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2.3.1 Objectives

The prime objective of this lesson is to study in detail about the improper integrals,

their classification and convergence accordingly.

2.3.2 Introduction

An improper integral may be defined as :-

An integral of the form 
b

a

f(x) dx  where f becomes infinite in [a, b] or in other words f

1
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has points of infinite discontinuity in [a, b] or the limits of integration become infinite

i.e. a or b or both become infinite is called an improper integral.

For example, 
1 2

2 22
0 1 1

dx dx dx dx
, , , (a 0)

x a xx 11 x

 

 




     are all improper integrals.

Further, we have the following two types of improper integrals :

1. Improper Integrals of First Kind

2. Improper Integrals of Second Kind

Firstly, we study about the improper integrals of first kind.

2.3.3 Improper Integrals of First Kind

Def : If either one or both the limits of integrations are infinite and the integrand

'f' is bounded, then 
b

a

f(x) dx  is said to be 'Improper integral of first kind'.

These are further divided into following three types, as discussed below :

Type I : When b is infinite

Let f be bounded and integrable for x a, then

t

t
a a

f (x ) dx Lt f(x) dx



  (t > a)

If the limit on the right exists, then 
a

f(x) dx


  is said to converge, otherwise it is said

to be a divergent integral.

Example 1 : Examine the converge of following integrals

(i) 





x

1

xe dx (ii) 



 3
e 2

dx

x (log x)

Sol. (i) By definition,

tt tx x
x x

t t
1 1 11

(e ) e
xe dx Lt xe dx, (t 1) Lt (x) dx

1 1

  
 

 

 
    

   
  
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 
tx

t 1 t 1 t 1

t t
1

e
Lt ( te e ) Lt te e (e e )

1


     

 

  
          

   

t 1 t 1

t tt t t

t 1 2
Lt ( te e e e ) Lt Lt

ee e

   

  

                   

tt

1 2 2 2
Lt 0 0 0

e e ee

 
       

 
 which exists.

 the given integral converges to 
2

e
.

(ii) Let 

t
1

3t 2
2

3 t t
e e2

e

dx 1 (log x)
I Lt (log x) . dx Lt

1x
x(log x)

2



 

 
 

    
 
  

 

1 1t
2 2

1 1
2 Lt

(log t) (log e)


 
    
  

1 1
2 2

1

 
      

 [0 – 1] = 2, which is a finite quantity.

 the given integral converges to 2.

Type II : When 'a' is infinite

b b

t
t

f(x) dx Lt f(x) dx




  (t < b)

If the limit in the R.H.S. exists, then 
b

f(x) dx

  is said to be convergent, otherwise

the integral is said to be divergent.

Example 2 : Examine the convergence of 



0

4xe dx



4B.A. PART -II MATHEMATICS PAPER–I

Sol.
0 0

4x 4x

t
1

e dx Lt e dx




  (t < 0)

04x 4t

1t t

1 1 1 1
Lt e Lt (1 e ) (1 0)

4 4 4 4 
       

 the given integral converges to 
1

4
.

Type III : When a and b are both infinite

c

c

f(x) dx f(x) dx f(x) dx
 

 

   

where 'c' is any real number.

If both the integrals in (1) exist as discussed in Type I and II, then f(x) dx



  is said

to converge otherwise,  i t  is divergent or we can say that the l imits

tc 2

t t1 2
t c1

L im f(x) dx and L im f(x) dx
    must exist finitely and independent of each other.

Example 3 : Examine the convergence of 


  2 2

dx

(x 1)

Sol.
0

2 2 2 2 2 2 2 2
0 0

dx dx dx dx
2

(x 1) (x 1) (x 1) (x 1)

  

 

  
      

t

2 2t
0

dx
2 L im

(x 1)


 Put x = tan 

t

1

2t
0

1 x
2 L im tan x

2 1 x





 
  

 

2

2 2 4

dx sec d

(x 1) sec

 


  

1

2t

t
L im tan t

1 t





 
  

 

2 1
cos d (1 cos 2 ) d

2
       



5B.A. PART -II MATHEMATICS PAPER–I

2


  

1
sin cos

2
    

1

2

1 x
tan x

2 1 x

 
  

 

 the given integral converges to 
2


.

