p
 



Example 3 : Find the nth derivative of ax b .

Sol. Let 
1

2y ax b (ax b)   



1 1
1

2 2
1

1 1
y (ax b) . a (ax b) a

2 2

 

   



3
22

2

1 1
y (ax b) a

2 2

 
   

 
=

12 3
32

3

( 1) 1.3
y (ax b) a

2


 



5
32

3

1 1 3
y . (ax b) a

2 2 2

   
      

   



12 3
32

3

( 1) 1.3
y (ax b) a

2


 

................................................



1
n

n 1 n2

n n

( 1) 1.3.5... (2n 1) (ax b) a
y

2


  





n 1
n

n 2n 1
n 2

( 1) 1.3.5... (2n 1) b
y . a where x

a
2 (ax b)





 
  



Example 4 : Find y
n 
if 

3

2x 1
y

(x 2) (x 1)




 
.

22
(-1)1.1

2

2
2

3
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Sol.
3

2x 1
y

(x 2) (x 1)




 

Put
3 2 3

2x 1 A B C D

x 2 x 1(x 2) (x 1) (x 1) (x 1)


   

    

Multiplying both sides by (x–2) (x–1)3, we get

2x + 1  A (x –1)3 + B (x–2) (x–1)2 + C (x – 2) (x–1) + D (x–2) ... (1)

Putting x – 2 = 0 i.e. x = 2 in (1), we get

5 = A A = 5

Putting x –1 = 0 i.e. x = 1 in (1), we get

3 = –D D = –3

(1) can be writing as

2x + 1=A (x3 – 3x2 + 3x –1) + B (x3 – 4x2 + 5x – 2) + C (x2 – 3x + 2) + D (x – 2)

... (2)

Equating coefficients in (2) of

x3) A + B = 0 5 + B = 0 B = –5

x2) –3A – 4B + C = 0 –15 + 20 + C = 0 C = -5


2 2 3

2x 1 5 5 5 3

x 2 x 1(x 2) (x 1) (x 1) (x 1)


   

    


2 3

5 5 5 3
y

x 2 x 1 (x 1) (x 1)
   

   



nn n n

n n 1 n 1 n 2 n 3

( 1) n 2( 1) n ( 1) n ( 1) n 1
y 5 5 5 3

(x 2) (x 1) (x 2) (x 1)   

    
   

   


n

n n 1 n 1 n 2 n 3

5 5 5(n 1) 3(n 2) (n 1)
y ( 1) n

(x 2) (x 1) (x 1) (x 1)   

  
    

   

Example 5 : Find the nth derivative of y = e3x sin2 2x.

Sol. 3x 2 3x 3x 3x1 cos 4x 1 1
y e sin 2x e e e cos 4x

2 2 2


   



n
3x n 3x 12

n

1 1 4
y e . 3 (9 16) e cos 4x n tan

2 2 3
   

1
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
3x n n 1

n

1 4
y e 3 5 cos 4x n tan

2 3
   .

1.1.5 Leibnitz's Theorem

Statement : If u and v are functions of x possessing nth order derivatives, then

(uv)
n 
= nC

0 
u

n 
v + nC

1 
u

n–1 
v

1 
+ nC

2 
u

n–2 
v

2 
+ ... + nC

r 
u

n–r 
v

r 
+... + nC

n 
uv

n

where u
r 
denotes the rth order derivative of u and nC

r 
denotes the number of

combinations out of n different things taken r at a time.

Proof : We have

(uv)
1 
= u

1
v + uv

1 
= 1C

0 
u

1
v + 1C

1 
uv

1

 theorem is true for n = 1.

Assume that the theorem is true for n = m, where m is a positive integer.

 (uv)
m 

= mC
0 
u

m 
v + mC

1 
u

m–1 
v

1 
+ mC

2
u

m–2 
v

2 
+ ...

+ mC
r–1 

u
m–r+1 

v
r–1 

+ mC
r 
u

m–r 
v

r 
+ ... + mC

m 
uv

m

Differentiating both sides w.r.t.x, we get,

(uv)
m + 1 

= mC
0 
u

m +1 
v + mC

0 
u

m 
v

1

+ mC
1
 u

m 
v

1 
+ mC

1 
u

m–1 
v

2

+ ...   ...  ...  ...  ...

+ mC
r–1 

u
m–r+2 

v
r–1 

+ mC
r–1 

u
m–r+1 

v
r

+ mC
r 
u

m–r+1 
v

r 
+ mC

r 
u

m–r 
v

r+1

+ ...  ...  ...  ... ...

+ mC
m 

u
1 
v

m 
+ mC

m 
uv

m+1

 (uv)
m + 1 

= mC
0 
u

m + 1 
v + (mC

0 
+ mC

1
) u

m 
v

1+ 
(mC

1 
+ mC

2
) u

m–1 
v

2

+...+ (mC
r–1 

+ mC
r
) u

m–r+1 
vr + ... + mC

m 
uv

m+1

But mC
0 
= 1 = m + 1C

0

mC
0 
+ mC

1
 = m + 1C

1

mC
1 
+ mC

2
 = m + 1C

2

...   ...  ...  ...  ...
mC

r–1 
+ mC

r
 = m + 1C

r

mC
m 

= 1 = m + 1C
m + 1

 we have

(uv)
m + 1 

m + 1C
0 
u

m + 1 
v + m + 1C

1
u

m 
v

1 
+ m + 1C

2 
u

m–1 
v

2 
+ ...

+ m + 1C
r 
u

m–r+1 
v

r 
+ ... + m + 1C

m + 1 
uv

m + 1

 theorem is true for n = m + 1.

 if the theorem is true for n = m, then it is also true for n = m + 1

But the theorem is true for n = 1.

 By the method of induction, theorem is true for all positive integers n.
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1.1.5.1 Some Important Examples

Example 6 : Prove that 
n n

n n 1

d log x ( 1) n 1 1 1
log x 1 ...

x 2 3 ndx x 

   
        

   

Given that x > 0.

Sol. Here 
log x 1

y log x .
x x

 

Let V = log x
1

U
x



1
1

1
V x

x
  U

1 
= (–1) x–2

V
2 
= (–1) x–2 U

2 
= (–1) (–2) x–3

V
3 
= (–1) (–2) x–3

3

3 4

( 1) 3
U

x




and so on and so on

n 1

n n

( 1) n 1
V

x

 


n

n n 1

( 1) n
U

x 




By Leibnitz's rule

n n n

n n n

d y d d log x
(U . V)

xdx dx dx

 
   

 

n n 1
n n

0 1n 1 n

( 1) n ( 1) n 1 1
C . log x C .

xx x





  
 

n 2 n 1
n n

2 nn 1 2 n

( 1) n 2 ( 1) 1 ( 1) n 1
C . .... C .

xx x x

 



    
  

n

n 1

( 1) n 1 1 1
log x 1 ...

2 3 nx 

  
      

 
.

Example 7 : If y = (sin–1 x)2, find y
n 
(0).

Sol. y = (sin–1 x)2

Differentiating w.r.t. x,
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1
1

2

1
y 2 (sin x) .

1 x




Squaring and cross-multiplying

(1 – x2) y
1

2 = 4 (sin–1 x)2 (1 – x2) y
1

2 = 4y

 (1 – x2) y
1

2 – 4y = 0

Differentiating w.r.t.x, again we get,

(1 – x2) 2y
1 
y

2 
– 2x y

1
2 – 4y

1 
= 0

Dividing by 2y
1
, we get

(1 – x2) y
2 
– xy

1 
– 2 = 0 ... (3)

Differentiating n times (3) by Leibnitz's rule,

1. 
2

n 2 n 1 n n 1 n

n n(n 1) n
y (1 x ) y ( 2x) y ( 2) 1. y x y .1 0 0

1 2.1 1
  


        

(1 – x2) y
n + 2 

– (2n + 1) xy
n + 1 

– n2y
n 
= 0 ... (4)

Putting x = 0 in (1), (2), (3) and (4) we get,

y (0) = 0 ... (5)

y
1 
(0) = 0 ... (6)

y
2 
(0) = 2 ... (7)

y
n + 2 

= n2 y
n 
(0) ... (8)

Putting n = 1, 2, 3, 4 ... in (8), we get,

y
3 
(0) = 12 y

1 
(0) = 0 ... (9)  of (6)

y
4 
(0) = 22 y

2 
(0) = 2.22 ... (10)  of (7)

2
5 3y (0) 3 y (0) 0  ... (11)  of (8)

y
6 
(0) = 42y

4 
(0) = 2 . 22 . 42  of (10)

and so on.

 In general 
2 2 2

n

2.2 .4 ...(n 2) when n is even and n 2
y (0)

0 when n is odd

  
 


1.1.6 Summary

In this lesson, we have elaborated the basic technique of finding higher order

derivatives of various mathematical functions. Moreover with the help of Leibnitz’s

theorem, we have learnt to find out the nth order derivative of product of two functions.

The concept is made understandable with the help of various suitable examples.
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1.1.7 KEY CONCEPTS

Higher order derivatives, Leibnitz’s theorem.

1.1.8 LONG QUESTIONS

1. If y = eax sinh bx prove that y
2 
– 2ay

1 
+ (a2 – b2) y = 0.

2. If y = log (1 + cos x), prove that y
1
y

2
 + y

3 
= 0.

3. If x = sin , y = sin m, prove that (1 – x2) 
2

2

2

d y dy
x m y 0

dxdx
   .

4. State and prove Leibnitz’s theorem.

5. If y = xn log x, prove that n 1

n
y

x
  .

6. If y = sin (m sin–1x), prove that

(1 – x2) y
n + 2 

– (2n + 1) xy
n + 1 

– (n2 – m2) y
n 
= 0

7. If y = (x2 – 1)n, prove that (x2 – 1) y
n + 2 

+ 2xy
n +1 

– n (n + 1) y
n 
= 0.

8. If x = tan (log y), prove that

(1 + x2) y
n +2 

+ {2 (n + 1) x – 1} y
n + 1 

+ n (n + 1) y
n 
= 0.

1.1.9 SHORT QUESTIONS

1. Find the nth derivative of

(i) 
x a

x log , x a 0
x a

 
  

 
(ii) ex cos x cos 2x

(iii) sin x sin 2x (iv) 2x . ex

1.1.10 SUGGESTED READINGS

1. Gorakh Prasad : Differential Calculus

2. Malik and Arora : Mathematical Analysis

3. Thomas and Finney : Calculus and

(Ninth Edition) Analytic Geometry
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SINGULAR POINTS

1.2.1 Objectives

1.2.2 Introduction

1.2.3 Working Method for Concavity, Convexity and Points of Inflexion

1.2.4 Some Important Examples

1.2.5 Double Points and their Classification

1.2.5.1 Classification of Double Points

1.2.5.2 Working Method for Finding the Nature of Origin which is a Double

Point

1.2.5.3 Working Method for Finding the Position and Nature of Double

Points of the Curve f(x, y) = 0

1.2.6 Some Important Examples

1.2.7 Summary

1.2.8 Key Concepts

1.2.9 Long Questions

1.2.10Short Questions

1.2.11Suggested Readings

1.1.1 Objectives

The prime goal of this lesson is to gain knowledge about the singular points of the

curve y = f(x). During the study in this lesson, our main objectives are

* To discuss about the types of singular points viz., points of inflexion

and multiple points particularly double points, alongwith their

classification and respective nature.

* To study about the concavity and convexity of the curve y = f(x).

1.1.2 Introduction

Singular Point : A point on the curve at which the curve behaves in an

extraordinary manner is called a singular point.

There are two types of singular points :

(i) Points of inflexion
14



15B.A. PART - I MATHEMATICS  PAPER–I

(ii) Multiple points

Firstly, we study points of inflexion for which we must be familiar with the concepts

of concavity and convexity of a curve, as discussed below :

Consider the curve y = f(x) in [a, b]. Let it be continuous and possessing tangents at

every point in (a, b).

Draw a tangent at any point P (c, f(c)) on the curve. Let us assume that this tangent

is not parallel to Y-axis so that f'(c) is some finite number.

Now there are three mutually exclusive possibilities to consider :

P

O

Y

X
(i)

            

P

O

Y

X
(ii)

         

P

O

Y

X
(iii)

(i) A portion of the curve on both side of P, however small it may be, lies

above the tangent at P (i.e. towards the +ve direction of Y-axis). In this

case we see that the curve is concave upwards or convex downwards

at P. Such curves "hold water" [See fig. (i)].

As x-increases, f'(x) is either of the same sign and increasing or changes

sign from –ve to +ve. In either case, the slope f'(x) is increasing and

f"(x)>0. Such graphs are bending upwards or bulging downwards and

the portion lies below chord.

