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1
1.1.7 Key Concepts
1
1

1.1.1 Objectives

The prime goal of this unit is to enlighten the basic concepts of successive
differentiation, multiple points and asymptotes, concavity and convexity etc. During
the study in this particular lesson, our main objectives are

* To obtain n'® order derivatives of some standard functions by the method
of mathematical induction.
* To discuss Leibnitz's theorem for finding the n'® order derivatives of the

product of two functions.
1.1.2 Introduction

We are already familiar with the concept that derivative of a function of x is also a
function of x. Thus the derivative of a function may have its derivative without any
loss of genrality.

Ify = f(x),

dy ~ lim f(x + 6x) — f(x)
dX 3x—0 8X

=f'(x)
1
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is called the first differential coefficient or first derivative of f(x). If the process of

differentiation be continued in succession, we obtain second, third and higher order

derivatives, as follows :

dx?  dx ldx

2

dx? :& dx?

and so on. These are also denoted by

d
y. = yZDYaYQz
dx

dx—0

3 2
d’y d (dy]:h

d y — D2
dx?

f'(x+0ox)-1'(x)

ox

e 3%) - £(x)

=1"(x),

3x—0

D2y

2

geee

Ax

2

dy
dx®

~£"(x)

n

1.1.3 Successive Differentiation of Some Standard Functions

Art 1.1 : Prove the following results :

(i) Ify = (ax + b)®, then y_=m (m-1) (m-2).... (m-n +1) (ax + b)™™a".

Proof : Herey = (ax + b)™

Differentiating both sides w.r.t. x, we get,

y,=m (ax + b)™'. a=m (ax + b)™'. a'

result is true forn =1

Assume that the result is true for n = k, where k is positive integer.

y,=m (m-1) (m-2) ... (m -k + 1) (ax + b)™*, a*
Differentiating both sides w.r.t.x, we get,
Vi.;=m (m-1) (m-2) ... (m -k + 1) (m-k) (ax +b)™*'. a . a*
or Ve, ;= m (m-1) (m-2) ... (m -k + 1) (m - k) (ax + bym* k1, gk*!

result is true forn = k +

1.

if the result is true for any positive integer k, then it is also true for the next

higher integer k + 1.

But the result is true for n = 1 also.

By method of induction, the result is true for all positive integers n.

Cor. I. If m is a positive integer > n, then

=m(m—l)(m—2) ..... (m—n+1)m—n(ax+b)m,n

n
m-n

|m

n

or Y, = (ax+b)™" " .a

n

.a
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Ifm=n,theny =n(n-1)(n-2)...2.1 (ax+ b)°. a”

or y,=In.a"

yH+1=YH+2= i =O
y,=0Vn>m.

. 1 -1)" [n.a" b
If = ,th hE T, XFE——
(i) Y axtp Y (ax + b)**"! X
Proof : Here y = 1 =(ax +b)"
ax+b
§ -1)'.[1.a
=(-1)(ax+b Q.a:(—
yi = (=1 ( ) ax + b’

the result is true for n = 1.
Assume that the result is true for n = k, where k is a positive integer.

g~ A et fax by
(ax + b)<*!

Differentiating again w.r.t. X, we get,

Vi =(1F [ka* (k-1)(ax+b)*?.a

_1\k+l k+l1
— (_1)k+1 k+1 ak+1 (ax + b)*(k+2) — ( 1) M -a

(aX + b)k+2

result is true for n = k + 1.

if the result is true for n = k, then it is also true forn = k + 1.

But the result is true for n = 1.

By method of induction, the result is true for all positive integers n.

_ 11 _ n
(iii) Ify =log (ax + b), then yn:( )" In-1.2 ,x>—E.
(ax + b)" a

Proof : Here y = log (ax + b)
Differentiating both sides w.r.t.x,
1 )" .1-1.a

= .a=
T ax+b (ax + b

the result is true for n = 1.
Assume that the result is true for n = k, where k is a positive integer.
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P L T A S R

(ax + b)*
Differentiating both sides w.r.t.x, we get,

Vi = (1 e=1a* (k) fax +b) " . a

(_1)k IE . ak+1

— _lk kak+1 aX+b7(k+1]:
(1) e fax by Y = S0 K

result is true forn =k + 1

if the result is true for n = k, then it is also true forn =k + 1

But the result is true for n = 1.

By the method of induction, the result is true for all positive integers n.

Note : Same result will hold even if y = log |ax + b| where x > — b .
a

(iv) If y =a™, a >0, then y, = am™. (log a)". m".
Proof : Here y = a™
Differentiating both sides w.r.t.x,
y,=a™, loga.m=a™. (loga)'. m'
the result is true for n = 1.
Assume that the result is true for n = k, where k is a positive integer.
y,= a™. (log a)*. m*
Differentiating both sides w.r.t.x,
Ve.,= [@a™. (log a) . (m)] . (log a)*. m*= a™. (log a)**'. m**!
result is true for n = k + 1.
if the result is true for n = k, then it is also true for n = k + 1.
But the result is true forn = 1.
o By the method of induction, the result is true for all positive integers n.
Cor. 1.Putm =1
y,= a*. (log a)"
y=a* = y_ =a*. (loga)"
Cor. 2. Puta=e¢
y,= e™. (log €)". m"= e™. m"
y=ew=y =e™. m"
Cor. 3. Puta=e, m=1
y,=€*. (loge)*. (1)"= e~
y=e'=y, =€~
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(vy  Ify=sin (ax + b), then y_= asin (ax+b+%ijeR.

Proof :Here y = sin (ax + b)
Differentiating both sides w.r.t. x,

y,=cos (ax + b).a=a'sin {ax+b+1.g}

the result is true for n = 1.
Assume that the result is true for n = k, where k is a positive integer.

y, =a“ sin[ax+b+kg}

Differentiating again w.r.t.x,

Vi =akcos[ax+b+k£}.a=ak”sin (ax+b+k£j+E
2 2) 2
=a*" sin{ax+b+(k+1)g}

result is true for n = k + 1.
if the result is true for n = k, then it is also true forn = k + 1.

But the result is true for n = 1.
By the method of induction, the result is true for all positive integers n.

(vi) If y = cos (ax + b), then y_= a”cos (ax+b+nngxeR.
Proof : The proof is left as an exercise for the reader.

(vi) Ify = e=sin (bx + ¢), then y, = (a + b?)? e sin (bx +c+ntan’’ —j
a

Proof : Here y = e**sin (bx + ¢)
Differentiating both sides w.r.t.x,

y, =™ .i[sin (bx + c)] + sin (bx+c).i(ea")
dx dx
=e*.cos (bx+c).b +sin (bx+c).e*.a

y, = e*[asin (bx + c) + b cos (bx + ¢)]
Put a=rcosaandb=rsin awherer > 0.
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Squaring and adding (2) and (3), we get,

a’+b?’=r’=r=+Ja’+b?

Dividing (3) by (2), tan o = 2 = a = tan"!
a

oo

from (1), y, = e [r cos a sin (bx + ¢) + r sin a cos (bx + ¢]]
=e*. r [sin (bx + c) cos a + cos (bx + ¢) . sin q]

=re*sin (bx + c + a)

1
> . ab
y, =(a® + b?)? .eaxsm(bx+c+l.tan 1—)
a
the result is true for n = 1.
Assume that the result is true for n = k, where k is a positive integer

k

¥, =(@? +b?)? .e*sin (bx +c+ktan’! g)
or y, = rfe*sin (bx + c + ka)

Differentiating again w.r.t. x, we get,

V., = 1. [e=. cos (bx + ¢ + ka) . b + sin (bx + ¢ + ka) . ae™|

=1k, e®[a sin (bx + ¢ + ka) + b cos (bx + ¢ + ka)]

=1k, e™[r cos a sin (bx + ¢ + ka) + r sin a cos (bx + ¢ + ka)]

=rk*1 e*gin [(bx + ¢ + ka) + a] = rk*!. e*sin [bx + ¢ + (k + 1) q]

k+1
Vi =@%+Db%*) 2 . e*sin (bx +c+(k+1)tan™ Ej
a

the result is true forn =k + 1

if the result is true for n = k, then it is also true forn = k + 1.

But the result is true for n = 1.

By the method of induction, the result is true for all positive integers.
(viii) Ify = e*cos (bx + c), then

y, =(a* +b?)? .e™ cos (bx +c+ntan’ E]
a

Proof : The proof is left as an exercise for the reader.

1.1.4 Some Important Examples

Example 1 : If y = cosh (log x) + sinh (log x), prove thaty_= 0 for n > 1.
Sol. y = cosh (log x) + sinh (log x)



B.A. PART -1 7 MATHEMATICS PAPER-I

Differentiating both sides w.r.t.x, we get
. 1 1
y, =sinh (log x). — + cosh(log x). —
X X

xy, = sinh (log x) + cosh (log x)

or Xy, =y
Again differentiating w.r.t.x, we get
xy,*y,=y, or xy,= 0

y,=0
y,=Oforx>1.
d’p a’b?
Example 2 : If p?= a%cos?0 + b?sin?0, prove that p+—>="—
de P

Sol. Here p2= a?cos?0 + b2sin20

- p? = a2 [1+cgs 29)+b2 (l—cgs 29)

= 2p?=a?(1 + cos 20) + b2 (1 — cos 26)
= 2p?- (a%?+ b?) = (a?- b?) cos 20 .. (1)

Differentiating w.r.t. 6, we get,

dp 2 2\ o
4p—=-2(a“ —b")sin 20
P s ( )
or —op 9P _ (2% _b?)sin 20 2)
a6

Squaring (1), (2) and adding, we get,

2
4p* +(a® +b?)> —4p? (a® + b?) + 4p? (%} =(a? - b?)?

2
or 4p* — 4p*(a2 + b?)+ 4p? (j—gj +(@2+ b2 —(@2-b*P =0

2
or 4p* —4p*(@® + b))+ 4p° (%} +4a’b’> =0

Dividing both sides by 4p?, we get,
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2 21.2
p2—(a2+b2)+£@J +%=o
doe o)

Dividing by 23—2’, we get,

d2p a2b2
p+ d6? )
p

Example 3 : Find the nth derivative of \[ax+ b -
\ Dl -
Sol. Let y=+ax+b =(ax+b)? 2

Laxabpa-taxib)a
Y1 9 . 5

1( 1 2 ~1°1.3 ~-3
yQZE(_EJ(aX+b)2a2=y3=%(ax+b)2 a’
5
A et
2
_1\2 1
3_(1)21.3( RN

1
(-1)*'1.3.5...(2n - 1) (ax + b)2 " an
211

Yo =

B (—1]“711.3.5... (2n-1)
n 2n-1

2%ax +b) 2

b
.a" where x # ——
a

2x +1

Example 4 : Find y if y "R E-T

MATHEMATICS PAPER-I
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Sol. y.__ 2x+1
° Y (x-2)(x-1>°

2x+1 __ A B C D
x-2)(x-1° x-2 x-1 (x-1 (x-1)°

Put

Multiplying both sides by (x-2) (x-1)3, we get
2x+ 1=A(x-1)*+B (x-2) (x-1)?+ C (x-2) (x-1) + D (x-2) ... (1)
Putting x - 2 = 0 i.e. x = 2 in (1), we get
5=A=A=5
Putting x -1 = 0i.e. x = 1 in (1), we get
=-D=D=-3
(1) can be writing as
2x + 1=A (x®-3x%+ 3x-1) + B (x*-4x?+ 5x-2) +C (x2-3x+2) + D (x - 2)
.. (2)
Equating coefficients in (2) of
x3) A+B=0=5+B=0=B=-5

x?) -3A-4B+C=0=-15+20+C=0=C=-5
2%+l . 5 5 5 3
x-2)(x-1f x-2 x-1 (x-17 (x-1)
1
5 S 3
y

Tx-2 x-1 (x-17 x-17

s (U (n Y nsl g (-)n+2

Yn = (X _ 2)n+1 (X _ 1)n+1 (X _ 2)n+2 (X _ 1)n+3
o 5 B 5 _ S(n+1) _3(n+2)(n+1)
Yo = ( 1) Ill (X _ 2)n+l (X _ 1)n+1 (X _ 1)n+2 (X _ 1)n+3

Example 5 : Find the nth derivative of y = €% sin? 2x.

3x 1—cos4x :l 3x

- leg‘X cos 4x
2 2 2

Sol. y=e¢*sin’2x=e

e’ . 3" —% (9 +16)2 e>* cos 4x +n tan™* %

_1
Yo =75
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Vo= % e’* 3" —5" cos 4x + ntan™

wl s

1.1.5 Leibnitz's Theorem

Statement : If u and v are functions of x possessing nth order derivatives, then
(uv) =*C,u v+*Cu v +°C,u ,v,+..+"Cu v +. +°Cuv
where u_denotes the rth order derivative of u and "C_denotes the number of

combinations out of n different things taken r at a time.