In many of the cases, the above methods are not suitable to discuss the convergence

of the integrals. So, we need to study some more methods to examine the

convergence of improper integrals, as discussed in detail below.

Firstly, we state two important results :

1. Test for convergence at  : When the integrand keeps the same sign,

positive or negative, in [a, t], (t  a), we may suppose that f is non-negative there,

because of negative, it can be replaced by (–f) for testing the convergence. The case

f = 0, being a trivial case, therefore, there is no loss of generality when we suppose

that f is positive throughout.

2. NASC for the convergence at  : A necessary and sufficient condition

for the convergence at of 
a

f(x) dx


  in [a, t] is that, there exists a positive number M,

(independent of t), such that 

t

a

f(x) dx < M for every t  a.

2.3.3.1 Direct Comparison Test

Art 1 Statement : If f and g are both positive for every x [a, ) and both are

integrable in [a, t], t a,  then

(i) If f (x)  g(x) and 
a

g(x) dx


  is convergent at , then 
a

f(x) dx


  is also convergent

at 

(ii) If f (x)  g(x) and 
a

g(x) dx


  is divergent at , then 
a

f(x) dx


  is also divergent at .

Proof : (i) f and g are both bounded and integrable in [a, t], t  a and

 f and g are both positive, with f (x) g (x)   x [a, x]


t t

a a

f(x) dx g(x) dx  ... (1)
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But 
a

g(x) dx


  dx is given to be convergent at , So 

t

a

g(x) dx  is bounded above,   t a

  M > 0 s.t. 

t

a

g(x) dx M, t a  


t

a

(1) gives f(x) dx M, t a  


a

f(x) dx


  is convergent at .

(ii) f(x) g(x) x [a, )   


t t

a a

f(x) dx g(x) dx  ... (1)

But, as 
a

g(x) dx


  is divergent at 


t

a

g(x) dx  is unbounded

 (1) implies that 
t

a

f(x) dx  is unbounded


a

f(x) dx


  is divergent at .

2.3.3.2 Practical Comparison Test

Art 2 Statement : If f and g are positive in [a, t] and

(i)
t

f(x)
L im ,

g(x)
 l  where l is non-zero finite number then, the two integrals

a a

f(x) dx and g(x) dx
 

   converge or diverge together.
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(ii) If 
t

f(x)
L im 0,

g(x)
  and 

a

g(x) dx


  converges, then 
a

f(x) dx


  also converges.

(iii) If 
x

f(x)
L im ,

g(x)
   and 

a

g(x) dx


  diverges, then 
a

f(x) dx


  also diverges.

Proof : (i) Clearly l > 0. Take 0, s.t. l –> 0.

Since x

f(x)
L im

g(x)
 l

 a number k (> a) however large, such that for x > k

f(x)
or ( ) g(x) f(x) ( )g(x)

g(x)
        l l l

Now (l–) g(x) < f(x)   x > k > a

So, if 
a

f(x) dx


  converges, then by direct comparison test 
a

g(x) dx


  also converges at

.

Again, from (1), f (x) < (1 + ) g(x)   x > k > a

 if 
a

fx dx


  diverges, then by comparison test, 
a

g (x) dx


  also diverges at .

Example 4 : Test for convergence of integrals

(i) 
2

1

log x
dx

x



 (ii) 
x

0

1 dx
e

1 x x


 

 
 



Sol. (i) 
3

2
2 2 1

2

log x log x log x
f(x) x . 0, as x

x x
x

     

 taking 
3 1

2 2

1 f(x) log x
g(x) ,

g(x)
x x

  

3x
1 2

f(x) dx
L im 0; but

g(x)
x




   converges at 



8B.A. PART -II MATHEMATICS PAPER–I


1

f(x) dx


  is also convergent at .

(ii)
x

x

1 1 1 1 1
f(x) e

1 x x 1 x xe

   
      

    

2 3

x

x x

x x
1 x ... 1 x

2 3e 1 x

x (1 x) e x (1 x) e

 
      

    
 

2 3

x

x x
....

2 1
0, x 0

x (1 x) e

 

   


and
x
L im f(x) 0




Now,

1
x x x

0 0 1

1 dx 1 dx 1 dx
e e e

1 x x 1 x x 1 x x

 
       

         
       

  

But first integral is proper, so we discuss the convergence of second at .