(ii) A portion of the curve on both sides of P, however small it may be, lies

below the tangent at P (i.e., towards the negative direction of Y-axis).

In this case, we say that the curve is concave downwards or convex

upwards at P [see fig. (ii)].

As x increases, f'(x) is either of the same sign and decreasing or changes

sign from +ve to –ve. In either case, the slope f'(x) is decreasing and

hence f"(x) < 0.

The graph in this case is bending downward or bulging upwards.

(iii) The two portions of the curve on the two sides of P lie on different

sides of the tangent at P i.e., the curve crosses the tangent at P. In

this case we say that P is a point of inflexion on the curve [see fig. (iii)].

So, at a point of inflexion, the curve changes from concave upwards to concave

downwards or vice-versa.
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So at a point of inflexion f"(x) = 0.

Concavity or Convexity of a Curve : A curve is said to be concave downwards

(or convex upwards) on the interval (a, b) if all the points of the curve lie below any

tangent to it on that interval. It is said to be concave upwards (or convex downwards)

on the interval (a, b) if all the points of the curve lie above any tangent to it on that

interval.

Note : A curve convex upwards is called a convex curve and a curve convex

downwards is called a concave curve.

Point of Inflexion : A point that separates the convex part of the curve from the

concave part of the curve is called a point of inflexion.

Now, we define a multiple point.

Multiple Point : A point on the curve through which more than one branches of

the curve pass is called a multiple point.

1.2.3 Working Method for Concavity, Convexity and Points of

Inflexion

1. Evaluate 
2

2

d y

dx

2. Find the interval (a, b) for which 
2

2

d y
0

dx
 .

Then (a, b) is the interval of being convex downwards.

3. Find the interval (a, b) for which 
2

2

d y
0

dx
 .

Then (a, b) is the interval of being convex upwards.

4. Find the values of x which satisfy 
2

2

d y
0,

dx
 and also the values of x

(if any) where 
2

2

d y

dx
does not exist.

Such values x = a, b, c, ... (say) are the possible points of inflexion.

5. x = a will be a point of inflexion

if (i) either 
2

2

d y

dx
changes sign at x = a
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or (ii) 
3

3

d y

dx
 exists and is non-zero at x = a.

Note 1. 
2

2

d y
0

dx
  is not a sufficient condition for graph of f to have a point of inflexion.

Note 2. If at a point, x = c, f(n) (c)  0 when n is even, then x = c is not a point of

inflexion.

Note 3. If at a point, x = c, f(n) (c) = 0 for some even n and f(n+1) (c)  0, then the curve

has a point of inflexion at x = c.

1.2.4 Some Important Examples

Example 1 : Find the intervals in which the curve y = (cos x + sin x) ex is concave

upwards or downwards in (0, 2 ). Find also the points of inflexion.

Sol. Here y = (cos x + sin x) ex


dy

dx
  (cos x + sin x) ex + (–sin x + cos x) ex = 2ex cos x

2

2

d y
2

dx
  (ex cos x – ex sin x) = 2 ex (cos x – sin x)

Now 
2

2

d y
0

dx
  when 2ex (cos x – sin x) > 0

i.e., cos x – sin x > 0
x2e 0  


1 1 1 1

2 cos x sin x 0 cos x sin x 0
2 2 2 2

 
     

 

 sin cos x cos sin x 0 sin x 0
4 4 4

   
     

 

 sin x 0
4

 
  

 
 x ( , 0) ( , 2 ) and x (0, 2 )

4


       


3 5 9

x , , and x (0, 2 )
4 4 4 4

      
       
   
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
5

x 0, , 2
4 4

    
     
   

 given curve is concave upwards in 
5

0, , 2
4 4

    
    

   

Again 
2

2

d y
0

dx
  when 2ex (cos x – sin x) < 0

i.e., when sin 
5

x 0 x ,
4 4 4

     
      

   

 given curve is concave downwards in 5
,

4 4

  
 
 

.

Points of Inflexion

3
x x

3

d y d d
2 e . (cos x sin x) (cos x sin x) (e )

dx dxdx

 
    

 

= 2ex [–sin x – cos x + cos x – sin x] = –4ex sin x

Also 
2

2

d y
0

dx
 2ex (cos x – sin x) = 0

 cos x – sin x = 0 sin x = cos x tan x = 1


5 5

tan x tan , tan x ,
4 4 4 4

   
  

When 
3

4
3

d y
x , 4 e sin 0

4 4dx


 

   

When 
53

4
3

5 d y 5
x , 4 e sin

4 4dx


 

  

Now when x
4




4 4 4
1 1

y cos sin e e 2 e
4 4 2 2

     
      
   

   = o
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and when 
5

x
4




5 5 5

4 4 4
5 5 1 1

y cos sin e e 2 e
4 4 2 2

  
   

       
   

 given curve has points of inflexion at 
5

4 4
5

, 2 e and , 2 e
4 4

     
      

   
.

Example 2 : Find the values of x for which y = x4 – 6x3 + 12x2 + 5x + 7 is concave

upwards or downwards. Also determine the points of inflexion.

Sol. Here y = x4 – 6x3 + 12x2 + 5x + 7

 3 2dy
4x 18x 24x 5

dx
   


2

2

2

d y
12x 36x 24

dx
  

Now 
2

2

d y
0

dx
  iff 12x2 – 36x + 24 > 0

iff x2 – 3x + 2 > 0

i.e., iff x2 – 3x > –2

i.e., iff
2 9 9

x 3x 2
4 4

    

i.e., iff

2
3 1

x 2
2 4

 
   

 

i.e., iff

2 2
3 1

x
2 2

 
   

 

i.e., iff
3 1

x
2 2

 

i.e., iff 
3 1 3 1

x or x
2 2 2 2

    

i.e. iff x > 2 or x < 1
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 curve is concave upwards in (–, 1) (2, )

Similarly 
2

2

d y
0

dx


iff 3 1
x

2 2
 

i.e., iff 
1 3 1

x
2 2 2

   

if 1 < x < 2

 curve is concave downwards in (1, 2)

2

2

d y
0

dx
  when x2 – 3x + 2 = 0

i.e., when x = 1 or x = 2

3

3

d y
24x 36 0

dx
    when x = 1, or x = 2

 x = 1, y = 19 i.e., (1, 19)

x = 2, y = 23 i.e., (2, 23)

are the points of inflexion.

1.2.5 Double Points and their Classification

As we have already defined a multiple point, on the basis of which we can define a

double point as

Double Point : A point on the curve through which two branches of the curve

pass is called a double point.

1.2.5.1 Classification of Double Points

There are three kinds of double points.

(i) Node : A node is a point on the curve through which pass two real

branches of the curve and two tangents at which are real and distinct.

Thus P is a node.
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P

O

Y

X

(ii) Cusp : A double point on the curve through which two real branches of

the curve pass and the tangents at which are real and coincident is

called a cusp. Thus P is a cusp.

P

O

Y

X

(iii) Conjugate Point or Isolated Point : A conjugate point on a

curve is a point in the neighbourhood of which there are no other real

points of the curve.
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R

O

Y

X

The two tangents at a conjugate point are in general imaginary but sometimes they

may be real.

1.2.5.2 Working Method for Finding the Nature of Origin which is a

Double Point

Find the tangents at the origin by equating to zero the lowest degree terms in x and

y of the equation of the curve. If the origin is a double point, then we shall get two

tangents which may by real or imaginary.

(i) If two tangents are imaginary, then origin is a conjugate point.

(ii) If two tangents real and coincident, then origin is a cusp or a conjugate

point.

(iii) If the two tangents are real and distinct, then origin is a node or a

conjugate point.

To be sure, examine the nature of curve in the nbd. of origin. If the curve has real

branches through the origin, then it is a node, otherwise a conjugate point.

To be sure, we test the nature of curve in the nbd. of the origin as above.

Note. Test for nature of curve at origin.

If the tangents at origin are y2 = 0, solve the equation of the curve for y, neglecting

all terms of y containing powers above two. If the values of y, for small values of x

are found to be real, the branches of the curve through the origin are real, otherwise

imaginary.

If the tangents at origin are x2 = 0, solve the equation for x and proceed as above.

1.2.5.3 Working Method for Finding the Position and Nature of Double

Points of the Curve f(x, y) = 0
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Step I. Find 
2 2 2

2 2

f f f f f
, , , ,

x y x yx y

    

    

Step II. Solve the equations 
f f

0and 0
x y

 
 

 
 to get possible double points.

Reject those points which do not satisfy the equation f (x, y) = 0 of the curve.

Remaining are the double points

Step III. At each double point, calculate 

22 2 2

2 2

f f f
D

x y x y

   
  

    

(a) If D is positive, double point is a node or conjugate point

(b) If D = 0, double point is a cusp or conjugate point.

In these cases (a) and (b), find the nature by shifting the origin to the double points

and then testing the nature of tangents and existence of the curve in the nbd. of

new origin.

(c) If D is negative, double point is a conjugate point.

1.2.6 Some Important Examples

Example 3 : Prove that the curve y2 = (x–a)2 (x–b) has at x = 0, a node if a > b, a cusp

if a=b and a conjugate point if a < b.

Sol. The equation of curve is y2 = (x–a)2 (x–b) ... (1)

When x = a, from (1), y = 0

 point under discussion is (a, 0)

Shifting origin to (a, 0) by transformation x = X + a, y = Y + 0 = Y

(1) becomes Y2 = X2 (X + a – b) ... (2)

Equating to zero, the lowest degree terms, the tangents at the new origin are given

by

Y2 = X2 (a – b) or Y X a b   ... (3)

Case I. When a > b

From (3), two tangents at new origin are real and different

 new origin (a, 0) is a node or a conjugate point

From (2), Y X X a b   

For small non-zero value of X, Y is real as a – b > 0

 new origin (a, 0) is a node

Case II. When a = b

From (3), tangents are Y = 0, Y = 0
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 two tangents are real and coincident

 origin is a cusp or a conjugate point

From (2), Y2 = X3 or Y X X 

For small positive values of X, Y is real

 new origin (a, 0) is a cusp.

Case III. When a < b

From (2), two tangents at new origin are imaginary

 (a, 0) is a conjugate point.

Example 4 : Determine the position and nature of the double point on the curve

x3 – y2 – 7x2 + 4y + 15x – 13 = 0.

Sol. The equation of curve is

f (x, y) = x3 – y2 – 7x2 + 4y + 15x – 13 = 0 ... (1)

 2f f
3x 14x 15, 2y 4

x y

 
     

 

For the double points 
f f

0, 0, f(x, y) 0
x y

 
  

 

Now 
f

0
x





3x2 – 14x + 15 = 0

 (x – 3) (3x – 5) = 0 x = 3, 
5

3

and 
f

0
y





– 2y + 4 = 0 y = 2

 the possible double points are (3, 2), 5
, 2

3

 
 
 

But 
5

, 2
3

 
 
 

 does not satisfy (1)

 (3, 2) is the only double point

Nature of the point (3, 2) : Shifting the origin to the point (3, 2) by

transformations x = X + 3, y = Y + 2

(1) becomes (X + 3)3 – (Y + 2)2 – 7 (X + 3)2 + 4 (Y + 2) + 15 (X + 3) – 13 = 0

or X3 + 9X2 + 27 X + 27 – Y2 – 4Y – 4 – 7X2 – 42 X – 63 + 4Y

+8 + 15 X + 45 – 13 = 0.
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or X3 + 2 X2 – Y2 = 0 ... (2)

Equating to zero, the lowest degree terms, the tangents at the new origin are given

by

2X2 – Y2 = 0 or Y 2 X 

which are real and distinct

 new origin is either a node or a conjugate point

From (2), Y X X 2  

which gives real values of Y for small values of X, positive or negative

 real branches of the curve exist in the nbd. of the new origin (3, 2)

 (3, 2) is a node.

Alter. The equation of the curve is

f (x, y) = x3 – y2 – 7x2 + 4y + 15x – 13 = 0

 2f f
3x 1x 15, 2y 4

x y

 
     

 

For the double points 
f f

0, 0, f(x, y) 0
x y

 
  

 

Now 
f

0
y


 


 3x2 – 14x + 15 = 0

 (x – 3) (3x – 5) = 0 x = 3, 
5

3

and
f

0 2y 4 0 y 2
y


      



 the possible double points are (3, 2), 
5

, 2
3

 
 
 

But 
5

, 2
3

 
 
 

does not satisfy (1)

 (3, 2) is the only double point

Nature of the point (3, 2) :
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2 2 2

2 2

f f f
6x 14, 2, 0

x yx y

  
    

  

At (3, 2)

2 2 2

2 2

f f f
18 14 4, 2, 0

x yx y

  
     

  


22 2 2

2

2 2

f f f
. (0) (4) ( 2) 8 0

x y x y

   
      

    

 (3, 2) is node.