Proof : We have
= =1 1
(uv),=uyv +uv =1'Cuv+'C uv,
theorem is true for n = 1.
Assume that the theorem is true for n = m, where m is a positive integer.
= m m, m
(uv) ==C,u v+=*Cu_ v +"Cu_,v,+ ..
+2C _u v +2Cu_ v +..+™mC uv
r-1 m-r+1 " r-1 r m-r r m m

Differentiating both sides w.r.t.x, we get,
(uv) =mC,u_

m+ 1

m
1V+ COumVI

+

m m
Cl um Vl + Cl um—l V2

nC u v, +t"C_u \Y

r-1 m-r+2 " r-1 m-r+1 " r

mC u v+mCu v

r m-r+l r T o+l

+ + 4+ + + o+

mC u,v_+ ™C_uv
m 1 "m m m
= m

m+ 1 COum+l

+..+ ("C_ +™C)u

-1 T

But =C,=1=m"IC,

m, m, — m+1

CO+ Cl Cl

m, m, — m+1

C1+ C2 C2

+1

~ (av) v+ (C,+™C)u v, ("C, +"C)u_ v,

m,
e Ve T T Cmuvm+1

m, m, — m+ 1
Cr—l + Cr Cr
m, — — m+ 1
C =1 C_
. we have

m + lcoum

+1

m+ 1 m+ 1
VT Cu v, + C,u_ v, *t ..
+ m+1C 1 v+ ...+ mYIC uv
m

r m-r+l 'r +1 m+ 1

(W), ., R

theorem is true forn =m + 1.

if the theorem is true for n = m, then it is also true forn=m + 1

But the theorem is true for n = 1.

By the method of induction, theorem is true for all positive integers n.
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1.1.5.1 Some Important Examples

Example 6 : Prove that d {logx}:(—l) Jﬂ[logx—l—l—l—...—l}
dx* X x"* 2 3 n
Given that x > 0.
1 1
Sol. Here y=-2%_logx.~
X X
1
Let V = log x U=—
X
1 = ,
Vl=;:X U1=(_1)X
V,=(-1) x? U,=(-1) (-2) x®
-1’13
V,= 1) (2) x Ug =5
X
and so on and so on
_ n-1 _ 1\
v, -y n= y, LVl
X X
By Leibnitz's rule
dy _d (U.V)=d (long
dx® dx® dx* X
1) _ n-1 _
:“CO( lzmlll.longr“Cl( ) nn l.l
X X
_1\n—2 _ _ _ 1\t _
:“02( L) n+11’1 2 (—21)+.. +“Cn.l( ) nn 1
X X X X
:%[logx—l—l—l—...—l}.
x" 2 3 n

Example 7 : Ify = (sin'x)?, find y,_(0).
Sol. y = (sin'x)?

Differentiating w.r.t. x,
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y, =2 (sin™" x).
1-x

Squaring and cross-multiplying

(1 -x%y,>=4 (sin'x)? =(1-x)y?=4y

(1-x*)y?2-4y=0

Differentiating w.r.t.x, again we get,

(1-x%x%)2y,y,-2xy°-4y,=0

Dividing by 2y,, we get

(1-x)y,-xy,-2=0 ... (3)
Differentiating n times (3) by Leibnitz's rule,

L Yaa =) By 2000 20y (- 1y, x- By, 1-0-0

1-x)y, .,,~@2n+1)xy ,  -n’% =0 ... (4)
Putting x = 0 in (1), (2), (3) and (4) we get,

y(©0)=0 - (9)
y,(0)=0 ... (6)
y,(0) =2 o (7)
Yo.o= 1%y, (0) - (8)
Puttingn =1, 2, 3, 4 ... in (8), we get,

y,(0) = 1%y, (0) =0 ... (9) [ of (6)]
y, (0) = 22y,(0) = 2.2? ... (10) [+ of (7)]
¥5(0)=3%y,(0)=0 o (17) [ of (8)]
¥ (0) = 4%,(0)=2.22. 47 [ of (10)]

and so on.

2.2°.4%...(n-2) whennisevenandn# 2
In general y,(0)=

0 when n is odd
1.1.6 Summary
In this lesson, we have elaborated the basic technique of finding higher order

derivatives of various mathematical functions. Moreover with the help of Leibnitz’s
theorem, we have learnt to find out the nth order derivative of product of two functions.

The concept is made understandable with the help of various suitable examples.
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1.1.7 KEY CONCEPTS
Higher order derivatives, Leibnitz’s theorem.

1.1.8 LONG QUESTIONS

1. If y = e~ sinh bx prove that y,- 2ay, + (a®-b? y = O.
2. If y = log (1 + cos x), prove thaty,y, +y,= 0.
2
3. If x = sin 0, y = sin m6, prove that (1 — x?) d_y_Xd_y+m2y =0.
dx? dx
4. State and prove Leibnitz’s theorem.
S. If y = x"log %, prove that ¥, =%.
6. If y = sin (m sin™'x), prove that

(1-x)y,.,-n+1)xy ,,-0*-m?)y =0
7. Ify = (x2- 1)7, prove that (x>- 1) y
8. If x = tan (log y), prove that

(1+x)y, ,+2M0+1)x-1}y ,,+n(n+1)y =0.
1.1.9 SHORT QUESTIONS

Lot 2xy  -n(n+ 1)y =0.

1. Find the n® derivative of

(i) xlog (x_—aj, x>a>0 (ii) e*cos x cos 2x

X+a

(iii) sin x sin 2x (iv) 2*. e*
1.1.10 SUGGESTED READINGS
1. Gorakh Prasad : Differential Calculus
2. Malik and Arora : Mathematical Analysis
3. Thomas and Finney : Calculus and

(Ninth Edition) Analytic Geometry
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1.2.4 Some Important Examples
1.2.5 Double Points and their Classification
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1.2.5.2 Working Method for Finding the Nature of Origin which is a Double
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Points of the Curve f(x, y) = 0
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1.2.7 Summary
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1.2.10Short Questions
1.2.11Suggested Readings

1.1.1 Objectives

The prime goal of this lesson is to gain knowledge about the singular points of the
curve y = f(x). During the study in this lesson, our main objectives are

* To discuss about the types of singular points viz., points of inflexion
and multiple points particularly double points, alongwith their
classification and respective nature.
* To study about the concavity and convexity of the curve y = {(x).

1.1.2 Introduction

Singular Point : A point on the curve at which the curve behaves in an
extraordinary manner is called a singular point.
There are two types of singular points :

(i) Points of inflexion
14
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(ii) Multiple points
Firstly, we study points of inflexion for which we must be familiar with the concepts
of concavity and convexity of a curve, as discussed below :
Consider the curve y = {(x) in [a, b]. Let it be continuous and possessing tangents at
every point in (a, b).
Draw a tangent at any point P (c, f(c)) on the curve. Let us assume that this tangent
is not parallel to Y-axis so that f'(c) is some finite number.
Now there are three mutually exclusive possibilities to consider :

i Y Y
P P
P
»X »X »X
0 ) 0 (ii) 0 (ii)
(i) A portion of the curve on both side of P, however small it may be, lies

above the tangent at P (i.e. towards the +ve direction of Y-axis). In this
case we see that the curve is concave upwards or convex downwards
at P. Such curves "hold water" [See fig. (i)].
As x-increases, f'(x) is either of the same sign and increasing or changes
sign from -ve to +ve. In either case, the slope f'(x) is increasing and
f'(x)>0. Such graphs are bending upwards or bulging downwards and
the portion lies below chord.

(ii) A portion of the curve on both sides of P, however small it may be, lies
below the tangent at P (i.e., towards the negative direction of Y-axis).
In this case, we say that the curve is concave downwards or convex
upwards at P [see fig. (ii)].
As x increases, f'(x) is either of the same sign and decreasing or changes
sign from +ve to —ve. In either case, the slope f'(x) is decreasing and
hence {'(x) < O.
The graph in this case is bending downward or bulging upwards.

(iii) The two portions of the curve on the two sides of P lie on different
sides of the tangent at P i.e., the curve crosses the tangent at P. In
this case we say that P is a point of inflexion on the curve [see fig. (iii)].

So, at a point of inflexion, the curve changes from concave upwards to concave

downwards or vice-versa.
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So at a point of inflexion {'(x) = 0.

Concavity or Convexity of a Curve : A curve is said to be concave downwards
(or convex upwards) on the interval (a, b) if all the points of the curve lie below any
tangent to it on that interval. It is said to be concave upwards (or convex downwards)
on the interval (a, b) if all the points of the curve lie above any tangent to it on that
interval.

Note : A curve convex upwards is called a convex curve and a curve convex
downwards is called a concave curve.

Point of Inflexion : A point that separates the convex part of the curve from the
concave part of the curve is called a point of inflexion.

Now, we define a multiple point.

Multiple Point : A point on the curve through which more than one branches of
the curve pass is called a multiple point.

1.2.3 Working Method for Concavity, Convexity and Points of

Inflexion
2
1. Evaluate ax’
d’y
2. Find the interval (a, b) for which e >0.
X

Then (a, b) is the interval of being convex downwards.

d2
3. Find the interval (a, b) for which —~<0.

dx?

Then (a, b) is the interval of being convex upwards.

2
4. Find the values of x which satisfy d_Z:(), and also the values of x
dx
d2
(if any) where Zdoes not exist.
X
Such values x = a, b, c, ... (say) are the possible points of inflexion.
S. x = a will be a point of inflexion

2

Y changes sign at x = a

if (i) either 2
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d3
or (ii) q 33, exists and is non-zero at x = a.
X
d*y
Note 1. =0 is not a sufficient condition for graph of f to have a point of inflexion.
> grap p
X

Note 2. If at a point, x = ¢, f (c) # O when n is even, then x = ¢ is not a point of
inflexion.

Note 3. If at a point, x = ¢, f (c) = O for some even n and f**!) (c) # 0, then the curve
has a point of inflexion at x = c.

1.2.4 Some Important Examples

Example 1 : Find the intervals in which the curve y = (cos x + sin x) e*is concave
upwards or downwards in (0, 2 «). Find also the points of inflexion.

Sol. Here y = (cos x + sin x) e*

j—y: (cos x + sin X) e*+ (-sin X + cos X) e*= 2e*cos X
b
d’y . .
o =2 (e*cos X — e*sin x) = 2 e*(cos X — sin x)
d’y .
Now > >0 when 2e*(cos x — sin x) > 0
X
i.,e., cosx—sinx >0 [ 2e* > OJ
1 1 1 1
= \/5 —cCcosX——sinx |[>0=>—=cos x——sinx >0
[JE V2 j V2 V2
= sin Zcosx —cos Zsinx > 0= sin| X —x | >0
4 4 4
= Sin(x_£j<0 = X—%e(—n, 0) U (r, 2n) and x € (0, 27)

)u(i,%j and x € (0, 2n)
4 4
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= xe(O,Eju(@,an
4 4

. . . T Sn
given curve is concave upwards in O,Z v 7 2n

d*y

dx?

Again <0 when 2e*(cos x —sinx) < 0

T T ST
i.e., wh i X——[>0=>xe|—,—
ie., w ensm( 4) 6(4 4j

given curve is concave downwards in (E o .
4" 4

K

Points of Inflexion

d? d . . d
33’ = Q{ex.— (cos x —sin x) + (cos X — sin x)— (ex)}
dx dx dx
= 2e*[-sin x — cos X + cos X — sin x| = —4e*sin x
2
Also d—Z:O = 2e*(cos x —sinx) =0
dx #0
= cosx-sinx=0=sinx=cosx=tanx =1
tanx:tanﬁ,tanﬂ :>x:£,2
4 4’ 4

i
Now when X = Z

T W) 1 2 z
y = (cos—+sm—) et = (— et =2 e
4 4 V2

MATHEMATICS PAPER-I
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5
and when X = Zn

ki Sn
given curve has points of inflexion at (%, J2 e4Jand [STZT’ —J2e* j .

Example 2 : Find the values of x for which y = x*- 6x®+ 12x*>+ 5x + 7 is concave
upwards or downwards. Also determine the points of inflexion.
Sol. Herey = x*- 6x3+ 12x2+ 5x + 7

d—y:4x3—18xz+24x+5
dx

d2y

2 =12x% - 36x + 24
X

d%y . )

Now —2>O iff 12x?>-36x + 24 >0
dx

iff x2-3x+2>0

i.e., iff x2— 3x > -2

9 9
ie. iff x> -3x+=—>-2+—
ie., i 4 4

3y 1
i i - >==-2
i.e., iff [X j )

2
3 (1Y
i iff | X——| >|—
1.e.,1ff‘ 5 (2j
fe. iff |x—2|>1
2|72
feiff x—ostorx-3c 1
27 2 27 2

ie. iff x>2o0orx<1
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curve is concave upwards in (-, 1) U (2, ©)

2

Similarly j Y20

X2

iff <31
2| 2
1e,iff——<x—§<l
2 2
if 1l<x<?2
curve is concave downwards in (1, 2)
2
4Y _0 whenx*~3x +2 =0
dx
i,e., whenx=1orx=2
3
3337:24)(—36;&0 when x = 1, or x = 2
X

x=1,y=191i.e., (1, 19)
x=2,y=231ie., (2, 23)
are the points of inflexion.
1.2.5 Double Points and their Classification

MATHEMATICS PAPER-I

As we have already defined a multiple point, on the basis of which we can define a

double point as

Double Point : A point on the curve through which two branches of the curve

pass is called a double point.
1.2.5.1 Classification of Double Points

There are three kinds of double points.