Here,
x

x

e (1 x) 1 1
f(x) . .

1 x xe

 




Take 2

1
g(x)

x



x x x

x x

f(x) e (1 x) x e (1 x) 1 [1 (1 x) e ]
. .

1 1g(x) 1 xe e 1 1
x x

      
   

   


x

f(x)
L im 1 0,

g(x)
  


1 1

f(x) dx and g(x) dx
 

  behave alike

But 
1 1

g(x) dx is convergent at i.e. f(x) dx also converges.
 

 

 the given integral converges.

The proof of (ii) and (iii) part is left as an exercise for the reader.
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2.3.3.3 Useful Comparison Test

Art 3 Statement : Show that the improper integral p
a

dx
(a 0)

x



  is convergent at ,

if p > 1 and divergent at , if p 1.

Proof : Let 
p

a

dx
I

x



 

When  
t

t

a
a

dx t
p 1, log x log

x a
  

When  
tt p 1

1 p 1 p

p
a a

dx x 1
p 1, t a

p 1 (1 p)x

 
  

    
   



 when p = 1, 

t

t t
a

dx t
L im L im log

x a 
  

 I diverges at 

When p < 1,  
t

1 p 1 p

pt t
a

dx 1
L im L im t a

1 px

 

 
   



 I diverges at 

When p > 1, 

t

p p 1 p 1 pt t
0

dx 1 1 1 1 1
L im L im finite

1 p p 1x t a a 1  

   
      

     


 I converges at .

Example 5 : Test for the convergence of the integral 
2e

dx

x log (log x)





Sol. Let, 
2 2e

dx dt

x log (log x) log t

 

 
1

[Put log x t dx dt]
x

  

Take m

1
g(t) , 0 m 1

t
  
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
m

m

1

f(t) tlog t

g(t) log tt
 

m m 1
m

t t t t

f(t) t mt
L im L im L im L im mt

1g(t) log t

t



   
    

But
2

g(t) dt


  diverges by useful compersion test

 I diverges at .

2.3.3.4 Cauchy's Test

Art 4 Statement : The NASC for the convergence of the improper integral

a

f(x) dx at ,


  is that to each > 0, there exsits a positive number k, such that

t2

1 2

t1

f(x) dx t , t k  .

Proof : The proof is left as an exercise for the reader.

Example 6 : Show that 
0

sin x
dx

x



  is convergent.

Sol.
sin x

1, as x 0,
x

   So, 0 is not a point of infinite discontinuity


1

0 0 1

sin x sin x sin x
dx dx dx

x x x

 

   

We discuss the convergence of 
1

sin x
dx at

x





Let > 0 be given; let t
1
, t

2
, be two numbers, both greater than 

4


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 1 2

1 2

4 1 4 1
t or and t or

t 4 t 4

 
   
 



tt t t22 2 2

2
t t tt1 1 11

sin x 1 1 cos x
dx (sin x) dx ( cos x) dx

x x x x

    
       

    
  

t2
21

2
1 2 t1

cos tcos t cos x
dx

t t x

 
   
 





t t t2 2 2
21

2 2
1 2 1 2t t t1 1 1

cos tcos tsin x cos x 1 1 dx
dx dx

x t t t tx x
       

 |cos x| 1

1 2 1 2

1 1 1 1

t t t t 4 4 4 4

       
           
   


t2

t1

sin x
dx

x


 by Cauchy's test 
1

sin x

x



  dx converges and consequently 
0

sin x

x



  dx is

convergent.

2.3.3.5 Abel's Test

Art 5 Statement : If g is bounded and monotonic in (a, ) and 
a

f(x) dx


  is convergent

at ; then f (x) g(x) is convergent at .

Proof : Since g (x) is monotonic in (a, ), it is integrable in (a, t)   t a.