1.2.7 Summary

In this lesson, we have explained about the points that behave in an

extraordinary manner, on the curve of functions. Further, we discussed about the

working rule to find out the precise nature and position of double points on the curve

f(x,y)=0. The concept is made more understandable with the help of various suitable

examples.

1.2.8 Key Concepts

Concavity, Convexity, Point of Inflexion, Multiple Point, Double Point, Node,

Cusp, Conjugate Point.

1.2.9 Long Questions

1. Examine the curve y = x4 – 2x3 + 1 for concavity upwards, concavity downwards

and points of inflexion.

2. Show that the points of inflexion of the curve y2 = (x – a)2 (x – b) lies on the line

3x + a = 4b.

3. Examine the curve x3 + 2x2 + 2xy – y2 + 5x – 2y = 0 for a double point and show

that it is a cusp.

1.2.10 Short Questions

1. If y = ax3 + bx2 has a point of inflexion (–1, 2), find a and b.

2. Show that the curve y2 = 2 x sin 2x has a node at the origin.

1.2.11 Suggested Readings

1. Gorakh Prasad : Differential Calculus

2. Malik and Arora : Mathematical Analysis

3. Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry
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1.3.1 Objectives

During the study in this particular lesson, our main objectives are

* To study the rules for finding rectangular asymptotes (horizontal and

vertical asymptotes).

* To discuss the methods for finding the oblique asymptotes to the curve.

1.3.2 Introduction

We are familiar with the plane curves like parabola and hyperbola. Such types of

curves, if drawn completely, will extend to infinity. Suppose that a tangent is drawn

at any point of a curve which extend to infinity. Further suppose that the point of

contact of the tangent moves along the curve in such a manner that its distance

from origin tends to infinity. We may then find a definite straight line (a straight line

at a finite distance from the origin) to which the tangent approaches. Such a straight

line is called an asymptote of the curve. In other words a straight line is said to be an

asymptote of a curve, if the perpendicular distance of any point P on a branch of the

27
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curve from this straight line tends to zero as the point P tends to infinity along the

curve. We now give a formal definition of the asympotote.

Definition : A straight line at a finite distance from the origin to which a tangent

to a curve tends as the distance from the origin of the point of contact tends to infinity,

is called an asymptote of the curve.

1.3.3 Rules for Finding Asymptotes

1.3.3.1 Rectangular Asymptotes

If an asymptote to a curve is either parallel to x–axis or parallel to y–axis, then it is

called a rectrangular asymptote. An asymptote parallel to x–axis is usually called

horizontal asymptote and an asymptote parallel to y–axis is called a vertical

asymptote. We discuss below the rules to find these asymptotes :

1. Rule to find asymptotes parallel to x-axis.

Equate to zero the real linear factors in the coefficient of highest power of x in the

equation of the given curve.

It should be noted properly that if the coefficient of highest power of x in the equation

of the given curve is a constant or has no real linear factor, then the curve has no

asymptote parallel to x-axis.

2. Rule to find asymptotes parallel to y-axis.

Equate to zero the real linear factors in the coefficient of highest power of y in the

equation of the given curve.

It should be noted properly that if the coefficient of highest power of y in the equation

of the given curve is a constant or has no real linear factor then the curve has no

asymptote parallel to y-axis.

Example 1 : Find the asymptotes parallel to the axes of the curve x2y2 + y2 = 1.

Sol. The equation of the given curve is x2y2 + y2 = 1 ... (1)

The coefficient of highest power of x in (1) is y2

 y2 = 0 i.e., y = 0 is the only asymptote parallel to the x-axis

The coefficient of highest power of y in (1) is x2 + 1. Now x2 + 1 has no real linear

factor.

 given curve has no asymptote parallel to y-axis.

1.3.3.2 Oblique Asymptotes

An asymptote, which is neither parallel to x-axis nor parallel to y-axis is called an

oblique asymptote. Such type of asymptotes can be determined under the following

rule :

Rule to find oblique asymptotes

(i) Find 
x

y
Lt

x
 in the equation of the curve and denote it by m.
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(ii) Find 
x
Lt


(y – mx) in the equation of the curve and denote it by c.

Then y = mx + c is an asymptote of the curve f (x, y) = 0.

1.3.3.3 Asymptote of the General Rational Algebraic Curve

Let the equation of the curve be

n n 1 n 1
n n 1 n 2 1

y y y y
x x x .... x

x x x x
 

 

       
              
       

0

y
0

x

 
  

 

where n

y

x

 
  
 

 represents a polynomial in 
y

x
 of degree n.

Then, its asymptote can be obtained as

Rule to find oblique asymptotes of a rational algebraic curve :

Step I. Find 
n
(m), 

n–1 
(m) by putting x = 1 and y = m in the nth degree terms and in

the (n–1)th degree terms respectively of the given curve f(x, y) = 0.

Step II. Find all the real roots of 
n
(m) = 0.

Step III. If m
1 
is a non-repeated root of 

n
(m) = 0, then the corresponding value of

c is given by c'
n
 (m1) + 

n–1 
(m

1
) = 0, provided '

n
 (m

1
) 0.

If '
n
 (m

1
) = 0, then there is no asymptote to the curve corresponding to the value m

1

of m.

Step IV. If m
1 
is a repeated root occurring twice, then the corresponding values of

c are given by

2

n 1 n 1 n 2 n 1

c
" (m) c ' (m) (m) 0, provided " (m ) 0

2
         .

In this case there are two parallel asymptotes to the curve.

Similarly we can proceed when m
1 
is repeated three or more times.

Note : A rational algebraic curve of degree n cannot have more than n asymptotes.

Example 2 : Find all the asymptotes of the curve

x3 + 2x2y – xy2 – 2y3 + 4y2 + 2xy + y –1 = 0.

Sol. Given equation is

x3 + 2x2y – xy2 – 2y3 + 4y2 + 2xy + y – 1 = 0 ... (1)

(1) is an equation of degree 3 in x and y

Since coefficient of x3 is 1, which is constant

So there is no asymptotes parallel to x-axis

Similarly coefficient of y3 is –2, which is constant

 there is no asymptote parallel to y-axis.

m
1

m
1m

1
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For oblique asymptotes, put y = mx + c in (1), we get,

x3 + 2x2 (mx + c) – x (mx + c)2 – 2 (mx + c)3 + 4 (mx + c)2

+ 2x (mx + c) + (mx + c) –1 = 0.

or x3 (1 + 2m – m2 – 2m3) + x2 (2 c – 2 mc –6m2c + 4m2 + 2m)

+x (–c2 – 6mc2 + 8mc + 2c+m) + (–2 c3 + 4c2 + c – 1)=0.

Equating the coefficient of x3 and x2 to zero, we get,

1 + 2m – m2 – 2m3 = 0 ... (2)

2 c – 2m c – 6m2c + 4m2 + 2m = 0 ... (3)

From (2), 1 (1 + 2m) – m2 (1 + 2m) = 0

 (1 – m2) (1 + 2m) = 0

 (1 – m) (1 + m) (1 + 2m) = 0

 m = 1, – 1, – 
1

2

When m = 1, from (3), we have

2c – 2c – 6c + 4 + 2 = 0

 6c = 6 or c = 1.

Corresponding asymptote is y = x + 1

When m = –1, from (3), we have,

2c + 2c – 6c + 4 – 2 = 0

2c = 2 or c = 1

 corresponding asymptote is y = –x + 1

When 
1

m ,
2

  from (3), we have,

3
2c c c 1 1 0

2
     or c = 0

Corresponding asymptote is 
1

y x
2

  .

Example 3 : Find the asymptotes of the curve

x3 – x2y – xy2 + y3 + 2x2 – 4y2 + 2xy + x + y + 1 = 0.

Sol. The equation of given curve is

x3 – x2y – xy2 + y3 + 2x2 – 4y2 + 2xy + x + y + 1 = 0.

The coefficient of highest power of x in (1) is 1, which is constant.

 there is no asymptote parallel to x-axis.

The coefficient of highest power of y in (1) is 1, which is constant

 there is no asymptote parallel to y-axis
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For oblique asymptotes, we have


3 
(m) = 1 – m – m2 + m3  '

3
(m) = –1  –2 m + 3m2


2 
(m) = 2 – 4 m2 + 2m  "

3 
(m) = –2 + 6m


1 
(m) = 1 + m  '

2 
(m) = –8 m + 2


0 
(m) = 1


3 
(m) = 0 gives

1 – m – m2 + m3 = 0

 1 (1 – m) – m2 (1 – m) = 0

 (1 – m) (1 – m2) = 0

 (1 – m) (1 – m) (1 + m) = 0

 m = 1, 1, – 1

When m = –1, 
2 2

' '
3 3

(m) (1)
c

(m) (1)

 
   

 


2 4 2

c 1
1 2 3

 
  

  

Corresponding asymptote is y = –1 x +1 i.e., x + y = 1

When m = 1, 1, the values of c are given by

2

3 2 1

c
(m) c (m) (m) 0

2
      


2c

( 2 6) c ( 8 2) (1 1) 0
2

       

 2c2 – 6c + 2 = 0

 c2 – 3c + 1 = 0


3 9 4 3 5

c
2 2

  
 

and corresponding asymptotes are given by

3 5 3 5
y 1 x , y 1x

2 2

 
   

Hence the required asymptotes are

3 5 3 5
x y 1, x y 0, x y 0

2 2

 
        .

-
-
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1.3.4 Some Other Methods for Finding Oblique Asymptotes

Here, we discuss some special methods of finding asymptotes of f(x, y) = 0 when the

equation f (x, y) = 0 is of some special types.

Method I. If the equation of the curve is of the form

(ax + by + c) f
n–1 

(x, y) + g
n–1 

(x, y) = 0

then the asymptote parallel to ax + by + c = 0 is given by

n 1

x
n 1y a

x b

g (x, y)
ax by c Lt 0,

f (x, y)







     provided the limit exists

Method II. If the equation of the curve is of the form

(ax + by)2 f
n–2 

(x, y) + g
n–2 

(x, y) = 0

then the two asymptote parallel to ax + by = 0 are given by

 
2 n 2

x
n 2y a

x b

g (x, y)
ax by Lt 0,

f (x, y)







    provided the limit exists

Method III. If the equation of the curve is of the form

(ax + by)2 f
n–2 

(x, y) + (ax + by) g
n–2 

(x, y) + h
n–2 

(x, y) = 0

then the two asymptotes parallel to ax + by = 0 are given by

   
2 n 2 n 2

x x
n 2 n 2y a y a

x b x b

g (x, y) h (x, y)
ax by ax by Lt Lt 0

f (x, y) f (x, y)
 

 
 

 

    

provided the limit exists

Note. Working Method

(i) Factorize the highest degree terms

(ii) Retain one linear factor and divide by the product of other factors.

(iii) Take limits when x  , y   in the direction of the retained factor.

Note. If limits does not exist, then there is no asymptote parallel to ax + by + c = 0.

Method IV. Asymptotes by Inspection

If the equation of the curve can be written as

F
n 
(x, y) + F

n – 2 
(x, y) = 0.

where F
n 

(x, y) is a rational integral function in x and y of degree n and

F
n – 2 

(x, y) of degree (n – 2) at the most then every linear factor ax + by + c of F
n 
(x, y)

equated to zero determines the asymptote of the curve, provided no two asymptotes so

obtained are either parallel or coincident.



33B.A. PART - I MATHEMATICS  PAPER–I

Example 4 : Find all the asymptotes of the following curve :

x3 + x2y – xy2 – y3 + 2xy + 2y2 – 3x + y = 0

Sol. The given equation is x3 + x2y – xy2 – y3 + 2xy + 2y2 – 3x + y = 0

or x2 (x + y) – y2 (x + y) + 2xy + 2y2 – 3x + y = 0

or (x + y) (x2 – y2) + 2xy + 2y2 – 3x + y = 0

or (x – y) (x + y)2 +2xy + 2y2 – 3x+ y = 0

The equation (1) can be written as

2

2

2xy 2y 3x y
x y 0

(x y)

  
  



 asymptote (if it exists) parallel to x – y = 0 is given by

2

2x
y x

2xy 2y 3x y
x y Lt 0

(x y)


  
  



or
2 2

2x

2x 2x 3x x
x y Lt 0

(x x)

  
  



or
2

2x

4x 2x
x y Lt 0

4x


  

or
x

2
4

4 0xx y Lt 0 or x y 0
4 4




     

 x – y + 1 = 0 is one asymptote.