(i) Node : A node is a point on the curve through which pass two real

branches of the curve and two tangents at which are real and distinct.

Thus P is a node.
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»
»

(ii) Cusp : A double point on the curve through which two real branches of
the curve pass and the tangents at which are real and coincident is
called a cusp. Thus P is a cusp.

Y

7' N

(iiij Conjugate Point or Isolated Point : A conjugate point on a
curve is a point in the neighbourhood of which there are no other real

points of the curve.
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@

The two tangents at a conjugate point are in general imaginary but sometimes they
may be real.

1.2.5.2 Working Method for Finding the Nature of Origin which is a
Double Point

Find the tangents at the origin by equating to zero the lowest degree terms in x and
y of the equation of the curve. If the origin is a double point, then we shall get two
tangents which may by real or imaginary.

(i) If two tangents are imaginary, then origin is a conjugate point.

(ii) If two tangents real and coincident, then origin is a cusp or a conjugate
point.

(iii)  If the two tangents are real and distinct, then origin is a node or a

conjugate point.
To be sure, examine the nature of curve in the nbd. of origin. If the curve has real
branches through the origin, then it is a node, otherwise a conjugate point.
To be sure, we test the nature of curve in the nbd. of the origin as above.
Note. Test for nature of curve at origin.
If the tangents at origin are y?= 0, solve the equation of the curve for y, neglecting
all terms of y containing powers above two. If the values of y, for small values of x
are found to be real, the branches of the curve through the origin are real, otherwise
imaginary.
If the tangents at origin are x?>= 0, solve the equation for x and proceed as above.

1.2.5.3 Working Method for Finding the Position and Nature of Double
Points of the Curve f(x, y) = 0
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2 2 2
Step I. Find %f of of of of

) ay 2 axz 2 axay ) ayz
St . of of . .
ep II. Solve the equations = Oand P =0 to get possible double points.
X

Reject those points which do not satisfy the equation f (x, y) = O of the curve.
Remaining are the double points

2¢ )2 20 A2
Step III. At each double point, calculate D =[ of ) o'f of

oxoy ) ox® oy°

(a) If D is positive, double point is a node or conjugate point

(b) If D = 0, double point is a cusp or conjugate point.
In these cases (a) and (b), find the nature by shifting the origin to the double points
and then testing the nature of tangents and existence of the curve in the nbd. of
new origin.
(c) If D is negative, double point is a conjugate point.
1.2.6 Some Important Examples

Example 3 : Prove that the curve y*>= (x-a)?(x-b) has at x = 0, a node if a > b, a cusp
if a=b and a conjugate point if a < b.
Sol. The equation of curve is y2= (x-a)? (x-b) ... (1)

When x = a, from (1), y =0

point under discussion is (a, 0)

Shifting origin to (a, 0) by transformation x=X+a,y=Y+0=Y

(1) becomes Y?=X?*(X+a-Db) ... (2)
Equating to zero, the lowest degree terms, the tangents at the new origin are given
by

Y2=X%(a - D) or Y=+X+a-b ... (3)
Case I. Whena>b

From (3), two tangents at new origin are real and different
new origin (a, 0) is a node or a conjugate point

From (2), Y=+XVvX+a-b

For small non-zero value of X, Yisrealasa—-b >0
new origin (a, 0) is a node

Case II. Whena =b

From (3), tangents are Y=0,Y =0
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two tangents are real and coincident
origin is a cusp or a conjugate point
From (2), Y?= X3 or Y=+X+X
For small positive values of X, Y is real
new origin (a, 0) is a cusp.
Case III. When a <b
From (2), two tangents at new origin are imaginary
o (a, 0) is a conjugate point.
Example 4 : Determine the position and nature of the double point on the curve
x}-y?-7x*+ 4y + 15x - 13 = 0.
Sol. The equation of curve is
f(x,y) =x3-y2-7x2+4y + 15x - 13 =0 ... (1)

6—f=3x2—14x+15,6—f=—2y+4
ox oy

For the double points o =0,—=0,f(x,y)=0
0x oy

Now %:0 = 3x%?-14x+15=0

w|u

= x-3)(Bx-5)=0=x=3,
and6f032+4 0= 2
=~ -2y = y=
ay
the possible double points are (3, 2), (E,gj
3

But (%, 2) does not satisfy (1)

(3, 2) is the only double point
Nature of the point (3, 2) : Shifting the origin to the point (3, 2) by
transformations x =X + 3,y =Y + 2
(1) becomes (X + 3)°— (Y +2)2-7 (X +3)2+4 (Y+2)+15(X+3)-13=0
or X3+ 90X?2+ 27 X + 27 -Y?2-4Y -4 - 7X2-42 X - 63 + 4Y
+8+ 15X +45-13 =0.
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or X2+ 2X2-Y2=0 ... (2)
Equating to zero, the lowest degree terms, the tangents at the new origin are given
by

2X2-Y2=0 or Y=+2X

which are real and distinct
new origin is either a node or a conjugate point

From (2), Y=+ X VX +2

which gives real values of Y for small values of X, positive or negative
real branches of the curve exist in the nbd. of the new origin (3, 2)
(3, 2) is a node.

Alter. The equation of the curve is
f(x,y)=x}-y?-7x>+ 4y + 15x - 13 =0

a—f:3X2—1X+15,a—f:—2y+4
19): oy

For the double points o _ 0, a . 0, f(x,y)=0
0x oy

Now %f=0:> 3x?-14x+ 15=0

S
= (X—S)(SX—5)=0:>X=3,§

and %f=0:>—2y+4=0:>y=2

the possible double points are (3, 2), (%,2)

But [g, 2) does not satisfy (1)

(3, 2) is the only double point
Nature of the point (3, 2):



B.A. PART - I 26 MATHEMATICS PAPER-I

2 2 2
8_£:6X_14’8_£:_2’8_f:0
ox oy ox dy

At (3, 2)

2 2 2
0 f =18—14=4,8—£:—2,8—f:0
ox dy ox dy

o Y M o
(m) —y.yz(o)z —(4)(_2):8>0
o (3, 2) is node.
1.2.7 Summary

In this lesson, we have explained about the points that behave in an
extraordinary manner, on the curve of functions. Further, we discussed about the
working rule to find out the precise nature and position of double points on the curve
f(x,y)=0. The concept is made more understandable with the help of various suitable

examples.
1.2.8 Key Concepts
Concavity, Convexity, Point of Inflexion, Multiple Point, Double Point, Node,
Cusp, Conjugate Point.
1.2.9 Long Questions

1. Examine the curve y = x*— 2x3+ 1 for concavity upwards, concavity downwards
and points of inflexion.

2. Show that the points of inflexion of the curve y?= (x — a)? (x — b) lies on the line
3x + a=4b.

3. Examine the curve x3+ 2x%+ 2xy — y?+ 5x — 2y = O for a double point and show

that it is a cusp.

1.2.10 Short Questions

1. If y = ax®+ bx%has a point of inflexion (-1, 2), find a and b.

2. Show that the curve y?= 2 x sin 2x has a node at the origin.
1.2.11 Suggested Readings

1. Gorakh Prasad : Differential Calculus
2. Malik and Arora : Mathematical Analysis
3. Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry
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1.3.2 Introduction
1.3.3 Rules for Finding Asymptotes
1.3.3.1 Rectangular Asymptotes
1.3.3.2 Oblique Asymptotes
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1.3.6 Summary
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1.3.1 Objectives

During the study in this particular lesson, our main objectives are
* To study the rules for finding rectangular asymptotes (horizontal and
vertical asymptotes).
* To discuss the methods for finding the oblique asymptotes to the curve.

1.3.2 Introduction

We are familiar with the plane curves like parabola and hyperbola. Such types of
curves, if drawn completely, will extend to infinity. Suppose that a tangent is drawn
at any point of a curve which extend to infinity. Further suppose that the point of
contact of the tangent moves along the curve in such a manner that its distance
from origin tends to infinity. We may then find a definite straight line (a straight line
at a finite distance from the origin) to which the tangent approaches. Such a straight
line is called an asymptote of the curve. In other words a straight line is said to be an
asymptote of a curve, if the perpendicular distance of any point P on a branch of the

27
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curve from this straight line tends to zero as the point P tends to infinity along the
curve. We now give a formal definition of the asympotote.

Definition : A straight line at a finite distance from the origin to which a tangent
to a curve tends as the distance from the origin of the point of contact tends to infinity,
is called an asymptote of the curve.

1.3.3 Rules for Finding Asymptotes
1.3.3.1 Rectangular Asymptotes

If an asymptote to a curve is either parallel to x—axis or parallel to y—axis, then it is
called a rectrangular asymptote. An asymptote parallel to x-axis is usually called
horizontal asymptote and an asymptote parallel to y—axis is called a vertical
asymptote. We discuss below the rules to find these asymptotes :

1. Rule to find asymptotes parallel to x-axis.

Equate to zero the real linear factors in the coefficient of highest power of x in the
equation of the given curve.

It should be noted properly that if the coefficient of highest power of x in the equation
of the given curve is a constant or has no real linear factor, then the curve has no
asymptote parallel to x-axis.

2. Rule to find asymptotes parallel to y-axis.

Equate to zero the real linear factors in the coefficient of highest power of y in the
equation of the given curve.

It should be noted properly that if the coefficient of highest power of y in the equation
of the given curve is a constant or has no real linear factor then the curve has no
asymptote parallel to y-axis.

Example 1 : Find the asymptotes parallel to the axes of the curve x?y*+ y>= 1.

Sol. The equation of the given curve is x2y2+ y2= 1 ... (1)
The coefficient of highest power of x in (1) is y?
y?= 0 i.e., y = O is the only asymptote parallel to the x-axis
The coefficient of highest power of y in (1) is x2+ 1. Now x%2+ 1 has no real linear
factor.
. given curve has no asymptote parallel to y-axis.
1.3.3.2 Oblique Asymptotes
An asymptote, which is neither parallel to x-axis nor parallel to y-axis is called an
oblique asymptote. Such type of asymptotes can be determined under the following
rule :

Rule to find oblique asymptotes

(i) Find Lt ¥ in the equation of the curve and denote it by m.

X—0 X



B.A. PART - I 29 MATHEMATICS PAPER-I

(ii) Find xlitw (y — mx) in the equation of the curve and denote it by c.

Then y = mx + c is an asymptote of the curve f (x, y) = O.
1.3.3.3 Asymptote of the General Rational Algebraic Curve

Let the equation of the curve be
x", (zj +x" [Zj +x"", [Zj + oo+ X0, (Zj +0y, (Zj =0
X X X X X

where ¢, (Z) represents a polynomial in Y of degree n.
X X

Then, its asymptote can be obtained as

Rule to find oblique asymptotes of a rational algebraic curve :
Step I. Find ¢_(m), ¢, (m) by putting x = 1 and y = m in the nth degree terms and in
the (n—-1)th degree terms respectively of the given curve f(x, y) = O.

Step II. Find all the real roots of ¢_(m) = 0.

Step IIL. If m, is a non-repeated root of ¢_(m) = 0, then the corresponding value of
c is given by c¢'_ (mq) + ¢, (ml) = 0, provided ¢'_ (m,) # 0.

If ¢' (m,) = O, then there is no asymptote to the curve corresponding to the value m,
of m. m, m, m,

Step IV. If m, is a repeated root occurring twice, then the corresponding values of

c are given by

C2

2

In this case there are two parallel asymptotes to the curve.

¢"n(m)+c; ¢,y (m)+¢, ,(m)=0, provided ¢", (m,)# O

Similarly we can proceed when m, is repeated three or more times.
Note : A rational algebraic curve of degree n cannot have more than n asymptotes.

Example 2 : Find all the asymptotes of the curve
x3+ 2x%y — xy?— 2y%+ 4y?+ 2xy + y -1 = O.
Sol. Given equation is
X3+ 2x%y — xy?- 2y3+ 4y?+ 2xy +y -1 =0 ... (1)
(1) is an equation of degree 3 in x and y
Since coefficient of x®is 1, which is constant
So there is no asymptotes parallel to x-axis
Similarly coefficient of y®is -2, which is constant
there is no asymptote parallel to y-axis.
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or

For oblique asymptotes, put y = mx + c in (1), we get,
X3+ 2x?(mx + ¢) - x (mx + ¢)?- 2 (mx + ¢)®+ 4 (mx + ¢)?
+2x(mx+c)+ (mx+c)-1=0.

x3(1 + 2m - m?- 2m?®) + x?(2 ¢ — 2 mc —6m?c + 4m?+ 2m)

MATHEMATICS PAPER-I

+x (-c?- 6mc? + 8mc + 2c+tm) + (-2 ¢+ 4c?+ ¢ — 1)=0.