Also f (x) is integrable in (a, t)

So, by second mean value theorem



12B.A. PART -II MATHEMATICS PAPER–I

t t2 2

1 1 1 2

t t1 1

f(x) g(x) dx g(t ) f(x) dx g(t ) f(x) dx, for a t t




        ... (1)

Let > 0 be given

Since, g is bounded in (a, )

 a positive number k s.t. 1g (t ) k x a  

In particular, |g (t
1
)| k and |g (t

2
)| k ... (2)

Since 
a

f(x) dx


  is convergent,

 by Cauchy's test, a number M such that

t2

1 2

t1

f (x ) t , t M
2M


   ... (3)

Let t
1
, t

2 
of (1) be M, so that lying between t

1
, t

2 
is also M.

 from (3), we have

t2

t1

f(x) , f(x)
2k 2k





 
   ... (4)

i.e. from (1), (2) and (4), it follows that M such that for t
1
, t

2 
M

t t2 2

1 2

t t1 1

f(x) g(x) |g (t )| f(x) |g(t )| f(x) k . k .
2k 2k





 
       

Hence, by Cauchy's test, 
a

f(x) g(x)


  is convergent at .

2.3.3.6 Dirichlet's Test

Art 6 Statement : If g (x) is bounded, monotonic and tends to 0, as x and

t

a

f(x) is bounded for t  a then 
a

f(x) g(x)


 is convergent at .

Proof : The proof of Dirichlet's test is important and left as an exercise for the

reader.

Example 7 :  Discuss the convergence or otherwise of  the integral :
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a

cos ax cos bx
dx (a 0)

x






Sol.
a

cos ax cos bx
I dx

x




 

Take f (x) = cos ax – cos bx , g (x) = 
1

x

Now, 
tt t

a a a

sin ax sin bx
f(x) dx (cos ax cos bx) dx

a b

 
    

 
 

2sin at sina sin bt sin ab

a b

 
 

2|sin at| |sin a | |sin bt| |sin ab|

|a| |a| |b| |b|
   

1 1 1 1 1 1
2

|a| |a| |b| |b| |a| |b|

 
      

 



t

a

f(x) dx  is bounded and g (x) = 
1

x
 is monotonic decreasing and 0, as x 

 by Dirichlet's test, I converges at .

2.3.4 Improper Integrals of Second Kind

If f (x) has a point of infinite discontinuity on [a, b], then 
b

a

f(x) dx  is called an improper

integral of second kind. These are further divided into four types :

Type I : Convergence at the left end point

Here we define 
b b

0 0
a a

f(x) dx L im f(x) dx
 



  provided the limit on the right exists, (finitely).

Otherwise, it is called divergent.

Type II : Convergence at the right-end point

Define 
b b

0 0
a a

f(x) dx L im f(x) dx,


 
   provided the limit on the right exists (finitely),
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otherwise it is called divergent.

Type III : Convergence at both ends.

If a and b are only points of infinite discontinuity of f,

then 

b c b

a a c

f(x) dx f(x) dx f(x) dx    ... (1)

1c b

10 0 0 0a c

L im f(x) dx L im f(x) dx


    

  

b '

0 0
a

L im f(x) dx,


 


  provided the limit on the right exists, independent of , '.

Type IV : Convergence at interior points

If an interior point c (a < c < b) is the only point of discontinuity of f, then

b c b

1 2

a a c

f(x) dx f(x) dx f(x) dx I I     

The improper integral 
b

a

f(x) dx  is convergent, if both the improper integrals I
1 
and I

2

on the right converge as in accordance with the definition given above.

As discussed in case of improper integrals of first kind, the above discussed types

may not be appropriate for some of the cases. So, we need to study some other

tests to discuss the convergence of improper integrals of second kind. Firstly, we

state two important results :

1. Test for convergence at 'a' of 
b

a

f(x) dx

When a, the left end point is the only point of infinite discontinuity of f in

[a, b],  we assume that f is positive on [a, b]. In case f is negative, we can replace it

by (–f).

The case when b is the only point of infinite discontinuity can be treated in the

same manner.

2. NASC for convergence at 'a' of 
b

a

f(x) dx



15B.A. PART -II MATHEMATICS PAPER–I

NASC for the convergence of the improper integral 
b

a

f(x) dx   at 'a', where f is positive

on [a, b], is that there exists a positive constant M, independently of > 0 such that

b

a

f(x) dx M,


    belonging to (0, b – a).

2.3.4.1 Comparison Test (First Form)

Art 7 Statement : I f  f  and g are two posit ive functions such that

f (x)  g (x)  x  [a, b]; then

(i)
b b

a a

f(x) dx converges, if g(x) dx converges 

(ii)
b b

a a

g(x) dx diverges, if f(x) dx diverges 

Proof : Let f and g be both bounded and integrable in [a + , b], 0 < < (b – a) and

'a' is the only point of infinite discontinuity of f in [a, b].