The equation (1) can be written as

2 2y 3x y
(x y) (x y) . 0

x y x y


    

 

 asymptotes (if they exist) parallel to x + y = 0 are given by

2

x x
y x y x

2y 3x y
(x y) (x y) . Lt Lt 0

x y x y 
 


    

 

or
2

x x

2x 3x x
(x y) (x y) . Lt Lt 0

x x x x 

 
    

 

or (x + y)2 – (x + y) – 2 = 0 or (x + y – 2) (x + y + 1) = 0
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 x + y – 2 = 0, x + y + 1 = 0 are the other two asymptotes.

1.3.5 Intersection of a Curve and its Asymptotes

Art 3.1 : Prove that an asymptote of a rational algebraic curve of the nth degree

cuts the curve in atmost (n – 2) points.

Proof : Let y = m
1
x + c

1 
... (1) be an asymptote of the curve

n n 1 n 2
n n 1 n 2

y y y
x x x ... 0

x x x
 

 

     
           
     

... (2)

We are to find the points of intersection of (1)and (2),

From (1), 1
1

cy
m

x x
 

Substituting the value of 
y

x
 in (1), we get,

n n 1 n 21 1 1
n 1 n 1 1 n 2 1

c c c
x m x m x m ... 0

x x x
 

 

     
              

     

Using Taylor's Theorem, we get

 n n 1
n 1 1 n 1 n 1 1x (m ) x c (m ) (m )


    

2
n 2 1

n 1 1 n 1 1 n 2 1

c
x (m ) c (m ) (m ) ... 0

2


 

 
         

 
... (3)

Since 
n 
(m

1
) = 0 and c

1
'

n 
(m

1
) + 

n–1 
(m

1
) = 0, (3) becomes

2
n 2 1

n 1 1 n 1 1 n 2 1

c
x (m ) c (m ) (m ) ... 0

2


 

 
        

 

which is an equation of degree (n – 2) and correspondingly (1) and (2) intersect

in (n – 2) points.

 asymptote (1) cuts the curve (2) in at the most (n – 2) points.

Hence the result.

Cor. 1. Prove that all asymptotes of a curve of nth degree cut the curve in atmost

n(n–2) points.

Proof. We know that a curve of nth degree has atmost has atmost n asymptotes and

each asymptote cuts the curve in atmost (n – 2) points.

 all the asymptotes of a curve of nth degree cut the curve in atmost n (n – 2)

points.
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Cor. 2. If the equation of the curve of nth degree is of the form F
n 
+ F

n–2 
= 0 and curve

has no parallel asymptotes, then the points of intersection of the curve and its

asymptote lie on the curve F
n–2 

= 0.

Proof. The equation of curve is F
n 
+ F

n–2 
= 0

The equation of asymptote is F
n 
= 0

 the points of intersection of the asymptote and the curve satisfy the equations

F
n 
+ F

n–2 
= 0 and F

n 
= 0 and therefore they will satisfy

(F
n 
+ F

n–2
) – F

n 
= 0 i.e., F

n–2 
= 0.

Hence the result.

Example 5 : Find the equation of the cubic which has the same asymptotes as

the curve x3 – 6x2y + 11xy2 – 6y3 + 4x + 5y + 7 = 0 and which passes through the

points (0, 0), (–2, 0) and (0, –2).

Sol. The equation of given curve is x3 – 6x2y + 11xy2 – 6y3 + 4x + 5y + 7 = 0

... (1)

It is of the form F
3 
+ F

1 
= 0

 asymptotes are given by F
3 
= 0

or x3 – 6x2y + 11xy2 – 6y3 = 0 or (x–y) (x–2y) (x–3y) = 0

 asymptotes of (1) are x – y = 0, x – 2y = 0, x – 3 y = 0

The equation of the cubic curve which has the same asymptotes is of the

type

(x – y) (x – 2y) (x – 3y) + ax + by + c = 0  -----

12

Now (2) passes through (0, 0),  c = 0

(2) passes through (–2, 0),  –8 – 2a = 0 a = –4

(2) passes through (0, –2),  48 – 2b = 0 b = 24

Substituting values of a, b, c in (2), we get,

(x – y) (x – 2y) (x – 3y) – 4x + 24y = 0

or x3 – 6x2y + 11xy2 – 6y3 – 4x + 24y = 0.

1.3.6 Summary

We have studied about the concept of asymptotes and their types. Some

methods of finding asymptotes have been also discussed for the curve f(x,y)=0. The

concept is made more clear with the help of some suitable examples.

1.3.7 Key Concepts

Rectangular asymptotes, Horizontal asymptote, Vertical asymptote, Oblique

Asymptotes,
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1.3.8 Long Questions

1. Find the asymptots of the curve

(x+ y) (x + 2y) (x + 3y) + 3x2 + 12xy + 11y2 + x + y + 2 = 0

2. Find asymptotes of the curve x2y – xy2 + xy + y2 + x – y = 0.

3. Find the asymptotes of the curve x2y + xy2 + 2x2 – 2xy – y2 – 6x – 2y + 2 = 0 and

show that they cut the curve in almost three points which lie on the straight

line 2x – 3y – 4 = 0.

4. Find the equation of the cubic curve which has the same asymptotes as the

curve x3 – 6x2y + 11 xy2 – 6y3 + x + y + 1 = 0 and which passes through the points

(0, 0), (2, 0) and (0, 2).

1.3.9 Short Questions

1. Find all the asymptotes of the following curves :

(i) y3 – 3x2y + xy2 – 3x3 + 2y2 + 2xy + 4x + 5y + 6 = 0

(ii) ay2 = x2 (a – x)

(iii) y3 + 4xy2 + 4x2y + 5y2 + 15xy + 10x2 – 2x + 1 = 0

2. Show that the parabola y2 = 4ax has no asyptotes.

1.3.10 Suggested Readings

1. Gorakh Prasad : Differential Calculus

2. Malik and Arora : Mathematical Analysis

3. Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry
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SEMESTER-I CALCULUS–I

LESSON NO. 1.4 Author : Dr. Chanchal

CURVE TRACING AND CURVATURE

1.4.1 Objectives

1.4.2 Introduction

1.4.3 Rules for Tracing Cartesian Curves

1.4.4 Rules for Tracing Parametric Curves

1.4.5 Rules for Tracing Polar Curves

1.4.6 Curvature

1.4.6.1 Radius of Curvature

1.4.6.2 Centre of Curvature

1.4.6.3 Some Important Results of Curvature

1.4.7 Summary

1.4.8 Key Concepts

1.4.9 Long Questions

1.4.10Short Questions

1.4.11Suggested Readings

1.4.1 Objectives
In this lesson we will deal with the graphs of the curves of given equations in

Cartesian or polar systems of coordinates. The main purpose of this chapter is to

point out those rules which are used in tracing the graph of a curve. After describing

the main rules of curve tracing and afterwards we will use them in tracing the graph

of aforesaid curves.

1.4.2 Introduction
The graph of a given function is helpful in giving a visual presentation of the behaviour

of the function involving the study of symmetries of asymptotes, the intervals of rising

up or falling down and of the cavity upwards and downwards etc. Curve tracing means

that the equations of curves which we trace and are generally solvable for y, x or r.

The case may come that some equations are not solvable for y or x, then we solve

them for r by transforming from Cartesian to polar system.

1.4.3 Rules for Tracing Cartesian Curves
For tracing the curve of the equation f(x, y) = 0, the following important points should

be considered :

I. Symmetry : Curve given by f(x, y) = 0 is symmetric about

37
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(i) x-axis if it is unchanged on changing y to –y i.e., if f(x, –y) = f(x, y)

(ii) y-axis if it is unchanged on changing x to –x i.e., if f (–x, y) = f (x, y)

(iii) the origin if it is unchanged on changing x to –x and y to –y

i.e., if f (–x, –y) = f (x, y)

(iv) the line y = x if it is unchanged on changing x to y and y to x

i.e., if f (x, y) = f(y, x)

(v) the line y = –x if it is unchanged on changing x to –y and y to –x

i.e., if f (–y, –x) = f(x, y).

II. Domain and Range : Find the domain and range.

III. Origin : Check whether origin lies on the curve. If curve passes through origin,

then find the tangents at the origin and also determine whether origin is node, cusp

or an solated point.

IV. Asymptotes : Find all the asymptotes of the curve and the position of the

curve relative to its asymptotes.

V. Points of Intersection : Find the points of intersection of the curve with co-

ordinate axes and obtain the equations of the tangents at these points. If any of these

is a double point, then find the nature of the double point.

Also find some other points on the curve by giving suitable values to x.

VI. Maxima and Minima : Find the points where the function has maximum

value or minimum value. Also find the maximum and minimum value at each point.

VII. Points of Inflextion : (a) Find the intervals of

(i) increase and decrease of the curve

(ii) concavity and convexity of the curve.

(b) Also find the points of inflexion, if any.

VIII. Discontinuities : Find the points at which function is discontinuous. Also

discuss the behaviour of the function near these points.

The method of tracing curves in cartesian co-ordinates can be made more clear with

the help of following suitable examples :

Example 1 : Trace the cure x = (y –1) (y – 2) (y – 3).

Sol. The equation of the curve is x = (y – 1) (y – 2) (y – 3) ... (1)

(i) Symmetry : The curve is neither symmetrical about axes nor about origin. Also

the curve is neither symmetrical about y = x nor about y = –x.

(ii) Origin : The curve does not pass through the origin.

(iii) Point of intersection with axis : The curve meets x-axis where y = 0

 putting y = 0 in (1), we get, x = –6

 curve meets x-axis in (–6, 0)

The curve meet y-axis where x = 0

 putting x = 0 in (1), we get, (y–1) (y–2) (y–3) = 0

 y = 1, 2, 3.

 curve meets y-axis in (0, 1), (0, 2), (0, 3).



39B.A. PART - I MATHEMATICS  PAPER–I

(iv) Asymptotes : The curve has no asymptotes.

(v) Tangents : Now x = y3 – 6y2 + 11y – 6

 2dx
3y 12y 11

dy
  


2dx

0 gives 3y 12y 11 0
dy

   


12 144 132 2 2 3 6 1.732

y 2.6
6 6 3

    
     (nearly), 1.4 (nearly)

When y = 2.6, x = –0.384 (nearly)

When y = 1.4, x = 0.384 (nearly)

 tangents to the curve at (–3.84, 2.6) and (3.84, 1.4) are parallel to the y-

axis.

(vi) Additional Points Now y < 0 x < 0

 no portion of the curve lies in the fourth quadrant.

0 < y < 1  x < 0

1 < y < 2  x > 0

2 < y < 3  x < 0

3 < y  x > 0

x    y 

A rough sketch of the curve is given in the figure.

X
O

Y

(–6, 0)

3

2

1
(0, 1)

(.384, 1.4)

(0, 2)

(0, 3)
(–.384, 2.6)

Example 2 : Trace the curve x3 + y3 = 3 a x y, a  0.

Sol. The equation of the curve is x3 + y3 = 3 a x y, a  0

(i) Symmetry : The given equation (1) does not change when x is changed to y and
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y is changed to x.

curve is symmetrical about the line y = x.

(ii) Origin : The curve passes through the origin.

The tangents at origin are given by xy = 0

i.e., x = 0, y = 0. These tangents are different.

 origin is a node.

(iii) Asymptotes : (1) can be written as

(x + y) (x2 – xy + y2) – 3axy = 0

Asymptote (if any) parallel to x + y = 0 is given by

2 2x

3axy
x y Lt 0

x xy y


  

 

or
2 2

2 2 2 2x x

3ax 3ax
x y Lt 0 or x y Lt 0

x x x 3x 


     

 

or x + y + a = 0

This is the only asymptote of the curve.

(iv) Points of intersection with axes
Putting x = 0 in (1), we get y = 0

Putting y = 0 in (1), we get x = 0

 curve meets axes in (0, 0) only.

Putting y = x in (1), we get,

x3 + x3 = 3ax2 or x2 (2x – 3 a) = 0


3a

x 0,
2

 
3a

y 0,
2



 line y = x meets the curve in (0, 0) and 
3a 3a

,
2 2

 
 
 

(v) Region
From (1), it is clear that x and y both cannot be negative as in that case L.H.S. of (1) is

negative whereas R.H.S. of (1) is positive.

 no portion of the curve lies in the 3rd quadrant.