Equating the coefficient of x® and x?to zero, we get,

1+2m - m?-2m®=0

2c-2m c - 6m? +4m?+ 2m =0
From (2), 1 (1 + 2m) - m?(1 + 2m) =0
(1-m?) (1 +2m)=0
(1-m)(1+m)(l1+2m)=0

m=1,-1,- 1
2

When m = 1, from (3), we have
2c-2c-6c+4+2=0
6c=6o0rc=1.

Corresponding asymptote is y = x + 1
When m = -1, from (3), we have,
2c+2c-6c+4-2=0
2c=2o0rc=1

corresponding asymptote isy = x + 1

When m =%, from (3), we have,

2“0‘%“1‘1:0 or c=0

1
Corresponding asymptote is y = —EX .

Example 3 : Find the asymptotes of the curve

Sol.

x3—x%y — xy?+ y3+ 2x%2-4y?+ 2xy + x+y + 1 =0.

The equation of given curve is

x3— x%y — xy?+ y3+ 2x%2-4y?+ 2xy + x+y + 1 =0.

.. (2)
- (3)

The coefficient of highest power of x in (1) is 1, which is constant.

there is no asymptote parallel to x-axis.

The coefficient of highest power of y in (1) is 1, which is constant

there is no asymptote parallel to y-axis
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U U

For oblique asymptotes, we have

¢,(m)=1-m-m?*+m® s ¢'y(m) =-1 -2 m + 3m?
¢,(m) =2 -4 m>+2m so¢",(m) =-2 + 6m
¢,(m)=1+m ¢',(m) =-8m + 2

¢, (m) =1

¢, (m) = O gives
l-m-m?+m3=0
1(1-m)-m?(l-m)=0
(1-m)(1-m)=0
(1-m)(l-m)(l+m)=0

m=1,1,-1
L hm) 6,0
Whenm = =1, €= w60
_ 2-4-2 B
1+2+3

Y

Corresponding asymptote isy = -1 x+lie., x+y =1
When m = 1, 1, the values of c are given by
2

S ¢f(m) + ¢} (m)+ ¢, (m) = O

12

CQ

E(_2+6)+C(_8+2)+(1+1):0

2c’-6¢c+2=0
c’-3c+1=0

C_3iJ9—4_3iJ§
2 2

and corresponding asymptotes are given by

3+45 3-5
2 2

y=1x+

, y=1x+

Hence the required asymptotes are

3+45
=0,x-y+
2 2

x+y=Lx-y+
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1.3.4 Some Other Methods for Finding Oblique Asymptotes
Here, we discuss some special methods of finding asymptotes of f(x, y) = O when the
equation f (x, y) = O is of some special types.
Method I. If the equation of the curve is of the form
(ax+by + o) f  (x,y) +g,,(x,y)=0
then the asymptote parallel to ax + by + ¢ = O is given by

ax+by+c+ Lt 8 (%) =0, provided the limit exists
7% o (%)
x b

Method II. If the equation of the curve is of the form

(ax + by)*f ,(x,5) + g,,(x,¥) =0
then the two asymptote parallel to ax + by = O are given by

(ax +by)" + Lt B2 XY _ g provided the limit exists

Method III. If the equation of the curve is of the form
(ax + by)*f_, (x,y) + (ax + by) g, (x,y) + h_,(x,5) =0
then the two asymptotes parallel to ax + by = 0 are given by

(aX + by)2 + (aX + by) Lt gho (X,Y) + Lt hn—2 (X,y) _o
xawa fn_g (X,y) ;(%oo fn—2 (X,y)

a

x b x b

provided the limit exists
Note. Working Method
(1) Factorize the highest degree terms
(ii) Retain one linear factor and divide by the product of other factors.
(iii)  Take limits when x — o, y — « in the direction of the retained factor.

Note. If limits does not exist, then there is no asymptote parallel to ax + by + ¢ = 0.

Method IV. Asymptotes by Inspection
If the equation of the curve can be written as

F (x,y)+F _,xy =0.
where F_(x, y) is a rational integral function in x and y of degree n and
F__,(x, y) of degree (n - 2) at the most then every linear factor ax + by + c of F_(x, y)
equated to zero determines the asymptote of the curve, provided no two asymptotes so
obtained are either parallel or coincident.
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Example 4 : Find all the asymptotes of the following curve :
X3+ X%y — xy?-y3+ 2xy + 2y?’-3x+y =0
Sol. The given equation is x3+ x%y — xy?- y3+ 2xy + 2y®-3x +y =0
or XX x+y)-y*(x+y) +2xy +2y?-3x+y=0
or x+y) (x2-y?) +2xy +2y?°-3x+y=0
or xX-y) (x+y)P2+2xy + 2y>-3x+y =0
The equation (1) can be written as

2xy+2y2—3x+y_o
(x+y)’

X-y+

asymptote (if it exists) parallel to x —y = 0 is given by

2xy+2y2—3x+y_0

x—-y+ Lt
o (x+y)
2 2
or x—y+ Lt 2x° +2x 23x+x:0
X (x +x)
4x? - 2x
x-y+ Lt ————=0
or y X0 4X2
4 2
T x 4-0
x—-y+ Lt X_-0orx-y+ =0
or y+ 4 y 4

x -y + 1 =0 is one asymptote.
The equation (1) can be written as

2y 3x-y _,
X-y X-Yy

xX+y)P +(x+y).
asymptotes (if they exist) parallel to x + y = O are given by

(x+yP +(x+y). Lt =¥ _ 1t 3X=Y _g
Srx-y r x-y

or x+y) +(x+y). Lt _2X—Lt 3X+X=O
x50 X4 X X000 X4+ X

or x+y)P-(x+ty)-2=0 or x+y-2)(x+y+1)=0
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Xx+y-2=0,x+y+ 1=0 are the other two asymptotes.
1.3.5 Intersection of a Curve and its Asymptotes
Art 3.1 : Prove that an asymptote of a rational algebraic curve of the nth degree
cuts the curve in atmost (n — 2) points.

Proof : Lety = m x + c, ... (1) be an asymptote of the curve

X%, gj +x" 9, (%) +x"2 ¢, , (%) +..=0 . (2)

We are to find the points of intersection of (1)and (2),

From (1), X:ml +&
X X

Substituting the value of Y in (1), we get,
b

C _ C _ C
x", (ml +;1j+xn Yo, (ml +;1]+x“ 2., (ml +;1j+... =0

Using Taylor's Theorem, we get

x"¢, (m,)+ X" [C1¢;1(m1) +0,, (m, )]

+x"72 |:% Oy (my) +¢; ¢y (my) + ¢y, (my ):| +..=0 - (3)

Since ¢_(m,) = 0 and ¢, ¢' (m) + ¢_, (m,) = O, (3) becomes

<2 {ﬁ o, (my)+cd, , (m,)+6, (ml)} +...=0

which is an equation of degree (n — 2) and correspondingly (1) and (2) intersect

in (n — 2) points.

asymptote (1) cuts the curve (2) in at the most (n — 2) points.

Hence the result.
Cor. 1. Prove that all asymptotes of a curve of nth degree cut the curve in atmost
n(n-2) points.
Proof. We know that a curve of nth degree has atmost has atmost n asymptotes and
each asymptote cuts the curve in atmost (n — 2) points.

all the asymptotes of a curve of nth degree cut the curve in atmost n (n — 2)
points.
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Cor. 2. If the equation of the curve of nth degree is of the form F +F_,=0and curve
has no parallel asymptotes, then the points of intersection of the curve and its
asymptote lie on the curve F_,= 0.
Proof. The equation of curve is F_+ F_,=0

The equation of asymptote is F_ = 0

the points of intersection of the asymptote and the curve satisfy the equations
F +F_,=0and F = 0 and therefore they will satisfy

(F,+F _)-F =0ie.,F _,=0.

Hence the result.

Example 5 : Find the equation of the cubic which has the same asymptotes as
the curve x3— 6x% + 11lxy?- 6y°+ 4x + S5y + 7 = 0 and which passes through the
points (0, 0), (-2, 0) and (0, -2).
Sol. The equation of given curve is x®— 6x%y + 11xy*- 6y°+ 4x + 5y + 7 = 0
.. (1)

It is of the form F,+ F =0

asymptotes are given by F,= 0
or x3— 6x%y + 11lxy?- 6y*=0 or (x-y) (x-2y) (x-3y) = 0
: asymptotes of (1) are x-y=0,x-2y=0,x-3y=0

The equation of the cubic curve which has the same asymptotes is of the

type

x-y) (x-2y) (x-3y)+ax+by+c=0
12

Now (2) passes through (0, 0), .c=0

(2) passes through (-2, 0), .-8-2a=0=>a=-4

(2) passes through (0, -2), .48 -2b=0=Db =24

Substituting values of a, b, c in (2), we get,

x-y) (x-2y) (x-3y)-4x+24y =0
or x3— 6x%y + 11xy%- 6y°— 4x + 24y = 0.
1.3.6 Summary

We have studied about the concept of asymptotes and their types. Some
methods of finding asymptotes have been also discussed for the curve f(x,y)=0. The
concept is made more clear with the help of some suitable examples.
1.3.7 Key Concepts

Rectangular asymptotes, Horizontal asymptote, Vertical asymptote, Oblique

Asymptotes,
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1.3.8 Long Questions

1. Find the asymptots of the curve
(x+y) (x+2y) (x+3y) +3x3+ 12xy + 11y?+x+y+2=0
2. Find asymptotes of the curve x%y — xy?+ xy + y?+ x -y = 0.
3. Find the asymptotes of the curve x%y + xy?+ 2x?— 2xy — y?— 6x — 2y + 2 = 0 and

show that they cut the curve in almost three points which lie on the straight
line 2x - 3y -4 = 0.

4. Find the equation of the cubic curve which has the same asymptotes as the
curve x°— 6x%y + 11 xy?— 6y®+ x + y + 1 = 0 and which passes through the points
(0, 0), (2, 0) and (0, 2).

1.3.9 Short Questions

1. Find all the asymptotes of the following curves :

(i) y3- 3x%y + xy?- 3x3+ 2y?+ 2xy + 4x+ S5y + 6 =0

(ii) ay?=x?(a - x)

(iii) y3+ 4xy?+ 4x%y + 5y?+ 15xy + 10x2-2x+ 1 =0
2. Show that the parabola y?= 4ax has no asyptotes.
1.3.10 Suggested Readings
1. Gorakh Prasad : Differential Calculus
2. Malik and Arora : Mathematical Analysis
3. Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry
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1.4.1 Objectives

In this lesson we will deal with the graphs of the curves of given equations in
Cartesian or polar systems of coordinates. The main purpose of this chapter is to
point out those rules which are used in tracing the graph of a curve. After describing
the main rules of curve tracing and afterwards we will use them in tracing the graph
of aforesaid curves.
1.4.2 Introduction
The graph of a given function is helpful in giving a visual presentation of the behaviour
of the function involving the study of symmetries of asymptotes, the intervals of rising
up or falling down and of the cavity upwards and downwards etc. Curve tracing means
that the equations of curves which we trace and are generally solvable for y, x or r.
The case may come that some equations are not solvable for y or x, then we solve
them for r by transforming from Cartesian to polar system.
1.4.3 Rules for Tracing Cartesian Curves
For tracing the curve of the equation f(x, y) = 0, the following important points should
be considered :

I. Symmetry : Curve given by f(x, y) = 0 is symmetric about

37
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(i) x-axis if it is unchanged on changing y to -y i.e., if f(x, -y) = {(x, y)
(ii) y-axis if it is unchanged on changing x to —x i.e., if f (X, y) = f (%, y)
(iii)  the origin if it is unchanged on changing x to -x and y to -y
ie., iff(=x,-y)=f(x,y)
(iv) the line y = x if it is unchanged on changing x to y and y to x
ie., iff(x,y) =1y, x)
(v) the line y = —x if it is unchanged on changing x to -y and y to —x
ie., iff(-y, =x) =1(x,y).
II. Domain and Range : Find the domain and range.
III. Origin : Check whether origin lies on the curve. If curve passes through origin,
then find the tangents at the origin and also determine whether origin is node, cusp
or an solated point.
IV. Asymptotes : Find all the asymptotes of the curve and the position of the
curve relative to its asymptotes.
V. Points of Intersection : Find the points of intersection of the curve with co-
ordinate axes and obtain the equations of the tangents at these points. If any of these
is a double point, then find the nature of the double point.
Also find some other points on the curve by giving suitable values to x.
VI. Maxima and Minima : Find the points where the function has maximum
value or minimum value. Also find the maximum and minimum value at each point.
VII. Points of Inflextion : (a) Find the intervals of
(i) increase and decrease of the curve
(ii) concavity and convexity of the curve.
(b) Also find the points of inflexion, if any.
VIII. Discontinuities : Find the points at which function is discontinuous. Also
discuss the behaviour of the function near these points.
The method of tracing curves in cartesian co-ordinates can be made more clear with
the help of following suitable examples :
Example 1 : Trace the cure x = (y -1) (y - 2) (y - 3).
Sol. The equation of the curveis x = (y — 1) (y - 2) (y - 3) .. (1)
(i) Symmetry : The curve is neither symmetrical about axes nor about origin. Also
the curve is neither symmetrical about y = x nor about y = —x.
(ii) Origin : The curve does not pass through the origin.
(iii) Point of intersection with axis : The curve meets x-axis where y = 0
putting y = O in (1), we get, x = -6
curve meets x-axis in (-6, 0)
The curve meet y-axis where x = 0
putting x = 0 in (1), we get, (y-1) (y-2) (y-3) =0
y=1,2,3.
curve meets y-axis in (0, 1), (0, 2), (0, 3).
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(iv) Asymptotes : The curve has no asymptotes.
(v) Tangents : Now x = y®— 6y?+ 11y - 6

dx

=3y’ -12y +11
dy

d—X=Ogives 3y -12y +11=0
dy

_12+4/144-132 12423 6+1.732
6 6 3
When y = 2.6, x = -0.384 (nearly)

When y = 1.4, x = 0.384 (nearly)
tangents to the curve at (-3.84, 2.6) and (3.84, 1.4) are parallel to the y-

axis.
(vi) Additional Points Nowy <0 =x<0
no portion of the curve lies in the fourth quadrant.

=2.6 (nearly), 1.4 (nearly)

O<y<1 = x<0
l<y<2 = x>0
2<y<3 = x<0
3<y = x>0
X — © = y > ®

A rough sketch of the curve is given in the figure.

(-.384, 2.6)

(_6, O)

Example 2 : Trace the curve x*+ y>=3 axy, a>0.
Sol. The equation of the curve is x*+ y*=3axy,a>0
(i) Symmetry : The given equation (1) does not change when x is changed to y and
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y is changed to x.
curve is symmetrical about the line y = x.
(ii) Origin : The curve passes through the origin.

The tangents at origin are given by xy = 0
i.,e., x = 0, y = 0. These tangents are different.

origin is a node.
(iii) Asymptotes : (1) can be written as
(x+y) (x*-xy +y?* - 3axy = 0
Asymptote (if any) parallel to x + y = O is given by

N
~3ax’ 3ax?
X+y—- Lt ————=0o0orx+y+ Lt =0
o = x? +x% +x° = 3x°
or x+y+a=0

This is the only asymptote of the curve.
(iv) Points of intersection with axes
Putting x = 0 in (1), we gety = 0
Puttingy = 0 in (1), we get x =0
curve meets axes in (0, 0) only.
Putting y = x in (1), we get,
x3+ x3= 3ax? orx?*(2x-3a)=0

:O’_ :O;_
=00 Y=

.. line y = x meets the curve in (0, 0) and (%,%)

(v) Region
From (1), it is clear that x and y both cannot be negative as in that case L.H.S. of (1) is
negative whereas R.H.S. of (1) is positive.
no portion of the curve lies in the 3rd quadrant.
A rough sketch of the curve is shown in the figure.
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1.4.4 Rules for Tracing Parametric Curves
Case I. Eliminate the parameter if possible and get the corresponding cartesian
equation of the curve which can be traced as done earlier.
Case II. If the parameter cannot be easily eliminated from the given equations,
then we proceed like this :
(i) Symmetry
(i) If x = f(t) is an even function of t and y = ¢ (t) an odd function of t, then
the curve is symmetrical about x-axis.
(ii) If x = f(t) is an odd function of t and y = ¢ (t) an even function of t, then
curve is symmetrical about y-axis.
(iii) If x = f (t) and y = ¢(t) are both odd functions of t, then the curve is
symmetrical in opposite quadrants.
(ii) Origin : If by putting x = 0, we get a real value of t, which makes y equals zero,
then the curve passes through the origin.
(iii) Axes Intersection : Find the points of intersection of the curve and coordinate
axes.
(iv) Limitations : If possible, find the greatest and least values of x and y which
give us lines parallel to axes between which the curve lies or does not lie.

v olnts : Find the points where —=0,— — .
(v) Points : Find the poi here & -0, &Y
dx dx
(vi) Region :
(1) Find the regions in which curve does not lie.

dy

(ii) Consider the signs of dx and .
dt dt
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(iii) Consider the values of x, y, d—X, d_y’ dy .
dt dt dx
(vii) Asymptotes : Find the asymptotes, if any.
Example 3 : Trace the curve x =a (0 + sinf); y =a (1 + cos 0), - n<0 <.
Sol. The equations of the curve are x = a (0 + sin 0), y = a (1 + cos 0)
Here the parameter 0 cannot be easily eliminated.
(i) Symmetry : The curve is symmetrical about the axis of y for (0 + sin6) is an odd
function of 6 and (1 + cos 0) is an even function of 6.
(ii) Origin : The curve does not pass through the origin.
(iii) Intercepts : It meet the x-axis when
y=0 i.e., 1+cos0=0
or cos 0 =-1 i.e., 0=mn, -
the points of intersection with the x-axis are A (a &, 0), A' (-a =, 0).
Again it meets the y-axis when x = 0.
i,e. 0+sin®=0orsin®=-H6o0r06=0
it meets the axis of y at B (0, 2 a).
(iv) Asymptotes : There are no asymptotes.

(v) Points : We have = _, (1+cos 9);ﬂ =-asin®
de de

2sin gcosg
d_y _ -—asin0

dx_a(1+cose):_

2 cos? 9
2

dy =0when6=0
dx
i.e., at (0, 2 a), the tangent is parallel to the axis of x.
Also d_y_) o when 0 =m, —=n
dx
at (a w, 0) and (-a &, 0), the tangent is perpendicular to the axis of x.
(v) Region : For all values of 0, %is +ve

x always increases with 6.

Also d—Xis +ve for-<0<m.
do
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Hence y increases when 0 increases from —n to Oand y decreases when 6 increases

from O to =.

Hence approximately, the shape of the curve is as shown in the diagram.

»
»

1.4.5 Rules for Tracing Polar Curves
We shall keep in mind the following points for tracing the graphs of the equation f(r,

0) = 0.

1. Symmetry :

(1)

(i)

(iii)

(iv)

Symmetry about the initial line or x-axis : If the equation of the curve
remains unchanged when 0 is changed to -0, the curve is symmetrical
about the initial line.

Symmetry about the line g =" or y-axis : If the equation of the curve
2

remains unchanged when 6 is changed to n — 6 or when 0 is changed to

-0 and r to -1, the curve is symmetrical about the line ¢ = g
Symmetry about the line 9=% or y = x : If the equation of the curve
remains unchanged when 6 is changed to g— 0, the curve is said to be
symmetrical about the line 0 :%.

Symmetrical about the line ¢ = 37:1 or y = —x; if the equation of the curve

3
remains unchanged when 0 is changed to ?n -0, the curve is said to be
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symmetrical about the line 0 :%.

(v) Symmetry about the pole : If the equation of the curve remains
unchanged when r is changed to -r, the curve is said to be symmetrical
about the pole.

II. Pole

(i) Find whether the curve passes through the pole or not. It can be done
by putting r = 0 in the equation and then finding some real value of 6. If
it is not possible to find a real value of 6 for which r = 0, then the curve
does not pass through the pole.

(ii) Find the tangents at the pole. Putting r = 0, the real values of 0 give the
tangents at the pole.

(iii) Find the points where the curve meets the initial line and the line

0="
2
III. Value of ¢

d
Find ¢ from the result tan ¢ = rd—e . Then find the points where ¢=0 org .
r

IV. Asymptotes
If r > as 0 - 0 (any fixed number), then there is an asymptote. Find it by the
method given below :

(i) Write down the given equation as 1 = {(0), say.
r

(ii) Equate f(0) to zero and solve for 6. Let the roots be 6, 6,,.......
(iii)  Find f'(0) and calculate itat0=10,,0,,.........

. . 1 . 1
(iv)  Asymptotes are rsin(0-6,)= 7o)’ rsin (6-6,)= £6,)

gees

V. Special Points
Find some points on the curve for convenient values of 6.
VI. Region
Solve the given equation for r or 6. Find the region in which the curve does not lie.
This can be done in the following manner.
(i) No part of the curve lies between 6 = aand 6 = B if for a < 6 < B, r is
imaginary.
(ii) If the greatest numerical value of r be a, the curve lies entirely within
the circle r = a. If the least numerical value of r be b, the curve lies
outside the circle r = b.
Example 4 : Trace the curver = a (1 + cos 0), a > 0.
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Sol.
1.

II.

The curve cuts the initial line 6 = 0 at (2 a, 0) and the lines 0= ig at (a, g), [a,—ﬁj .

III.

IV.

The equation of the curve is r = a (1 + cos 0) ... (1)
Symmetry : The equation of the curve remains unchanged when 0 is changed
to -0.

curve is symmetrical about the initial line.

Pole : Putting r = 0 in (1), we get

a(l+cosB)=0orcosb=-1

0=mn

pole lies on the curve and tangent at the pole is 0 = «.

2
Value of ¢
E=—asin6
de
)
2cos® ~
tan¢=r@=a(1+cos6)x 1_ =- m 26
dr —asin®  ogin Y cos 2
2 2
tan¢:cot9:>tan¢:tan(£+9]:>(|):£+9
2 2 2 2 2

¢:gwhen9:0,r:2a

at (2a, 0), the tangent is perpendicular to initial line.

Asymptotes : Since r does not tend to infinity for any finite value of 0.
curve has got no asymptote

Special Points : We have
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>
»

N
N3

1
r: 2a a(1+$] a 0

VI. Region : Sincer =a (1 + cos 0)

max. value of r = 2a

curve lies entirely within the circle r = 2a
When 6 increases from O to n, r remains positive and decreases from 2a to O.
When 6 increases from 7 to 2%, r remains positive and increases from 0O to 2a.
The shape of the curve is as shown in the figure.
1.4.6 Curvature

1.4.6.1 Radius of Curvature

Let P and Q be any two neighbouring points on a curve AB such that are AP = s and arc
AQ = s + 3s so that arc PQ = 8s. Let the tangents to the curve at P and Q make angles
y and y + dy with x-axis so that Z/RST = dy. Then
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87
A
B
Q
ds 5 S
;
P
A v+ dy
> X
O T R

dy, measured in radians, is called the total curvature or total bending of
the arc PQ,

.oy .
the ratio 8—\” is called the average curvature of the arc PQ,

S

8
sLtog;_w’ if it exists, is called the curvature of the curve at P and is
S —> S

denoted by k
The reciprocal of curvature at any point P is called the radius of
curvature and is denoted by Greek letter p

_1 _ds,
Ty Ty
ds

1.4.6.2 Centre of Curvature
The centre of curvature of a curve at a point P is the point C which lies on the
positive direction of the normal at P and which is at a distance p from it.
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The circle with centre C and radius CP = p is called circle of curvature of the curve at
P.

Any chord of the circle of curvature at P passing through P is called chord of curvature
through P.

1.4.6.3 Some Important Results of Curvature

Result I : The curvature of a circle is constant and is equal to the reciprocal of the
radius.

Result II : The radius of curvature at any point of the curve y = f(x) is given by
> 2

1+y7)? dy d*y

pz% where ¥, Z& and ¥, =@

Result III : Rule to find the radius of curvature at the origin.

(a) Put y = px + ¢ % Foeen in equation of curve, where
2
p= dy =f'(O)and q = d’y =£"(0)
d dx?
X J(0,0) X (0,0)
(b) Equate the coefficients of like powers of x on both sides and find p, q.
(1 + p2 )3/2

(c) p (at the origin) =

Result IV : The radius of curvature at any point of the curve x = f(t), y = g(t) is given

by
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3

[ g(t)]

£'(t) g”(t) g'(t) £ (t)

p=

Result V : The radius of curvature at any point p(r, 6) of the curve r = f(0) is given by

3

(©*+17) dr &r
=— 7/  where ,=——andr,=—
Pery 2r7 -1, 'de 2 de?

Result VI : The co-ordinates of the centre of curvature for any point P(x, y) of the

- v (1+y? 2
curve y = f(x), are given by (X, y) where ?(:X—M,y:yjuh—y%

Y2 Y2
Further, the equation of circle of curvature at P(x, y) is (x - )‘()2 +(y - y)2 =p>.

Now, we clerify the above result with the help of following suitable examples:
Example 5 : Find the radius of curvature of the parabola y*>= 4 ax at the point (x, y).