A rough sketch of the curve is shown in the figure.
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O

Y

y 
= 

x

3a 3a
,

2 2

 
 
 

x + y + a = 0

1.4.4 Rules for Tracing Parametric Curves

Case I. Eliminate the parameter if possible and get the corresponding cartesian

equation of the curve which can be traced as done earlier.

Case II. If the parameter cannot be easily eliminated from the given equations,

then we proceed like this :

(i) Symmetry
(i) If x = f(t) is an even function of t and y =  (t) an odd function of t, then

the curve is symmetrical about x-axis.

(ii) If x = f(t) is an odd function of t and y = (t) an even function of t, then

curve is symmetrical about y-axis.

(iii) If x = f (t) and y = (t) are both odd functions of t, then the curve is

symmetrical in opposite quadrants.

(ii) Origin : If by putting x = 0, we get a real value of t, which makes y equals zero,

then the curve passes through the origin.

(iii) Axes Intersection : Find the points of intersection of the curve and coordinate

axes.

(iv) Limitations : If possible, find the greatest and least values of x and y which

give us lines parallel to axes between which the curve lies or does not lie.

(v) Points : Find the points where 
dy dy

0, .
dx dx

  

(vi) Region :
(i) Find the regions in which curve does not lie.

(ii) Consider the signs of 
dx dy

and
dt dt

.
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(iii) Consider the values of x, y, 
dx dy dy

, ,
dt dt dx

.

(vii) Asymptotes : Find the asymptotes, if any.

Example 3 : Trace the curve x = a (+ sin); y = a (1 + cos ), – .

Sol. The equations of the curve are x = a (+ sin ), y = a (1 + cos )

Here the parameter cannot be easily eliminated.

(i)  Symmetry : The curve is symmetrical about the axis of y for (+ sin) is an odd

function of and (1 + cos ) is an even function of .

(ii)  Origin : The curve does not pass through the origin.

(iii)  Intercepts : It meet the x-axis when

y = 0 i.e., 1 + cos = 0

or cos = –1 i.e., = , –

 the points of intersection with the x-axis are A (a , 0), A' (–a , 0).

Again it meets the y-axis when x = 0.

i.e. + sin = 0 or sin = – or = 0

 it meets the axis of y at B (0, 2 a).

(iv)  Asymptotes : There are no asymptotes.

(v)  Points : We have 
dx dy

a (1 cos ); a sin
d d

     
 


2

2sin cos
dy a sin 2 2 tan
dx a(1 cos ) 22cos

2

 
  

    
 


dy

0 when 0
dx

  

i.e., at (0, 2 a), the tangent is parallel to the axis of x.

Also 
dy

dx
   when = , –

 at (a , 0) and (–a , 0), the tangent is perpendicular to the axis of x.

(v) Region : For all values of 
dx

, is ve
d

 


 x always increases with .

Also 
dx

is ve
d




 for – .
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Hence y increases when  increases from – to 0and y decreases when  increases

from 0 to .

Hence approximately, the shape of the curve is as shown in the diagram.

Y

A' A
X

B

O

1.4.5 Rules for Tracing Polar Curves
We shall keep in mind the following points for tracing the graphs of the equation f(r,

) = 0.

1. Symmetry :
(i) Symmetry about the initial line or x-axis : If the equation of the curve

remains unchanged when  is changed to –, the curve is symmetrical

about the initial line.

(ii) Symmetry about the line 
2


   or y-axis : If the equation of the curve

remains unchanged when  is changed to – or when is changed to

–and r to –r, the curve is symmetrical about the line 
2


  .

(iii) Symmetry about the line 
4


   or y = x : If the equation of the curve

remains unchanged when  is changed to ,
2


  the curve is said to be

symmetrical about the line 
4


  .

(iv) Symmetrical about the line 
3

4


   or y = –x; if the equation of the curve

remains unchanged when  is changed to 
3

,
2


   the curve is said to be
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symmetrical about the line 
3

4


  .

(v) Symmetry about the pole : If the equation of the curve remains

unchanged when r is changed to –r, the curve is said to be symmetrical

about the pole.

II. Pole
(i) Find whether the curve passes through the pole or not. It can be done

by putting r = 0 in the equation and then finding some real value of . If

it is not possible to find a real value of for which r = 0, then the curve

does not pass through the pole.

(ii) Find the tangents at the pole. Putting r = 0, the real values of give the

tangents at the pole.

(iii) Find the points where the curve meets the initial line and the line

2


  .

III. Value of 

Find from the result tan 
d

r
dr


  . Then find the points where 0 or

2


  .

IV. Asymptotes
If r as 

1 
(any fixed number), then there is an asymptote. Find it by the

method given below :

(i) Write down the given equation as 
1

f( ),
r

  say.

(ii) Equate f() to zero and solve for . Let the roots be 
1
, 

2
,.......

(iii) Find f'() and calculate it at = 
1
, 

2
,.........

(iv) Asymptotes are 1 2

2

1 1
r sin ( ) , r sin ( ) ,...

f ( ) f ( )
       

  

V. Special Points
Find some points on the curve for convenient values of .

VI. Region
Solve the given equation for r or . Find the region in which the curve does not lie.

This can be done in the following manner.

(i) No part of the curve lies between = and =  if for < < , r is

imaginary.

(ii) If the greatest numerical value of r be a, the curve lies entirely within

the circle r = a. If the least numerical value of r be b, the curve lies

outside the circle r = b.

Example 4 : Trace the curve r = a (1 + cos ), a > 0.
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Sol. The equation of the curve is r = a (1 + cos ) ... (1)

1. Symmetry : The equation of the curve remains unchanged when is changed

to –.

 curve is symmetrical about the initial line.

II. Pole : Putting r = 0 in (1), we get

a (1 + cos ) = 0 or cos = –1

 = 

 pole lies on the curve and tangent at the pole is = .

The curve cuts the initial line = 0 at (2 a, 0) and the lines 
2


    at a, , a,

2 2

    
   

   
.

III. Value of 

dr
a sin

d
  





22cos
d 1 2tan r a (1 cos )
dr a sin 2sin cos

2 2




       
  

 tan cot tan tan
2 2 2 2 2

     
          

 

 when 0, r 2 a
2


    

 at (2a, 0), the tangent is perpendicular to initial line.

IV. Asymptotes : Since r does not tend to infinity for any finite value of .

 curve has got no asymptote

V. Special Points : We have
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2


  a,

2

 
 
 

a,
2

 
 

 

X(2a, 0)

ta
n

g
e
n

t
 : 0

4



2




r : 2a
1

a 1
2

 
 

 
a 0

VI. Region : Since r = a (1 + cos )

 max. value of r = 2a

 curve lies entirely within the circle r = 2a

When increases from 0 to , r remains positive and decreases from 2a to 0.

When increases from to 2, r remains positive and increases from 0 to 2a.

The shape of the curve is as shown in the figure.

1.4.6 Curvature

1.4.6.1 Radius of Curvature
Let P and Q be any two neighbouring points on a curve AB such that are AP = s and arc

AQ = s + s so that arc PQ = s. Let the tangents to the curve at P and Q make angles

and + with x-axis so that RST = . Then
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Y

O RT
X

B

A P

S

Q

(i) , measured in radians, is called the total curvature or total bending of

the arc PQ,

(ii) the ratio 
s




 is called the average curvature of the arc PQ,

(iii)
s 0
Lt ,

s 




 if it exists, is called the curvature of the curve at P and is

denoted by k

(iv) The reciprocal of curvature at any point P is called the radius of

curvature and is denoted by Greek letter 

1 ds

d d

ds

  
 

.

1.4.6.2 Centre of Curvature
The centre of curvature of a curve at a point P is the point C which lies on the

positive direction of the normal at P and which is at a distance  from it.
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A

B

C

The circle with centre C and radius CP = is called circle of curvature of the curve at

P.

Any chord of the circle of curvature at P passing through P is called chord of curvature

through P.

1.4.6.3 Some Important Results of Curvature

Result I : The curvature of a circle is constant and is equal to the reciprocal of the

radius.

Result II : The radius of curvature at any point of the curve y = f(x) is given by

3
2 2
1

2

(1 y )

y


   where 1

dy
y

dx
  and 

2

2 2

d y
y

dx


Result III : Rule to find the radius of curvature at the origin.

(a) Put y = px + q 
2x

2
+.. . . . . . . . .  in equation of  curve,  where

2

2
(0, 0) (0, 0)

dy d y
p f '(0) and q f "(0)

dx dx

  
     

   

(b) Equate the coefficients of like powers of x on both sides and find p, q.

(c) (at the origin) = 
2 3/2(1 p )

q



Result IV : The radius of curvature at any point of the curve x = f(t), y = g(t) is given

by
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   
3

2 2 2f '(t) g '(t)

f '(t) g "(t) g '(t) f "(t)

 
  



Result V : The radius of curvature at any point p(r, ) of the curve r = f() is given by

 
3

2 2 2
1

2 2
1 2

r r

r 2r rr


 

 
 where 

2

1 2 2

dr d r
r and r

d d
 

 

Result VI : The co-ordinates of the centre of curvature for any point P(x, y) of the

curve y = f(x), are given by  x, y  where 
 2 2

1 1 1

2 2

y 1 y 1 y
x x , y y

y y

 
    .

Further, the equation of circle of curvature at P(x, y) is    
2 2 2x x y y     .

Now, we clerify the above result with the help of following suitable examples:

Example 5 : Find the radius of curvature of the parabola y2 = 4 ax at the point (x, y).

Sol. The equation of the parabola is y2 = 4ax ... (1)

Differentiating both sides w.r.t x, we get,

dy dy 2a
2y 4 a or

dx dx y
  ... (2)


2 2

2 2 2 3

d y 2a dy 2a 2a 4a

dx ydx y y y
       ... (3)

Now, 

3
2 2

2

2

dy
1

dx

d y

dx

  
  

    

3
2 2

2

2

3

4a
1

y

4a

y

 
 

  
 [  of (2) and (3)]
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3 3
2 2 22 2

2 2

(y 4a ) (4ax 4a )

4a 4a

 
    [  of (1)]

3

2
2

(x a)
a

  .

Example 6 : Find the radii of curvature at the origin of the curve

y2 – 3xy + 2x2 – x3 + y4 = 0

Sol. The equation of curve is y2 –3xy + 2x2 – x3 + y4 = 0 ... (1)

Clearly (0, 0) lies on (1).

Equating to zero the lowest degree terms, we get,

y2 – 3xy + 2x2 = 0

or (y–x) (y–2x) = 0 y = x, y = 2x

Here, neight x-axis nor y-axis is the tangent at origin

 putting y = px + q 
2x

.........
2

  in (1), we get,

2 42 2 2
2 3x x x

px q 3x px q 2x x px q 0
2 2 2

     
                  

     

 2 2 3q
(p 3p 2) x pq 3 1 x ......... 0

2

 
       

 
... (2)

Equating coefficients of x2 in (2), we get,

p2 – 3p + 2 = 0 or (p – 1) (p – 2) = 0 p = 1, 2

Equating coefficients of x3 in (2), we get,

q
pq 3 1 0

2
  

When
q

p 1, q 3 1 0 q 2
2

      

When
q

p 2, q 3 1 0 q 2
2

     

When p = 1, q = –2

3 3
2 2 2(1 p ) (1 1)

(at origin) 2
q 2

 
   


(in magnitude)

When p = 2, q = 2
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3 3
2 2 2(1 p ) (1 4) 5 5

(at origin)
q 2 2

 
    .

Example 7 : Find the circle of curvature at the point 
a a

,
4 4

 
 
 

of the curve

x y a  .

Sol. The equation of curve is x y a 

Differentating both sides of (1) w.r.t.x.

y1 1 dy dy
0

dx dx2 x 2 y x
    

2

2

1 dy 1
x . y .

dx2 y 2 xd y

xdx



 

y y1 x

x 2 y x 2 x

 
     

  

y x y1 1 1 a
1

2x 2x 2xx x x

 
      

 
 of (1)

3

2

a

2x



At 
1 2 3

2

a a a 4
P , , y 1, y

4 4 aa
2

4

 
    

 


 

3 3
2 2 2
1

2

1 y (1 1) a a
2 2

4y 4 2
a

 
     

Let  x, y  be the centre of curvature
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
 

3
2 2
1

2

1 y a ( 1) (1 1) a a 3a
x x

4y 4 4 2 4

a

  
      

 
3

2 2
1

2

1 y a (1 1) 3a
y y

4y 4 4

a

 
    

 centre of curvature is 
3a 3a

,
4 4

 
 
 

 equation of circle of curvature at 
a a

P ,
4 4

 
 
 

 is

22 2
3a 3a a

x y
4 4 2

    
        

     

or
2 2 23a 3a a

x y
4 4 2

   
      

   
.