Sol. The equation of the parabola is y>= 4ax . (1)
Differentiating both sides w.r.t x, we get,

——=4aor——=— . (2)

P="""47 [-- of (2) and (3)]
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3 3
2 4 4a%)? dax + 4a’)?
S ta) [+ of (1)]
4a 4a
2 3
-2 (x+a),
Ja
Example 6 : Find the radii of curvature at the origin of the curve
y?-3xy + 2x>-x3+y*=0
Sol. The equation of curve is y>-3xy + 2x2- x3+ y*= 0 .. (1)

Clearly (0, 0) lies on (1).
Equating to zero the lowest degree terms, we get,

y?-3xy + 2x%2=0
or y=x (y2x)=0=>y=x,y=2x
Here, neight x-axis nor y-axis is the tangent at origin

X2
puttingy =px+q =—+......... in (1), we get,
12
x’ ’ x? x’ !
px+q—+—| -3x|px+q—+—-|+2x* —-x’ +|px+q—+—| =0
2 2 2

= (p2—3p+2)xz+(pq—3%—1jx3+ ......... =0 . (2)

Equating coefficients of x%in (2), we get,
p?-3p+2=0o0r(p-1)(p-2)=0=>p=1,2
Equating coefficients of x%in (2), we get,

pq—3%—1=0

When P=1;q—3%— =0 =q=-2

When p=2q-37-1=0 =q=2

When p=1,q=-2

p (at origin) = (in magnitude)

L+p’ 0+ _ 5
q -2

Whenp=2,q=2
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Example 7 : Find the circle of curvature at the point (% %) of the curve

S5y =va.

Sol.

Let (X,

x| 2,fy dx dx  Jx

The equation of curve is Vx + .y =+a
Differentating both sides of (1) w.r.t.x.

1 1dy03d_y_ﬁ

1

&y fTa‘yzf
dx>
_1{_£ ﬁ_ﬁ}

2y Jx
IR S SN
“ox 0 Jx 2x I zxf
_~a
2x2

37) be the centre of curvature

[ of (1)]
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(1+¥1) a (1a+1) a a 3a
X=X- = — =4+ —=—
Vs 4 4 4 4
a
3
2
(1+¥7) a @+1) 3a
N 4 a 4
a
3a 3a
centre of curvature is e
. . a a) .
equation of circle of curvature at P (—,—j is

3a)’ 3a) a2
or X——| +|ly-=—| ==.
4 4 2

1.4.7 Summary

In this lesson, we came to learn about the tracing of curve for f(x,y)=0 by gaining
enough knowledge about it like its symmetry about x-axis or y-axis or the line x=y,
domain and range, tangents, concavity and convexity, asymptotes etc. Moreover, we
have discussed about the radius of curvature, centre of curvature and some important
results concerning these. The concept is made more elaborative with the help of
various suitable examples.
1.4.8 Key Concepts

Tracing of curves, Radius of curvature, Centre of curvature

1.4.9 Long Questions

2
1
1. Trace the curve y = X F
x+1
2. Trace the curve x = a(6 + sinb), y = a (1-cos0)
3. Trace the curve r = a (1+sin6)

1.4.10 Short Questions

2a
1. Find the radius of curvature for the parabola < l+cos6.
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Gorakh Prasad
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2.1.1 Objectives
The prime goal of this lesson is to enlighten the basic concepts of real valued
functions of two variables f(x,y). During the study in this particular lesson, our
main objectives are
e To discuss the limit of function f(x,y) and how this limit can be classified.
e To discuss the continuity of function f'(x,y).
2.1.2 Introduction
From our previous study, we are already familiar with the concepts of limit,
continuity and differentiability of the real valued functions f(x). In this unit, we
have introduced the concept of real valued functions of two real variables. In this
lesson, we start with the study of limit and continuity of the function f(x,y) as already
highlighted under the objectives of this lesson. Before starting the main part of this
lesson, we define some basic concepts below :
R* : Mathematically, R>=RxR= {(x, y):xeR,ye SR} and geometrically, R’
represents two dimensional plane.
Here ‘R represents the set of real numbers.
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Square Neighborhood of a Point : A square neighborhood of a point (a,b) in

R* is the set of points (x,y) that lie inside an open square region with centre at

(a,b) and sides parallel to the co-ordinate axes such that
|x—a| <o and |y—b| <0 for some 6 >0.
y-b|< 5},

Circular Neighborhood of a Point : A circular neighborhood of a point (a,b)

In other words, it may be represented as {(x, y): |x—a| <0,

in M* is the set of points (x,y) that lie inside a circle with centre at (a,b) such
that

(x—a) +(y—b)’ <5* for some &>0.

It may also be represented as {(x, yi(x—a) +(y-b) <o’ }

Functions of Two Variables : A real valued function of two variables x and y
is a rule which associates a unique real number f(x,)) to every possible ordered
pair (x,y) of real numbers.

Note : Usually, we write z= f(x,y) where x and y are independent variables and

z is the dependent variable.
2.1.3 Limit of a Function of Two Variables
A function f(x,y) is said to tend to a limit / as the point (x,)) tends to a point

(a,b) if for any pre-assigned positive number €> 0, however small, we can find a
number 0 such that

|f(x,y)—l| <e

for all points (x,y) other than (a,b) for which a—d6<x<a+d,b—06<y<b+0 ie.
|x—a|<5 and |y—b|<5.

The above definition of limit is based on square neighborhood of a point. It may also
be defined as :

A function f(x,y) is said to tend to a limit / as the point (x,)) tends to a point
(a,b) if for any pre-assigned positive number €> 0, however small, we can find a
number J such that

|f(x,y)—l|<e

for all points (x,y) other than (a,b) for which

(x,3)—(a,b)| < 5.

This definition is based on circular neighborhood of a point.
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Note : 1. If the limit [/t \ f(x,y) exists finitely, then it is unique.
(x,y)—>(a,b)

2. If It , f(x,y) exists, then the limit is independent of the path along
(x,y)—>(a,b)

which we approach the point(a,b).
Example 1 : By using definition, prove that lto(x2 +y? ): 0.

y—0

Sol. Here, f: R’ - N is defined by f(x,y)=x"+)"
Let >0 and take & =+/e

L) =(0,0) <8 e x4y <5

:>|f(x,y)—0|:‘x2 +y2‘=x2 +y? <6’ =€

.. for €> 0, there exists >0 such that |(x,»)—(0,0) <5 =|f(x,y)-0|<e
so, It f(x,y)=0.

(x,y)—(0,0)

Hence, the result is proved.
Example 2 : Let f:R> >R be defined as : f(x,y)=1 if x is rational and

f(x,y)=0if x is irrational. Show that It f(x,y)does not exist.

(x,)>(x0.50)

Sol. If possible, suppose that It f(x,y)=1

(x,3)>(x9,¥0)

So, there exist reals , > 0,6, >0 such that

0 <|x_x0| <0,,0< |y_y0| <0,, where (x,y) # (X, ¥,)
1

=[f ()=l < (say)

Let x, be any irrational number and x, be any rational number in (x, —9J,,x, +9,)

and let y be any real number different from y, in (y,—-0,,y, +9,).

1 1
-'-|f(x1aJ’)_l|<E and |f(x2aJ’)_l|<E (1)
Since x, is irrational and x, is rational,
S(x,»)=0 and f(x,,y)=1 (2)

From (1) and (2),

<t andfi-f<t
2 2

Or |1|<l and |1—1|<l (3)
2 2
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Further, 1=|(1-0)+{| <[1-1]+]]
<l+l—1 [using (3)]
2 2 &
~.1<1, which is absurd and our supposition is wrong.
Hence, It f(x,y)does not exist.

(x,3)=>(x0,¥0)
2.1.4 Simultaneous and Iterated (or Repeated) Limits
If f(x,y) is a function of two variables x and y and then (a,b) is the limiting point

of a set of values on two dimensional space, then we have
Simultaneous Limit :

I. It f(x,y) or It f(x,y)
x%(l; (x,y)—>(a,b)
Y

Iterated or Repeated Limits :

I It [ ltbf(x, y)} or It ltbf(x,y)
X—>a y—>

x—al y—>
m. il fey)]or It It f(xy)
y—obx—a y—obx—a

Note: 1. The two iterated limits may exist but may not be equal.
2. The two iterated limits may exist and may be equal but the simultaneous
limit may not exist.
3. If simultaneous limit exists and two iterated limits also exist, then they
must be equal.
4. Criterion for Non-Existence of Simultaneous Limit :
If we find two functions y=¢(x) and y=w(x) such that

It g(x)= 1t y(x)=>b
and It f(x,¢(x))# ltb f(xp(x))),

then, [/t f(x,y) does not exist.
b
2

2
Example 3 : If a function f be defined by f(x, y):%,(x, y)#(0,0), then
X +y

show that the two iterated limits lto[ lto f(x, y)] and ltOthO f(x, y)J exist but the
x—0[ y— y—>0h—

simultaneous limit It f(x,y) does not exist.
(x,9)—(0,0)
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2 2 2
X - X
Sol. [lt 7(x, y)}— z{zt . yz}: lt(—zjzl
x—0[_y—0 x—0[ y—>0 x +y x—=>0 x

2 2 :
_ B Y o__
and lt [‘lt S(x, y)]_ It L—wx +y2:|_xl_t)0( y2 j 1

y—0

Therefore, two iterated limits /¢ [ It f(x, y)} and [t th f(x, y)J exist.
x—0| y—0 y—>0%—0

Let (x,y) — (0,0) along the line y = mx , then
2 _ 2

2.2
f,y)= It al —lt —= It

(xy)»(om (x.)(0,0) x* +y =0x? +m’x’ 0 l+m’ 1+m’

which is not unique as it takes different values for different values of m .

. simultaneous limit [/t  f(x,y) does not exist.
(x,9)—(0,0)

2.1.5 Continuity of Functions of Two Variables
A function f(x,y) is said to be continuous at (x,,y,) if for every €> 0, there exists
0 >0 such that

|x—x0|<5, |<5

= |f(x>y)_f(x0=yo)| <€

Or f(x,y) is said to be continuous at (x,,),) if the simultaneous limit

It f(x,y) exists and is equal to the functional value f(x,,y,) at (x,,),)-

(x,3)=>(x0,¥0)

Example 4 : Discuss the continuity of f(x,y) at (0,0) where

2xy°
[y =154 (x,) #(0,0)
0’ ()C, y) = (0,0)
Sol. Here,
2xy°
[y =134 (x,) #(0,0)
0’ ()C, y) = (0,0)

Let (x,y) — (0,0) along the line y =mx , then

2 2.3
o) = It 2xy _ i 2m°x” 2m

ot bion) w00 X2 4yt o0 1m0 lem® 1+m?

which is not unique as it takes different values for different values of m .
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. simultaneous limit [/t  f(x,y) does not exist.
(x,9)—(0,0)

Hence, the function f(x,y) is not continuous at (0,0).
(1
Example S5 : Examine the function f(x,y)=xy sm(—j,x #0,y#0 and
X

£(0,0) =0 for continuity at the origin.
Sol. For the given f(x,y), D, = R’

Let £ >0 be arbitrary, then |x 0| , where (x,y) #(0,0).

= |f(xay)_0| = xysinl =|xy| sinl s|x||y| { sinl < 1}
X X x
<Jeds=¢
|f(x,y)—0| <&
= g (3 =0=7(0,0)

Hence, f is continuous at (0,0).

Example 6 : Let f:R> >R be a continuous function. Define g:R* — R as
gx,y)=f(x,y),x#0,y#0 and g(x,y)=f(x,y)+L,x=0,y=0 . Show that the
function g is not continuous at the origin.

Sol. Being a continuous function, f is continuous at the origin (0,0).

:>( U 0)f()c y) and f(0,0) both exist and ) (00 f(x,y)=f(0,0)
Now g(0, 0)=f(0 0)+1 (1)
Also, It ~&ly)= It~ J(xy)=7(0.0) (2)

From (1) and (2), It g(x,y)#g(0,0).
(2,7)->(0,0)

So, g is not continuous at the origin.

2.1.6 Summary
In this lesson, we have studied about the simultaneous and iterated limits
i.e. when and how they exist. After knowing about the limit, we have discussed

about the continuity of function f(x,)). The concept is made more elaborative with
the help of suitable examples.
2.1.7 Key Concepts

Simultaneous limit, Repeated limit, Iterated limit, Continuity
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2.1.8 Long Questions

1. Let :R> >R be defined as f(x,y)=1 if x is irrational and f(x,y)=0 if
X is rational. Show that for any point (x,,y,), ( )lf : f(x,y) does not
X,Y)=>(X0.)0
exist.
x2y2
2. Show that for the function f defined by f(x,y)=——; -, the two
Xyt +(x-y)

repeated limits exist and are equal but the simultaneous limit does not exist.
3 3

3. Examine the function f(x,y)= Xty x#0,y#0 and f(0,0)=0 for

x4yt

continuity at (0,0).
4. Show that f(x,y)=x"+y—1 is continuous at (1,-2).
2.1.9 Short Questions
1. By using definition, prove that

() It Gxy+5x—4)=7 (i) It (3x+y*)=10

e =2,
2. Evaluate the following limits (if they exist):
4 2
0, It (i -

— It ———
00 x* 4+ y* —x ()00 x” +2y —3x

2.1.10 Suggested Readings

1. RK Jain, SRK Lyenger Advanced Engineering Mathematics
2. JR Sharma Advanced Calculus

3. Malik and Arora Mathematical Analysis

4. Shanti Narayan Mathematical Analysis

5. Thomas and Finney Calculus and Analytical Geometry



LAST UPDATED: MAY, 2023

B.A. PART-I MATHEMATICS : PAPER-I
SEMESTER-I CALCULUS-I
LESSON NO. 2.2 Author: Dr. Chanchal

LIMIT, CONTINUITY AND PARTIAL DIFFERENTIATION OF
FUNCTIONS OF TWO VARIABLES-II

2.2.1 Objectives

2.2.2 Partial Derivative
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2.2.6 Key Concepts
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2.2.8 Short Questions

2.2.9 Suggested Readings

2.2.1 Objectives

e To learn about the first order and second order partial derivatives.
e To study the conditions for the interchange of order of differentiation.

2.2.2 Partial Derivative

Let z= f(x,y) be a function of two independent variables x and y . Then, the
partial derivative of z with respect to x is the ordinary derivative of z when y is
regarded as a constant. Similarly, the the partial derivative of z with respect to y
is the ordinary derivative of z when x is regarded as a constant.

For example : If z=3x"y” +5x°)’

then, partial derivative of z w.r.t. x is equal to

3)/2(3)62)-1—5)/3(2x):9y2x2 +10y°x

Similarly, partial derivative of z w.r.t. y is equal to
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3x3(2y)+5x2(3y2): 6x’y +15x°y?

2.2.2.1 First Order Partial Derivatives
Let z= f(x,y) be a real valued function of two independent variables with an open

It f(x—'_é}c’y)_f(xay)
ox

domain D, C R?, then
‘ K—0

if it exists, is called the partial

o

0
derivative of z w.r.t. x. It is denoted by 6_2 or a—or f.or f(x,y)or Df.
X X
o f :g: It S(x+d,y) - f(x,p)
T 0x a0 ox
Also, the partial derivative of f w.r.t. x at any point (a,b)e D, is denoted by

(gj or (gj or f (a,b).
OX ) () OX ) ()

Thus, f,(a,b)= It f(a +h,b2—f(a,b)

It f(xay+@’)_f(an’)
&

y—0

On similar lines, , if it exists, is called the partial derivative

of f w.r.t. y.Itis denoted by Z—Z or Zlor S, or f,(x,y) or D,f.
y

y
Thus, f, :%:ayliof(x,y-l-é;z—f(x,y)

0
The partial derivative of fw.r.t. y at any point (a,b) € D, is denoted by (a—zj
Y sy

0
or (l] or f, (a,b) and it may be expressed as
(a.b)

. fla,b+k)— f(a,b)
fy(a’b)_kl—lio k

2.2.2.2 Second Order Partial Derivatives
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If z= f(x,y) and the first order partial derivatives Zl and Zi exist, then they are
X v
. . . of o .
themselves functions of x and y . The partial derivatives of 8_ and 8—, if they
X y
exist, are called second order partial derivatives of f(x,y). It is denoted as
o(of\ o°f 2 0’z
. —|—=—|= or or or —
ox\ox) ox° /. S o’
2 2
II. ig=aforfxoraz
oy\ox) Oyox Y Oyox
2 2
I1. igzaforfxoraz
ox\ oy ) Oxoy g Ox0y
2 2
IV. ol :8{ orfy2 or f, ora—f
oy\dy) oy

These second order partial derivatives may be further expressed as

O, St E - [y

Ox> a0 S
az_fz It fx(x,y+@/)—fx(x,y)
Oyox -0 oy
&, Lt -f )
ax@y -0 ox
7f_ Ly -f, )
G R &

. xy
Example 1 :1If f(x,y)=1{"" szyzj’(x’y) # (0,0),

0,(x,y)=(0,0)
then evaluate f (0,0) and f,(0,0).
Sol. For the given function f(x,y), we have
fx(o’o):hltof(0+h,0h)—f(0,0): sin0—-0 0-0

and 1 (0,0)= It f(0,0+k)—f(0,0): I sin0-0 _ i ()_():0
7 k—0 k

h—0 h -0 )
k—0 k k-0 L
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Example 2 : Let f(x,)=log(xy+2y> —2x). Find f,(2,3) and f,(2,3).
Sol. Here f(x,y)= log(xy +2y° - 2x)

0 1 y=2
So, 1. =—|loglxy+2y*-2x)|=———x(y-2)=— <L =
o /. 8x[ g(y 4 )] xy+2y° —2x (-2) xy+2y° —2x
3-2 1 1
L f(23)= : _ _1
2)3)+(2)3)" -2(2) 6+18—-4 20
0 1 x+4y
Also, f.=Lflogloy+2y% —2x)]=—— x(x+4y)=— X"V
so. J, 8y[ g(y d ) xy+2y° —2x (v+47) xy+2y° —2x

]‘},(2,3):—2“2 147

6+18—-4 20 10
2.2.3 Change of Independent Variables
Consider the two relations : x=rcosé,y=rsinf connecting the four variables
x,y,r and 6. Here, each variable can be expressed in terms of two of the remaining
three variables.
For example : x can be expressed in terms of (i) r,6 (i) €,y (iii) r,y

Now, if we have to ﬁnd?, then it is meaningful in (i) and (iii) while it has no
r

meaning in (ii).

0 0.
Note : —ax in (i) keeping @ constant is not equal to _6x in (iii) keeping y constant.
r r

ox
So, it is necessary to distinguish between the two values of 6_ which can be done
r

o 0
by denoting them as (_xj and (_xj respectively.
or ), or),

0
Thus, (—xj = partial derivative of x where r and 6 are independent variables and
rJo

o
(_xj = partial derivative of x where r and y are the independent variables.

8ry

Example 3 : If x=rcosd,y=rsiné, the prove that

0’6 0o’ 0’ 1
axay aXZ ( Ogl") ayZ ( Ogr) 7”2 cos 0

Sol. Given: x=rcosf,y=rsinf
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on dividing y by x, we get tanf = 2
X
which gives 6 =tan™' 2
X

.00 _ 1 1 X

o & —1+(yj2 ';_x2+y2
x
0’0  (x*+y))1-x2x  y*-x> _r’sin’@-r’cos’@  cos’@-sin’ 0
ooy (2arf (Pef () -7
0’0 1

oxdy Z—r—ZCOS2t9 (1)

which

gives

Now, squaring and adding x and y, we have rr=x"+ y2

= logr’ :log(x2 +y2) :>210gr=10g(x2 +y2)

= logr =%10g(x2 +y2)

? 1
= =——-c0s20 e (2)

:>aay—2(logr)= = =icos20 ....(3)

From (1), (2) and (3), we get
2 2

70~ 7 (1ogr)

ox0y 0Ox

2.2.4 Interchange of Order of Differentiation

0’ 1
-~ (1 =——cos20.
. (logr) 7 0s

For some functions, f, and f, both exist and equal i.e. we can change the order

of differentiation. But this result is not always true. For all classes of functions, we
cannot interchange the order of differentiation

ie. f,(a,b)# f,(a,b) (In general)
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Here, f,,(a,b)= It fx(“ab+k]3—fx<a,b)
fa+hb+k)-f(ab+k) .
h

where f (a,b+k)= hlto

(a.b)= It f(a+h,b)— f(a,b)
’ h—0 h

/.

.. on substituting, we get

I (aby= it 1 Lt flabrl)=flathb)+f(ab) ., $hk)

—0h—0 hk k—>0h—0  hk
where @(h,k)= f(a+hb+k)— f(a,b+k)— f(a+h,b)+ f(a,b)
o _ d(h,k)
Similarly, f, (a,b)= hl_t) . kl_t) 0 hE

Thus, f, (a,b) and f, (a,b) appear as repeated limits of the same function and we

know that these limits may or may not be equal. Therefore, the equality of the two
derivatives may not be taken surely.
2.2.4.1Sufficient Condition for the Interchange of Order of Differentiation

The below stated theorems give the sufficient condition for the equality of fxy and
S
A. Statement of Schwarz's Theorem : If (a,b) is a point of the domain
D, c R’ of a function f such that
i.  f..f,,f, allexistin a certain neighborhood of (a,b),
ii.  f,, is continuous at (a,b),
then f (a,b) exists and f (a,b)= f, (a,b).
B. Statement of Young's Theorem : If (q¢,b) is a point of the domain
D, c R? of a function f such that
i.  f.,f, both exist in a certain neighborhood of (a,b),
ii. f,,f, are differentiable at (a,b),
then f (a,b) = f, (a,D).

We will prove these theorems in the next lesson of this unit.
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2 2

X -y
5 J , where (x,y)#(0,0) and f(0,0)=0. Show

2

Example 4 : Let f(x, y):xy(
X"+

that £, (0,0) % £,.(0,0).

Sol. We have f, (0,0)= kho /,(0.0+ klz —/,(0.0) (1)

h’ —k*
hk k hk(hz kzj_o k?
— + —
Now, fX(O,l’c)=hlt0f(0Jr ’ z JOB _ =k(0 j

70 h 0+k*
S f(0,k)=—k .(2)
Also, £.(0,0)= 1 LOFRO=7(00)_, 0=0
h—0 h -0k
= £.00,00=0 ...(3)
-k-0

From (1), (2) and (3), we get £, (0,0) =klt0 . =-1 ...(4)
Similarly,

_ fy(0+h70)_fy(070)_ h—O_
fyx(oﬂo)_h{t)o h _hl—t)OT_l, "‘(5)

k—0 k

K -k
hO0+k)— f(h hk(hz kzj_o K
_ + _
where fy(h,O):kltof( 0+ ]z SO _ :h( Oj:h’

and f,(0,0)= klto f(0,0+k)- £(0,0) _ 5 0-0 o

k=0 [k
It is clear from (4) and (5) that f, (0,0) # f,(0,0).
2.2.5 Summary

In this lesson, we have defined the first order partial derivatives f, fy and

XX

second order partial derivatives f,.,f, ./, f, of f(x,y) w.r.t the independent
variables x and y. It is also explained that how the order of partial differentiation
can be interchanged i.e. what is the sufficient condition under which f, = f . Now,

it will be easy for the students to understand some more results concerning partial
derivatives that we will study in next lessons.

2.2.6 Key Concepts
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First order partial derivatives, Second order partial derivatives, Change of
independent variables, Interchanging the order.

2.2.7 Long Questions

2 2 2 2
1. Verify that ﬂ: of where f =log Xy .
oyox  0Ox0Oy Xy

2. If x=rcosf,y=rsind, prove that
(orY (or ’ . 0r 0°r o Y
|— |+ —| =1 ({) —5x—==
ox oy ox~ Oy Ox0y

3. Let f(x, y)=xy(uJ, where (x,7)#(0,0) and £(0,0)=0 . Show that
x+y

/5(0,0) = £,(0,0).

4. For the function, f(x,y)=x"tan” (lj —y’tan™ (i}xy #0 and f(x,y)=0 if
X Y

xy =0, show that f (0,0)# f,.(0,0).

2.2.8 Short Questions
1. Find the first order partial derivatives for z =

i) logl® +y*) @) sin(® +y?) i sinl(lj
y

2. Let f(x,y)=+/x"+y*+1. Evaluate f.(1,2) and f,(L2).

3. For the following f(x,y), find the second order partial derivatives

(i sin(lj (i) x*sin(x+y) (i) e
X
2.2.9 Suggested Readings
1. RK Jain, SRK Lyenger Advanced Engineering Mathematics
2. JR Sharma Advanced Calculus
3. Malik and Arora Mathematical Analysis
4. Shanti Narayan Mathematical Analysis
S. Thomas and Finney Calculus and Analytical Geometry
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2.4.1 Objectives

During the study in this particular lesson, our main purpose is to study the rules
and methods such as Lagrange's method, under which the maximum and
minimum of the function f(x,y) can be obtained. Further, an important function
known as Jacobian and its important properties are also elaborated under the same.
2.4.2 Introduction

Before introducing the main part of this lesson, we firstly define the extreme values
of the function f(x,y), below:

A. Maximum Value : A function f(x,y) is said to have a maximum value at
x=a,y=>b if f(a,b)> f(a+h,b+k) for small values of & and k, positive or
negative.

B. Minimum Value : A function f(x,y) is said to have a maximum value at
x=a,y=>b if f(a,b)< f(a+h,b+k) for small values of & and k, positive or

negative.
C. Extreme Value : A maximum or minimum value of a function is called an
extreme value.
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2.4.3 Working Method for Maxima and Minima of a Function f(x,y)
Let f(x,y) be the given function

Step I : Find 1 and @

ox oy

0 0
Step II : Solve 8l=0 and 81:0 simultaneously for x and y . Let
X v

(e 1) (X5, 10 ) e be the points.