1.4.7 Summary

In this lesson, we came to learn about the tracing of curve for f(x,y)=0 by gaining

enough knowledge about it like its symmetry about x-axis or y-axis or the line x=y,

domain and range, tangents, concavity and convexity, asymptotes etc. Moreover, we

have discussed about the radius of curvature, centre of curvature and some important

results concerning these. The concept is made more elaborative with the help of

various suitable examples.

1.4.8 Key Concepts

Tracing of curves, Radius of curvature, Centre of curvature

1.4.9 Long Questions

1. Trace the curve 
2x 1

y
x 1






2. Trace the curve x = a(+ sin), y = a (1–cos)

3. Trace the curve r = a (1+sin)

1.4.10 Short Questions

1. Find the radius of curvature for the parabola 
2a

1 cos
r

   .
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1.4.11 Suggested Readings

1. Gorakh Prasad : Differential Calculus

2. Malik and Arora : Mathematical Analysis

3. Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry
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2.1.1 Objectives 

The prime goal of this lesson is to enlighten the basic concepts of real valued 

functions of two variables ),( yxf . During the study in this particular lesson, our 

main objectives are 

 To discuss the limit of function ),( yxf  and how this limit can be classified. 

 To discuss the continuity of function ),( yxf . 

2.1.2 Introduction  
From our previous study, we are already familiar with the concepts of limit, 

continuity and differentiability of the real valued functions )(xf . In this unit, we 

have introduced the concept of real valued functions of two real variables. In this 

lesson, we start with the study of limit and continuity of the function ),( yxf  as already 

highlighted under the objectives of this lesson. Before starting the main part of this 

lesson, we define some basic concepts below :  
2 : Mathematically,   yxyx ,:),(2  and geometrically, 

2  

represents two dimensional plane. 

Here  represents the set of real numbers. 
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Square Neighborhood of a Point : A square neighborhood of a point ),( ba  in 

2  is the set of points ),( yx  that lie inside an open square region with centre at 

),( ba  and sides parallel to the co-ordinate axes such that 

 ax  and by  for some 0 . 

In other words, it may be represented as    byaxyx ,:),( . 

Circular Neighborhood of a Point : A circular neighborhood of a point ),( ba  

in 
2  is the set of points ),( yx  that lie inside a circle with centre at ),( ba  such 

that 

    222  byax  for some 0 . 

It may also be represented as     222
:),(  byaxyx . 

Functions of Two Variables : A real valued function of two variables x  and y  

is a rule which associates a unique real number ),( yxf  to every possible ordered 

pair ),( yx  of real numbers. 

Note : Usually, we write ),( yxfz   where x  and y  are independent variables and 

z  is the dependent variable.    

2.1.3 Limit of a Function of Two Variables 

A function ),( yxf  is said to tend to a limit l  as the point ),( yx  tends to a point 

),( ba  if for any pre-assigned positive number 0 , however small, we can find a 

number   such that 

 lyxf ),(  

for all points ),( yx  other than ),( ba  for which   bybaxa ,  i.e. 

 ax  and by . 

The above definition of limit is based on square neighborhood of a point. It may also 

be defined as : 

A function ),( yxf  is said to tend to a limit l  as the point ),( yx  tends to a point 

),( ba  if for any pre-assigned positive number 0 , however small, we can find a 

number   such that 

 lyxf ),(  

for all points ),( yx  other than ),( ba  for which 

 ),(),( bayx . 

This definition is based on circular neighborhood of a point. 
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Note : 1.  If the limit ),(
),(),(

yxflt
bayx 

exists finitely, then it is unique. 

2. If ),(
),(),(

yxflt
bayx 

 exists, then the limit is independent of the path along 

which we approach the point ),( ba . 

Example 1 : By using definition, prove that   .022

0
0





yxlt
y
x

  

Sol. Here, 2:f  is defined by 22),( yxyxf   

Let 0  and take   

 )0,0(),( yx   i.e.  22 yx  

 222220),( yxyxyxf  

 for 0 , there exists 0  such that  )0,0(),( yx   0),( yxf  

so, 0),(
)0,0(),(




yxflt
yx

. 

Hence, the result is proved. 

Example 2 : Let 2:f  be defined as : 1),( yxf  if x  is rational and 

0),( yxf if x  is irrational. Show that ),(
),(),( 00

yxflt
yxyx 

does not exist. 

Sol. If possible, suppose that lyxflt
yxyx




),(
),(),( 00

 

So, there exist reals 0,0 21    such that 

,0,0 2010   yyxx  where ),(),( 00 yxyx   

2

1
),(  lyxf  (say) 

Let 1x  be any irrational number and 2x  be any rational number in ),( 1010   xx  

and let y  be any real number different from 0y  in ),( 2020   yy . 

2

1
),( 1  lyxf  and 

2

1
),( 2  lyxf                                                                   (1) 

Since 1x  is irrational and 2x  is rational, 

0),( 1 yxf  and 1),( 2 yxf                                                                                  (2) 

From (1) and (2), 
2

1
 l  and 

2

1
1  l   

Or 
2

1
l  and 

2

1
1  l                                                                                         (3) 
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Further, llll  1)1(1  

                                
2

1

2

1
 =1                                                                 [using (3)] 

11 , which is absurd and our supposition is wrong. 

Hence, ),(
),(),( 00

yxflt
yxyx 

does not exist. 

2.1.4 Simultaneous and Iterated (or Repeated) Limits 

If ),( yxf  is a function of two variables x  and y  and then ),( ba  is the limiting point 

of a set of values on two dimensional space, then we have 

            Simultaneous Limit :   

I.    ),( yxflt
by
ax




  or ),(
),(),(

yxflt
bayx 

  

Iterated or Repeated Limits :  

  

II. 







),( yxfltlt

byax
 or ),( yxfltlt

byax 
 

III.  ),( yxfltlt
axby 

 or ),( yxfltlt
axby 

 

Note:  1. The two iterated limits may exist but may not be equal. 

2. The two iterated limits may exist and may be equal but the simultaneous 

limit may not exist. 

3. If simultaneous limit exists and two iterated limits also exist, then they 

must be equal. 

4. Criterion for Non-Existence of Simultaneous Limit : 

If we find two functions )(xy   and )(xy  such that 

bxltxlt
axax




)()(   

and ))(,())(,( xxfltxxflt
bxax




 , 

          then, ),( yxflt
by
ax




 does not exist. 

Example 3 : If a function f  be defined by )0,0(),(,),(
22

22





 yx

yx

yx
yxf , then 

show that the two iterated limits 







),(

00
yxfltlt

yx
  and  ),(

00
yxfltlt

xy 
 exist but the 

simultaneous limit  ),(
)0,0(),(

yxflt
yx 

 does not exist. 
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Sol. 1),(
2

2

022

22

0000






























 x

x
lt

yx

yx
ltltyxfltlt

xyxyx
 

and   1),(
2

2

022

22

0000








 















 y

y
lt

yx

yx
ltltyxfltlt

xxyxy
 

Therefore, two iterated limits 







),(

00
yxfltlt

yx
  and  ),(

00
yxfltlt

xy 
 exist. 

Let )0,0(),( yx  along the line mxy  , then 

2

2

2

2

0222

222

022

22

)0,0(),()0,0(),( 1

1

1

1
),(

m

m

m

m
lt

xmx

xmx
lt

yx

yx
ltyxflt

xxyxyx 




















, 

which is not unique as it takes different values for different values of m . 

 simultaneous limit ),(
)0,0(),(

yxflt
yx 

 does not exist. 

2.1.5 Continuity of Functions of Two Variables 

A function ),( yxf  is said to be continuous at ),( 00 yx  if for every 0 , there exists 

0  such that 

 0xx ,  0yy  

 ),(),( 00 yxfyxf  

Or ),( yxf  is said to be continuous at ),( 00 yx  if the simultaneous limit 

),(
),(),( 00

yxflt
yxyx 

 exists and is equal to the functional value ),( 00 yxf  at ),( 00 yx .   

Example 4 : Discuss the continuity of ),( yxf  at (0,0) where 













)0,0(),(,0

)0,0(),(,
2

),( 33

2

yx

yx
yx

xy
yxf  

Sol. Here,   













)0,0(),(,0

)0,0(),(,
2

),( 33

2

yx

yx
yx

xy
yxf  

Let )0,0(),( yx  along the line mxy  , then 

3

2

3

2

0333

32

033

2

)0,0(),()0,0(),( 1

2

1

222
),(

m

m

m

m
lt

xmx

xm
lt

yx

xy
ltyxflt

xxyxyx 












 

which is not unique as it takes different values for different values of m . 
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 simultaneous limit ),(
)0,0(),(

yxflt
yx 

 does not exist. 

Hence, the function ),( yxf  is not continuous at (0,0).  

Example 5 : Examine the function 0,0,
1

sin),( 







 yx

x
xyyxf  and 

0)0,0( f for continuity at the origin. 

Sol. For the given ),( yxf , 
2fD   

Let 0  be arbitrary, then ,0,0   yx  where ).0,0(),( yx  

yx
x

xy
x

xyyxf 
1

sin
1

sin0),(                        







1

1
sin
x

  

                               

 0),( yxf  

)0,0(0),(
)0,0(),(

fyxflt
yx




 

Hence, f  is continuous at (0,0). 

Example 6 : Let 2:f  be a continuous function. Define 2:g  as 

0,0),,(),(  yxyxfyxg and 0,0,1),(),(  yxyxfyxg . Show that the 

function g  is not continuous at the origin. 

Sol. Being a continuous function, f  is continuous at the origin (0,0). 

),(
)0,0(),(

yxflt
yx 

  and )0,0(f  both exist and )0,0(),(
)0,0(),(

fyxflt
yx




 

Now 1)0,0()0,0(  fg                                                                                          (1) 

Also, )0,0(),(),(
)0,0(),()0,0(),(

fyxfltyxglt
yxyx




                                                       (2) 

From (1) and (2), )0,0(),(
)0,0(),(

gyxglt
yx




. 

So, g  is not continuous at the origin. 

2.1.6 Summary 
 In this lesson, we have studied about the simultaneous and iterated limits 

i.e. when and how they exist. After knowing about the limit, we have discussed 

about the continuity of function ),( yxf . The concept is made more elaborative with 

the help of suitable examples. 

2.1.7 Key Concepts 
 Simultaneous limit, Repeated limit, Iterated limit,  Continuity 
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2.1.8 Long Questions 

1. Let 2:f  be defined as 1),( yxf  if x  is irrational and 0),( yxf  if 

x  is rational. Show that for any point ),( 00 yx , ),(
),(),( 00

yxflt
yxyx 

 does not 

exist.  

2. Show that for the function f  defined by 
 222

22

),(
yxyx

yx
yxf


 , the two 

repeated limits exist and are equal but the simultaneous limit does not exist. 

3. Examine the function 0,0,),(
22

33





 yx

yx

yx
yxf  and 0)0,0( f for 

continuity at ).0,0(  

4. Show that 1),( 2  yxyxf  is continuous at (1,-2). 

2.1.9 Short Questions 

1. By using definition, prove that 

(i)   7453
2
1





xxylt
y
x

    (ii)   103 2

1
3





yxlt

y
x

 

2. Evaluate the following limits (if they exist): 

 (i) 
xyx

x
lt

yx  44

4

)0,0(),(
                     (ii) 

xyx

xy
lt

yx 323

2

)0,0(),( 
 

2.1.10 Suggested Readings 
1. RK Jain, SRK Lyenger                             Advanced Engineering Mathematics 

2. JR Sharma             Advanced Calculus 

3. Malik and Arora            Mathematical Analysis 

4. Shanti Narayan            Mathematical Analysis 

5. Thomas and Finney            Calculus and Analytical Geometry 
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FUNCTIONS OF TWO VARIABLES-II 

 
2.2.1 Objectives 

2.2.2 Partial Derivative 

 2.2.2.1 First Order Partial Derivatives 

 2.2.2.2 Second Order Partial Derivatives 

2.2.3 Change of Independent Variables 

2.2.4 Interchange of Order of Differentiation 

 2.2.4.1 Sufficient Condition for the Interchange of Order of   

  Differentiation  

2.2.5 Summary 

2.2.6 Key Concepts 

2.2.7 Long Questions 

2.2.8 Short Questions 

2.2.9 Suggested Readings 

 

2.2.1 Objectives 

 To learn about the first order and second order partial derivatives. 

 To study the conditions for the interchange of order of differentiation. 

 

2.2.2 Partial Derivative 

Let ),( yxfz   be a function of two independent variables x  and y . Then, the 

partial derivative of z  with respect to x  is the ordinary derivative of z  when y  is 

regarded as a constant. Similarly, the the partial derivative of z  with respect to y  

is the ordinary derivative of z  when x  is regarded as a constant.  

For example : If 3223 53 yxyxz      

then, partial derivative of z  w.r.t. x  is equal to 

    xyxyxyxy 322322 1092533   

Similarly, partial derivative of z  w.r.t. y  is equal to 
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    223223 1563523 yxyxyxyx   

 

2.2.2.1 First Order Partial Derivatives 

Let ),( yxfz   be a real valued function of two independent variables with an open 

domain 
2fD , then

x

yxfyxxf
lt
x 




),(),(
0




if it exists, is called the partial 

derivative of  z  w.r.t. x . It is denoted by 
x

z




 or 

x

f




or xf  or ),( yxf x  or fD1 . 

x

yxfyxxf
lt

x

f
f

x
x



 ),(),(
0










 

Also, the partial derivative of f w.r.t. x  at any point fDba ),(  is denoted by 

),( bax

z












 or 

),( bax

f












or ),( baf x . 

Thus, 
h

bafbhaf
ltbaf
h

x

),(),(
),(

0





 

On similar lines, 
y

yxfyyxf
lt
y 




),(),(
0




, if it exists, is called the partial derivative 

of  f  w.r.t. y . It is denoted by 
y

z




 or 

y

f




or yf  or ),( yxf y  or fD2 . 

Thus, 
y

yxfyyxf
lt

y

f
f

y
y



 ),(),(
0










 

The partial derivative of f w.r.t. y  at any point fDba ),(  is denoted by 

),( ba
y

z












 

or 

),( ba
y

f












or ),( baf y  and it may be expressed as 

 
k

bafkbaf
ltbaf
k

y

),(),(
),(

0





 

2.2.2.2 Second Order Partial Derivatives 
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If ),( yxfz   and the first order partial derivatives 
x

f




 and 

y

f




 exist, then they are 

themselves functions of x  and y . The partial derivatives of  
x

f




 and 

y

f




, if they 

exist, are called second order partial derivatives of ),( yxf . It is denoted as 

I. 
2

2

x

f

x

f

x 



















 or 

2

xf  or xxf  or 
2

2

x

z




 

II. 
xy

f

x

f

y 


















 2

 or xyf  or 
xy

z



2

 

III. 
yx

f

y

f

x 


















 2

 or yxf  or 
yx

z



 2

 

IV. 
2

2

y

f

y

f

y 



















 or 

2

yf  or yyf  or 
2

2

y

z




 

These second order partial derivatives may be further expressed as 

x

yxfyxxf
lt

x

f xx

x 

 ),(),(
02

2 







 

y

yxfyyxf
lt

xy

f xx

y 

 ),(),(
0

2 







 

x

yxfyxxf
lt

yx

f yy

x 

 ),(),(

0

2 







 

y

yxfyyxf
lt

y

f yy

y 

 ),(),(

02

2 







 

Example 1 : If 




















)0,0(),(,0

)0,0(),(,sin),( 22

yx

yx
yx

xy
yxf , 

then evaluate )0,0(xf  and )0,0(yf . 

Sol. For the given function ),( yxf , we have 

0
0000sin)0,0()0,0(

)0,0(
000











 h
lt

h
lt

h

fhf
ltf

hhh
x  

and 0
0000sin)0,0()0,0(

)0,0(
000











 k
lt

k
lt

k

fkf
ltf

kkk
y  
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Example 2 : Let  xyxyyxf 22log),( 2  . Find )3,2(xf  and )3,2(yf . 

Sol. Here  xyxyyxf 22log),( 2   

So,     
xyxy

y
y

xyxy
xyxy

x
f x

22

2
2

22

1
22log

22

2












   

20

1

4186

1

)2(2)3)(2()3)(2(

23
)3,2(

2








 xf  

Also,     
xyxy

yx
yx

xyxy
xyxy

y
f y

22

4
4

22

1
22log

22

2












  

10

7

20

14

4186

122
)3,2( 




 yf  

2.2.3 Change of Independent Variables 

Consider the two relations :  sin,cos ryrx   connecting the four variables 

ryx ,,  and  . Here, each variable can be expressed in terms of two of the remaining 

three variables. 

For example : x  can be expressed in terms of  (i) ,r  (ii) y,  (iii) yr,  

Now, if we have to find
r

x




, then it is meaningful in (i) and (iii) while it has no 

meaning in (ii). 

Note : 
r

x




 in (i) keeping   constant is not equal to 

r

x




 in (iii) keeping y  constant. 

So, it is necessary to distinguish between the two values of 
r

x




 which can be done 

by denoting them as 















r

x
  and 

yr

x












 respectively. 

Thus, 















r

x
= partial derivative of x  where r  and   are independent variables and  

yr

x












= partial derivative of x  where r  and y  are the independent variables. 

Example 3 : If  sin,cos ryrx  , the prove that 

    


2cos
1

loglog
22

2

2

22

r
r

y
r

xyx















 

Sol. Given:   sin,cos ryrx   
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on dividing y by x , we get 
x

y
tan    

which gives 
x

y1tan          

222

1
.

1

1

yx

x

x

x

yy 



















       

      2

22

22

2222

222

22

222

222 sincoscossin2.1).(

rr

rr

yx

xy

yx

xxyx

yx

 


















  which 

gives 


2cos
1

2

2

ryx





                                                                             ....(1)    

Now, squaring and adding x  and y , we have 
222 yxr    

 222 loglog yxr        22loglog2 yxr   

 22log
2

1
log yxr   

 
2222

2.
1

.
2

1
log

yx

x
x

yx
r

x 








  

   
   

2cos
12.1.

log
2222

22

222

22

2

2

ryx

xy

yx

xxyx
r

x















                                  ....(2) 

Now,  
2222

2.
1

.
2

1
log

yx

y
y

yx
r

y 








 

   
   

2cos
12.1.

log
2222

22

222

22

2

2

ryx

yx

yx

yyyx
r

y















                                    ....(3) 

From (1), (2) and (3), we get 

    


2cos
1

loglog
22

2

2

22

r
r

y
r

xyx















. 

2.2.4 Interchange of Order of Differentiation 

For some functions, xyf  and yxf  both exist and equal i.e. we can change the order 

of differentiation. But this result is not always true. For all classes of functions, we 

cannot interchange the order of differentiation 

i.e. ),(),( bafbaf yxxy    (In general) 
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Here, 
k

bafkbaf
ltbaf xx

k
xy

),(),(
),(

0





 

where 
h

kbafkbhaf
ltkbaf
h

x

),(),(
),(

0





 and  

h

bafbhaf
ltbaf
h

x

),(),(
),(

0





 

on substituting, we get 

hk

kh
ltlt

hk

bafbhafkbafkbhaf
ltltbaf

hkhk
xy

),(),(),(),(),(
),(

0000







  

where ),(),(),(),(),( bafbhafkbafkbhafkh   

Similarly, 
hk

kh
ltltbaf
kh

yx

),(
),(

00




  

Thus, ),( baf xy  and ),( baf yx  appear as repeated limits of the same function and we 

know that these limits may or may not be equal. Therefore, the equality of the two 

derivatives may not be taken surely. 

2.2.4.1Sufficient Condition for the Interchange of Order of Differentiation 

The below stated theorems give the sufficient condition for the equality of xyf  and 

yxf   

A. Statement of Schwarz's Theorem : If ),( ba  is a point of the domain 

2fD  of a function f  such that 

i. xyyx fff ,,  all exist in a certain neighborhood of  ),( ba , 

ii. xyf  is continuous at ),( ba , 

then ),( baf yx  exists and ).,(),( bafbaf xyyx   

B. Statement of Young's Theorem : If ),( ba  is a point of the domain 

2fD  of a function f  such that 

i. yx ff ,  both exist in a certain neighborhood of  ),( ba , 

ii. yx ff ,  are differentiable at ),( ba , 

then ).,(),( bafbaf xyyx   

We will prove these theorems in the next lesson of this unit. 
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Example 4 : Let 













22

22

),(
yx

yx
xyyxf , where )0,0(),( yx  and 0)0,0( f . Show 

that ).0,0()0,0( yxxy ff   

Sol. We have 
k

fkf
ltf xx

k
xy

)0,0()0,0(
)0,0(

0





                                                 ...(1) 

Now, 






























 2

222

22

00 0

0
0

),0(),0(
),0(

k

k
k

h

kh

kh
hk

lt
h

kfkhf
ltkf

hh
x  

kkf x  ),0(                                                                                                  ...(2) 

Also, 
h

lt
h

fhf
ltf

hh
x

00)0,0()0,0(
)0,0(

00








 

0)0,0(  xf                                                                                                     ...(3) 

From (1), (2) and (3), we get 1
0

)0,0(
0





 k

k
ltf
k

xy                                          ...(4) 

Similarly, 

h

fhf
ltf

yy

h
yx

)0,0()0,0(
)0,0(

0





= 1

0
0




 h

h
lt
h

,                                                 ...(5) 

where  h
h

h
h

k

kh

kh
hk

lt
k

hfkhf
lthf

kk
y 































 0

0
0

)0,()0,(
)0,(

2

222

22

00
, 

and 0
00)0,0()0,0(

)0,0(
00








 k
lt

k

fkf
ltf

kk
y  

It is clear from (4) and (5) that ).0,0()0,0( yxxy ff   

2.2.5 Summary 

 In this lesson, we have defined the first order partial derivatives yx ff ,  and 

second order partial derivatives yyyxxyxx ffff ,,,  of ),( yxf  w.r.t the independent 

variables x  and y . It is also explained that how the order of partial differentiation 

can be interchanged i.e. what is the sufficient condition under which yxxy ff  . Now, 

it will be easy for the students to understand some more results concerning partial 

derivatives that we will study in next lessons. 

2.2.6 Key Concepts 
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 First order partial derivatives, Second order partial derivatives, Change of 

independent variables, Interchanging the order. 

2.2.7 Long Questions 

1. Verify that 
yx

f

xy

f








 22

 where 






 


xy

yx
f

22

log . 

2.  If   sin,cos ryrx  , prove that 

(i) 1

22



























y

r

x

r
        (ii) 

22

2

2

2

2
























yx

r

y

r

x

r
 

3.  Let 













yx

yx
xyyxf ),( , where )0,0(),( yx  and 0)0,0( f . Show that 

).0,0()0,0( yxxy ff   

4.  For the function, 0,tantan),( 1212 
















  xy

y

x
y

x

y
xyxf  and 0),( yxf  if 

0xy , show that ).0,0()0,0( yxxy ff    

2.2.8 Short Questions 
1. Find the first order partial derivatives for z  

(i)  22log yx         (ii)  22sin yx         (iii) 








y

x1sin  

2. Let 1),( 44  yxyxf . Evaluate )2,1(xf  and )2,1(yf . 

3. For the following ),( yxf , find the second order partial derivatives 

(i) 








x

y
sin           (ii)  yxx sin2        (iii) 

yxe 
 

2.2.9 Suggested Readings 
1. RK Jain, SRK Lyenger                             Advanced Engineering Mathematics 

2. JR Sharma             Advanced Calculus 

3. Malik and Arora            Mathematical Analysis 

4. Shanti Narayan            Mathematical Analysis 

5. Thomas and Finney            Calculus and Analytical Geometry 
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2.4.1 Objectives 

During the study in this particular lesson, our main purpose is to study the rules  

and methods such as Lagrange's method, under which the maximum and 

minimum of the function ),( yxf  can be obtained. Further, an important function 

known as Jacobian and its important properties are also elaborated under the same.   

2.4.2 Introduction  

Before introducing the main part of this lesson, we firstly define the extreme values 

of the function ),( yxf , below:  

A. Maximum Value : A function ),( yxf  is said to have a maximum value at 

byax  ,  if ),(),( kbhafbaf   for small values of h  and k , positive or 

negative. 

B. Minimum Value : A function ),( yxf  is said to have a maximum value at 

byax  ,  if ),(),( kbhafbaf   for small values of h  and k , positive or 

negative. 

C. Extreme Value : A maximum or minimum value of a function is called an 

extreme value. 
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2.4.3 Working Method for Maxima and Minima of a Function f(x,y)  

Let ),( yxf  be the given function 

Step I : Find 
x

f




  and 

y

f




. 

Step II : Solve 0




x

f
  and 0





y

f
 simultaneously for x  and y . Let 

)........,(),,( 2211 yxyx  be the points. 