2 2 2
6{’B:8f’C:6]2”
ox ox0oy oy
Step IV : (i) If for a point (x,,y,), AC—B*>0 and 4<0, then f(x,y) has a

Step III : Calculate the values of 4= for each point.

maxima for this pair and maximum value is f(x;,,).
(ii) If for a point (x,,y,), AC—B*> >0 and 4> 0, then f(x,y) has a minima for this
pair and minimum value is f(x,,»,).
(iii) If for a point (x,y,), AC—B><0 , then there is neither maximum nor
minimum of f(x,y) and f(x,y) is said to have a saddle point at (x,,y,) .
(iv) If AC — B* =0 for some point (a,b), then we have the following cases:
(a) if f(a,b)— f(a+h,b+k)>0 for small values of & and k, positive or negative,
then f has maxima at (a,b).
(b) if f(a,b)— f(a+hb+k)<0 for small values of 4 and k , positive or
negative, then f has minima at (a,b).
(c) if f(a,b)— f(a+h,b+k) does not keep the same sign for small values of A

and £, then there is neither maxima nor minima.
Example 1 : Find all the maxima and minima of the function

f(x,y) =x’ +y3 —63(x+y)+12xy.

Sol. Step 1. g:3x2 +12y—-63 and 1=3y2 +12x-63
ox oy

Step II. Let us solve g =0 and g =0
ox oy

ie., 3x>+12y—63=0 and 3)” +12x—63=0
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or x> +4y-21=0 (1)
and y’ +4x-21=0 2)
Subtracting (2) from (1), we get
X =P 4y —dx=0=(x—p)(x+y)—4(x-»)=0=>(x—y)(x+y—-4)=0
= either x — y =0 which gives x =y, or x+y—4=0 which gives x=4-y
For x=y, (1) becomes
X 4+4x-21=0= (x+7)(x-3)=0=>x=3,-7
As y=x,s0 y=3,-7
For x=4—-1y, (1) becomes
(4-y) +4y-21=0
or y°—8y+16+4y-21=0
or 2 —4y-5=0=(y-5)(y+1)=0= y=5-1
Further, from x=4-y, x=-1,5.
so, the four critical points are (3,3), (-7,-7), (-1,5) and (5,-1).

2 2 2
StepIII.A=6{:6x,B:ﬂ:12’C:%:6y
X 0x0y oy

- AC — B> =36xy —144.

Step IV. At (3,3), AC—-B>=36(3)(3)-144=180>0 and 4=6(3)=18>0

- f(x,y) is minimum at (3,3) and the minimum value is given by
f(33)=27+27-633+3)+12(3)(3) =-216

At (-7,-7), AC—B*> =36(-7)(-7)—144=1764—144=1620>0 and A=6(-7)=-42<0
- f(x,y) is maximum at (-7,-7) and the maximum value is given by
f(=7,-7)=-343-343+882+588 =784

At (-1,5), AC—B* =36(-1)(5)—144=-180-144=-324<0

- f(x,y) has neither maximum nor minimum at (-1,5) and therefore, (-1,5) is a
saddle point.

At (5,-1), AC—B* =36(5)(-1)-144=-180-144=-324<0

- f(x,y) has neither maximum nor minimum at (5,-1) and therefore, (5,-1) is a
saddle point.

Example 2 : Find the extreme value (if any) of f(x,y)=2x"*-3xy+ >
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Sol. Step 1. g =8x’ —6xy and g =-3x"+2y
ox oy
Step II. Let us solve g =0 and g =0
ox oy
or 8x’—6xy=0 (1)
and —3x”+2y=0 (2)

From (1), 2x(4x> -3y)=0=x=0,x’ :%

For x=0, from (2), 0+2y=0= y=0.
So, the point is (0,0).

For x’ :% , from (2), 3x?—g—2y:0:>y:0

..(0,0) is the only critical point.
2 2
Step ITII. A= 0 { =24x* —6y,B = of =—6x,C =
ox ox0y oy
s AC—B* =(24x* —6y)(2) - (-6x)".
Step IV. At (0,1), AC-B* =(0-0)(2)-0=0.

So, at (0,0) further investigation is required.

Consider

f(a,b)— fla+hb+k)=£(0,0)— f(hk)=0-(2h* —3h2k+k2):%k2 —z(/f —%j

which does not keep the same sign for small values of 4 and k, so there is neither
maximum nor minimum at (0,0).

2.4.4 Lagrange's Method of Undetermined Multipliers

Let f(x,y,z) be a function of x,y,z which is to be examined for maximum or
minimum values and let the variables be connected by the relation

P(x,y,2)=0 (1)

Since f(x,y,z) is to have maximum or minimum value,

g—0, @:0 andgzo

S ox oy oz
:@d)ﬁr@dywtgdz:o (2)
Ox oy oz
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Differentiating (1), we get
%dx+%dy+%dz =0

Ox oy oz

(3)

Now, adding A times of (3) into (2), we get

(g + ﬂ%jdx + (g + ﬂ,%]dy + (g + /1%}12 =0
ox ox oy oy oz oz

In order to satisfy this equation identically, coefficients of dx,dy,dz should be zero

separately
€., g + ﬂ,% =0 (4)
ox ox
and g + /1% =0 (5)
oy oy
and g + /1% =0 (6)
0z 0z

Equations (1), (4), (5) and (6) will give the values of x,y,z,4 for which the function

f(x,y,z) has maximum and minimum values.

Example 3 : Find the maximum and minimum value of the function x* + )
subject to the condition 3x> +4xy +6y° =140.

Sol. Let f(x,y)=x"+)’

The constraint is

3x* +4xy+6y° =140

(1)

Let F(x,y)=x"+y> + 1(3)62 +4xy+6y° — 140) where A is Lagrange’s multiplier.
For extreme points,

8—F=2)c+/1(6x+4y)=0
ox

and %=2y+/1(4x+12y)20

or 1+3)x+24y=0 (2)
and 2Ax+(1+64)y =0 (3)

Since x,y are both non-zero,
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21 1+64
= (1+32)(1+64)— 44 =0
S 142 +94+1=0

:>/1_—9i\/81—56 _-9+5 11
28 28 27 7

1432 22 ‘_

1
Taking A =——
& 2

From (2), x=-2y
And from (1), 12y* -8y° +6y° —140=0= y* =14

sxt=4y* =56
Which gives x° +y° =56+14=70
Taking 1 = —%

From (2), y =2x

And from (1), 3x> +8x> +24x> —140=0= x =4

Syt =4x" =16

Which gives x* +y> =16+4=20

Hence, the maximum value of x° + y* is 70 and the minimum value is 20.

2.4.5 Jacobian of »-Function

If £, frsemeeoeenne , f, be n functions of n variables X,,X,,........... ,X, possessing partial

derivatives of the first order at every point of the domain of definition of the function,
then the determinant

9D % S
ox, Ox, ox,
IR P
ox, Ox, ox,
o, o o,
8x1 a ...... axn
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Is called the Jacobian of f, f,..cc...... o f WLt X)X, e ,x,. It is denoted by
OS5 [reereen  f,
(.12 )or (0 S 1)
Ax,, Xy e ,x,)
Example 4 : Find Mif f=x>—xsiny and g=x"y* +x+y.
o(x, )

Sol. Here, f=x>—xsiny and g=x"y" +x+y.

g=2x—siny, gz—xcosy

ox oy
Anda—g:2xy2+1, a—g:2x2y+1

ox
L/ACA

o(f,g) |ox oy| |2x—siny —xcosy
o(x,y) |92 08| |2xp°+1 2x7p+1
ox oy

Now,

=(2x—sin »)2x*y +1)+ (2xy* +1)(xcos y)
2.4.6 Some Important Articles Concerning Jacobian
Art. 1 : Jacobian of Composite Functions

Statement : If f:R" >R" and g:R" > R" differentiable functions, then
J (%) =J, (f(x))J,(x), where I = gof.
Art. 2 : Let D be an open subset of R" and f:D — R" be differentiable at every

point of D . Suppose that f is invertible on D and let f~' be differentiable at
every point of the range of f, then
1

Jf,l (f(x)) e Vx e D.

Art. 3 : Jacobian of Implicit Functions

Statement : If u ,u,,........... ,u, are functions of x,,Xx,,........... ,x, defined implicitly
by n equations

Fl(ul,uz, ........ Uy s X )3 Xy e ,xn):0,

Fz(ul,uz, ........ T S ST ,xn):O,
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Fn(ul,uz, ........ 7 S SR ,xn)zo,
OF,Fypeeee... F)
8(u U gereeennn, N7 ) 8(x,x pererreees X )
h 1°7"2 n _1 n 1°7*2 n
then, R <) (=1) F,Fyeeer.n, F))
ettty yenae... )

Art. 4 : Functional Dependence (Necessary and Sufficient Condition for a
Jacobian to Vanish)

Statement : Let u ,u,,.......... ,u, be n functions of n independent variables
P S ,X,. In order that there may exist between these functions a relation
F (ul,uz, ........ ,un)ZO , it is necessary and sufficient that the Jacobian
8(u],u2, ......... ,un)

should vanish identically.

Note : The proof of above articles is easy and left as an exercise for the reader.
Example 5 : Prove that J pE (‘f,n)z ¢ for any (f,n) belonging to the range of f,

where f(x,y)= (*\/Xz +y%, tan” Xj :

X

Sol. Here f(x,y)= (1,)&'2 +y*, tan” Xj =(f1,/3)
X

Where f,(x,y)=+/x"+y* and f,(x,y)=tan" 2
x
o _ 2x B X
ox 2\/xz+y2 \/szry2
9h__ 2y Y
Ox 2\/x2+y2 \/x2+y2

0g, _ 1 (—_yj: -y
ox (yjz x’ x> 4y’
X
1

g, _
ox

1+

l_ b
y)Z'x x2+y2
X
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wn |t Uy T
AL h) lax | Wxrey? Yxtey?
NOW, Jf(x,y)— a(x’y) _% %_ —y X
ox oyl | X+t xXP+)?
x2 y? 1
- 2 2§+ 2 23: :
(X +y )2 ()C _|_y )2 X +y
1
:E ['.‘(5,77)=f(xay):>§:\/x2+y2J
1
NOW, Jfl(‘fan)_m_g

Example 6 : Show that the functions u =x—-2y+z,v=x"+2xy—xz,w=3x+2y—z

are not independent of one another. Also find the relation between them.
Sol. For the given functions, we have

o ou
ox 0Oy Oz 1 2 1
M:@ o @:2x+2y—z 2x —x
o(x,y,z) |Ox Oy Oz
ow ow oo I 2
ox Oy Oz
1 -2 1
=2x+2y—-z 2x -x|, by R;+R,
4 0 0
=4(2x-2x)=0
S.u,v and w are not independent of one another.

Further,
w—u’ =Cx+2y—2) —(x-2y+2)  =Bx+2y—z+x-2y+2)Bx+2y—z—x+2y—2)

=4x(2x+4y—22)=8x(x+2y—2z) =8(x* +2xy —zx) =8v

So, w* —u’ =8v is the required relation between u,v and w.
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2.4.7 Summary

In this lesson, we have studied the working method for finding maxima and minima

for the function f(x,y). We have also discussed Lagrange’s method of undetermined

multipliers for finding the maximum and minimum value of a function of two or

more variables, subject to some particular condition or constraint. Further, the

concept of Jacobian and functional dependence has been also elaborated. The
concepts are easily understandable with the help of simple examples.
2.4.8 Key Concepts

Maxima and minima, Lagrange’s method of undetermined multipliers, Jacobain of

n-functions, Functional dependence, Vanishing of Jacobian.
2.4.9 Long Questions

1.

Find all the critical points of the function f(x,y) =x° +xy and examine for
maxima, minima or neither.

Find the minimum value of f(x,y,z)=x"+ y> +z° subject to the condition
yz+zx + xy = 3a’.

Find the point on the plane 2x+3y—z =5 which is nearest to the origin in
m3

o(u,v) _ 1 y—x’

o(x,y) 2 wv(u-v)

If u> +v’ =x+y,u’ +v> =x> +)°, then show that

Show that the functions u=x+y-z,v=x—y+z,w=x"+y° +z°—-2yz are

not independent of one another. Also find the relation between them.

2.4.10 Short Questions

1.

2.
3.

8(x, v, Z)
ar,0,z)

Prove that J, (x,y)=e " sin(x+y) where f(x,y)= (e)‘ sin y,e” cos x)

If x=rcosf,y=rsinf,z =z, then evaluate

Evaluate Jf,1 (é, n) , where f(x,y)= (x —y,x+y).

2.4.11 Suggested Readings

aAeh=

RK Jain, SRK Lyenger Advanced Engineering Mathematics
JR Sharma Advanced Calculus

Malik and Arora Mathematical Analysis

Shanti Narayan Mathematical Analysis

Thomas and Finney Calculus and Analytical Geometry
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