Step III : Calculate the values of 
2

22

2

2

,,
y

f
C

yx

f
B

x

f
A














  for each point. 

Step IV : (i) If for a point ),( 11 yx , 02  BAC  and 0A , then ),( yxf  has a 

maxima for this pair and maximum value is ),( 11 yxf . 

(ii) If for a point ),( 11 yx , 02  BAC  and 0A , then ),( yxf  has a minima for this 

pair and minimum value is ),( 11 yxf . 

(iii) If for a point ),( 11 yx , 02  BAC  , then there is neither maximum nor 

minimum of ),( yxf  and ),( yxf  is said to have a saddle point at ),( 11 yx . 

(iv) If 02  BAC  for some point ),( ba , then we have the following cases: 

(a) if 0),(),(  kbhafbaf  for small values of h  and k , positive or negative, 

then f  has maxima at ),( ba . 

(b)  if 0),(),(  kbhafbaf  for small values of h  and k , positive or 

negative, then f  has minima at ),( ba . 

(c) if ),(),( kbhafbaf   does not keep the same sign for small values of h  

and k , then there is neither maxima nor minima. 

Example 1 : Find all the maxima and minima of the function 

.12)(63),( 33 xyyxyxyxf   

Sol. Step I. 63123 2 



yx

x

f
  and 63123 2 




xy

y

f
 

Step II. Let us solve 0




x

f
  and 0





y

f
 

i.e., 063123 2  yx  and 063123 2  xy   
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or  02142  yx                                                                                                (1) 

and 02142  xy                                                                                               (2)   

Subtracting (2) from (1), we get 

0)4)((0)(4))((04422  yxyxyxyxyxxyyx                                                                                

  either 0 yx  which gives yx  , or 04  yx  which gives yx  4  

For yx  , (1) becomes 

7,30)3)(7(02142  xxxxx  

As xy  , so 7,3 y  

For yx  4 , (1) becomes 

0214)4( 2  yy  

or 02141682  yyy  

or 1,50)1)(5(0542  yyyyy  

Further, from yx  4 , 5,1x . 

so, the four critical points are (3,3), (-7,-7), (-1,5) and (5,-1). 

Step III. y
y

f
C

yx

f
Bx

x

f
A 6,12,6

2

22

2

2















   

.144362  xyBAC  

Step IV. At (3,3), 0180144)3)(3(362  BAC  and 018)3(6 A  

),( yxf  is minimum at (3,3) and the minimum value is given by 

216)3)(3(12)33(632727)3,3( f  

At (-7,-7), 016201441764144)7)(7(362  BAC  and 042)7(6 A  

),( yxf  is maximum at (-7,-7) and the maximum value is given by 

784588882343343)7,7( f  

At (-1,5), 0324144180144)5)(1(362  BAC   

),( yxf  has neither maximum nor minimum at (-1,5) and therefore, (-1,5) is a 

saddle point. 

At (5,-1), 0324144180144)1)(5(362  BAC  

),( yxf  has neither maximum nor minimum at (5,-1) and therefore, (5,-1) is a 

saddle point. 

Example 2 : Find the extreme value (if any) of .32),( 224 yyxxyxf   
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Sol. Step I. xyx
x

f
68 3 




  and yx

y

f
23 2 




 

Step II. Let us solve 0




x

f
  and 0





y

f
 

or    068 3  xyx                                                                                                   (1) 

and 023 2  yx                                                                                                 (2) 

From (1), 
4

3
,00)34(2 22 y
xxyxx   

For 0x , from (2), 020  y 0 y . 

So, the point is (0,0). 

For 
4

32 y
x   , from (2), 002

16

9
3  yy

y
 

)0,0(  is the only critical point. 

Step III. 2,6,624
2

22
2

2

2

















y

f
Cx

yx

f
Byx

x

f
A   

.)6()2)(624( 222 xyxBAC   

Step IV. At (0,1), .00)2)(00(2  BAC  

So, at (0,0) further investigation is required. 

Consider 

2

22224

4

3
2

8

1
)32(0),()0,0(),(),( 









k

hkkkhhkhffkbhafbaf  

which does not keep the same sign for small values of h  and k , so there is neither 

maximum nor minimum at (0,0). 

2.4.4 Lagrange's Method of Undetermined Multipliers 

Let ),,( zyxf  be a function of zyx ,,  which is to be examined for maximum or 

minimum values and let the variables be connected by the relation 

0),,( zyx                                                                                                          (1) 

Since ),,( zyxf  is to have maximum or minimum value, 

 0




x

f
, 0




y

f
 and 0





z

f
  

0













 dz

z

f
dy
y

f
dx
x

f
                                                                                    (2) 
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Differentiating (1), we get 

0













dz
z

dy
y

dx
x


                                                                                        

(3) 

Now, adding   times of (3) into (2), we get 

0




















































dz

zz

f
dy

yy

f
dx

xx

f 






  

In order to satisfy this equation identically, coefficients of dzdydx ,,  should be zero 

separately 

i.e., 0









xx

f 
                                                                                                  (4)     

and 0









yy

f 
                                                                                                 (5) 

and 0









zz

f 
                                                                                                 (6) 

Equations (1), (4), (5) and (6) will give the values of ,,, zyx  for which the function 

),,( zyxf  has maximum and minimum values. 

Example 3 : Find the maximum and minimum value of the function 22 yx   

subject to the condition .140643 22  yxyx  

Sol. Let 
22),( yxyxf   

The constraint is  

140643 22  yxyx                                                                                               

(1) 

Let  140643),( 2222  yxyxyxyxF   where   is Lagrange’s multiplier. 

For extreme points, 

0)46(2 



yxx

x

F
  

and  0)124(2 



yxy

y

F
  

or 02)31(  yx                                                                                               (2) 

and 0)61(2  yx                                                                                            (3) 

Since yx,  are both non-zero, 
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0
612

231










 

04)61)(31( 2    

01914 2    

7

1
,

2

1

28

59

28

56819






   

Taking 
2

1
  

From (2), yx 2  

And from (1), 1401406812 2222  yyyy  

564 22  yx  

Which gives 70145622  yx  

Taking 
7

1
  

From (2), xy 2  

And from (1), 401402483 2222  xxxx  

164 22  xy  

Which gives 2041622  yx  

Hence, the maximum value of 22 yx   is 70 and the minimum value is 20. 

2.4.5 Jacobian of n -Function 

If nfff ...,,........., 21  be n functions of n variables nxxx ..,,........., 21  possessing partial 

derivatives of the first order at every point of the domain of definition of the function, 

then the determinant 

                                                 

n

nnn

n

n

x

f

x

f

x

f

x

f

x

f

x

f
x

f

x

f

x

f




































......

.....................

......

......

21

2

2

2

1

2

1

2

1

1

1
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Is called the Jacobian of nfff ...,,........., 21  w.r.t. nxxx ..,,........., 21 . It is denoted by 

 
 n

n

xxx

fff

,,.........,

,,.........,

21

21




 or  nfffJ ...,,........., 21 . 

 

Example 4 : Find 
 
 yx
gf

,

,




if yxxf sin2   and .22 yxyxg   

Sol. Here, yxxf sin2   and .22 yxyxg   

  yx
x

f
sin2 




,       yx

y

f
cos




 

And 12 2 



xy

x

g
,       12 2 




yx

y

g
 

Now, 
 
  1212

cossin2

,

,
22 
























yxxy

yxyx

y

g

x

g
y

f

x

f

yx

gf
 

                                     )cos)(12()12)(sin2( 22 yxxyyxyx   

2.4.6 Some Important Articles Concerning Jacobian 

Art. 1 : Jacobian of Composite Functions 

Statement : If 
nnf :  and 

nng :  differentiable functions, then 

  )()()( xJxfJxJ fgI  , where .gofI   

Art. 2 : Let D  be an open subset of 
n  and 

nDf :  be differentiable at every 

point of D . Suppose that f  is invertible on D  and let 
1f  be differentiable at 

every point of the range of f , then 

  .
)(

1
)(1 Dx

xJ
xfJ

f
f

   

Art. 3 : Jacobian of Implicit Functions 

Statement : If nuuu ...,,........., 21  are functions of nxxx ..,,........., 21  defined implicitly 

by n  equations 

  0..,,.........,,,........, 21211 nn xxxuuuF , 

  0..,,.........,,,........, 21212 nn xxxuuuF , 

...................................................... 
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  0..,,.........,,,........, 2121 nnn xxxuuuF , 

then, 
 
 

 
 
 
 n

n

n

n

n

n

n

uuu

FFF

xxx

FFF

xxx

uuu

.,,.........,

.,,.........,

.,,.........,

.,,.........,

)1(
,,.........,

,,.........,

21

21

21

21

21

21













 

Art. 4 : Functional Dependence (Necessary and Sufficient Condition for a 

Jacobian to Vanish) 

Statement : Let nuuu ...,,........., 21  be n  functions of n  independent variables 

nxxx ..,,........., 21 . In order that there may exist between these functions a relation 

  0,........,, 21 nuuuF , it is necessary and sufficient that the Jacobian 

 
 n

n

xxx

uuu

,,.........,

,,.........,

21

21




  should vanish identically. 

Note : The proof  of above articles is easy and left as an exercise for the reader.  

Example 5 : Prove that     nJ
f

,1   for any  n,  belonging to the range of f , 

where 







 

x

y
yxyxf 122 tan,),( . 

Sol. Here ),(tan,),( 21
122 ff
x

y
yxyxf 








 

  

Where 
22

1 ),( yxyxf   and 
x

y
yxf 1

2 tan),(   

  
2222

1

2

2

yx

x

yx

x

x

f










          

2222

2

2

2

yx

y

yx

y

x

f










            

2222
1 .

1

1

yx

y

x

y

x

yx

g











 















 

222
2 1

.

1

1

yx

x

x

x

yx

g


























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Now, 
 
 

2222

2222

22

11

21

,

,
),(

yx

x

yx

y
yx

y

yx

x

y

f

x

f
y

f

x

f

yx

ff
yxJ f

























  

                      

   
22

2

3
22

2

2

3
22

2 1

yxyx

y

yx

x










  

                       


1
                                                  22),(, yxyxf    

Now,     

),(

1
,1

yxJ
nJ

f
f

 

Example 6 : Show that the functions zyxwxzxyxvzyxu  23,2,2 2  

are not independent of one another. Also find the relation between them. 

Sol. For the given functions, we have 
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
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















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u

zyx

wvu
 

                                       

004

222

121

xxzyx 



 ,    by 13 RR   

                                       0)22(4  xx  

vu,  and w  are not independent of one another. 

Further, 

)223)(223()2()23( 2222 zyxzyxzyxzyxzyxzyxuw 
 

            vzxxyxzyxxzyxx 8)2(8)2(8)242(4 2   

So, vuw 822   is the required relation between vu,  and w . 
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2.4.7 Summary 

In this lesson, we have studied the working method for finding maxima and minima 

for the function f(x,y). We have also discussed Lagrange’s method of undetermined 

multipliers for finding the maximum and minimum value of a function of two or 

more variables, subject to some particular condition or constraint. Further, the 

concept of Jacobian and functional dependence has been also elaborated. The 

concepts are easily understandable with the help of simple examples. 

2.4.8 Key Concepts 

Maxima and minima, Lagrange’s method of undetermined multipliers, Jacobain of 

n-functions, Functional dependence, Vanishing of Jacobian. 

2.4.9 Long Questions 

1. Find all the critical points of the function xyxyxf  2),(  and examine for 

maxima, minima or neither. 

2. Find the minimum value of 222),,( zyxzyxf   subject to the condition 

.3 2axyzxyz   

3. Find the point on the plane 532  zyx  which is nearest to the origin in 

.3  

4. If 
332233 , yxvuyxvu  , then show that .

)(
.

2

1

),(

),( 22

vuuv

xy

yx

vu









 

5. Show that the functions yzzyxwzyxvzyxu 2,, 222   are 

not independent of one another. Also find the relation between them. 

2.4.10 Short Questions 

1. If zzryrx  ,sin,cos  , then evaluate 
 
 

.
,,

,,

zr

zyx




  

2. Prove that    yxeyxJ yx
f   sin,  where  .cos,sin),( xeyeyxf yx  

3. Evaluate  nJ
f

,1  , where  .,),( yxyxyxf   

2.4.11 Suggested Readings 

1. RK Jain, SRK Lyenger                             Advanced Engineering Mathematics 

2. JR Sharma             Advanced Calculus 

3. Malik and Arora            Mathematical Analysis 

4. Shanti Narayan            Mathematical Analysis 

5. Thomas and Finney            Calculus and Analytical Geometry 
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