Since, f and g are positive and f (x) g (x)  x [a, b]


b b

a a

f(x) dx g(x) dx
 

  ... (1)

(i) Let 
b

a

g(x) dx  be convergent

 by def. a positive integer M such that 

b

a

g(x) dx M


  for 0 < < (b–a)

 from (1) 

b

a

f(x) dx M for 0 (b a)


    



b

a

f(x) dx is convergent at a

(ii) It is left as an exercise for the reader.
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2.3.4.2 Practical Comparison Test (Limit-Method)

Art 8 Statement : If f (x) > 0, g (x) > 0,   x (a, b] and 'a' is the only point of infinite

discontinuity of both f(x) and g(x) and

I.
x a

f(x)
L im ,

g(x)
 l  where l, is neither zero, nor infinite, then the two integrals

b b

a a

f(x) dx and g(x) dx  either both converge or both diverge to , at 'a'.

II. If 

b

x
a

f(x)
L im 0 and g(x) dx

g(x)
  is convergent at 'a', then 

b

a

f(x) dx  is also

convegent at 'a'.

III. If 

b

x a
a

f(x)
L im and g(x) dx

g(x)
   is divergent at 'a', then 

b

a

f(x) dx  is also

divergent at 'a'.

Proof : Since, x a

f(x)
L im ;

g(x)
 l  where l is non-zero, finite.

 0,     a +ve number , such that

f(x)

g(x)
     l l  whenever, a < x < a + 

Take , so small that l – is +ve

 ( ) g (x) f(x) (1 ) g (x) a x a          l

(i) If 
b

a

g(x)  dx is convergent at 'a', then 

a

a

g(x)


  dx is also convergent at a

As f (x) < (l + ) g(x) and 

a

a

( ) g(x)


  l  dx is convergent


a

a

f(x)


  dx is convergent at 'a' and hence, 
b

a

f(x)  dx is also convergent at 'a'.
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(ii) If 

b

a

g(x)dx  is divergent at 'a', then 
a

a

g(x) dx


  is also divergent



a

a

f(x) ( ) g(x) and ( ) g(x) dx is divergent at 'a '


    l l



a

a

f(x) dx is divergent at 'a ' and hence,


  
b

a

f(x)  dx is divergent at 'a'.

(iii) If 
b

a

f(x)  dx is convergent at 'a', then 

a

a

f(x)


  dx is also convergent at 'a' But

(l–) g(x) < f(x) and 
a

a

f(x)


  dx is convergent at 'a'


a

a

( ) g (x) dx


  l  is also convergent at 'a'


a

a

g (x) dx


  is also convergent and have, 
b

a

g (x) dx  is also convergent.

(iv) If 
b

a

f (x) dx  is divergent at 'a', then 
a

a

f (x) dx


 is divergent at 'a'. But as

(l + ) g(x) > f (x) and 
a

a

f (x) dx


 is divergent at 'a'.


a

a

( ) g(x) dx


  l  is also divergent at 'a'


a

a

g(x) dx


  is divergent at 'a' and hence, 
b

a

g(x) dx  is divergent at 'a'.

Hence 
b b

a a

f(x) dx and g(x) dx,   behave alike.
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The proof of part II and part III left as an exercise for the reader.

2.3.4.3 Useful Comparison Test

Art 9 Statement : The improper integral 

b

p
a

dx

(x a) converges, if only if p < 1.

Proof : The proof is left as an exercise for the reader.

2.3.4.4 General Test for Convergence

Art 10 Statement : The NASC for the convergence of improper integral 
b

a

f(x) dx

at 'a' is that for every given > 0, there corresponds > 0, s.t.

a 2

a 1

f(x) dx ,





    positive number 
1
, 

2 


Proof : The proof is left as an exercise for the reader.

Example 8 : Discuss the convergence of the following integrals :

(i) 

2

1/2 1/3
1

dx

(x 1) (2 x)  (ii) 

2

1

x
dx

log x (iii) 

1

m
0

sin x
dx

x

Sol. (i) Let 

3

2 22

1 21 1 11 1 1
31 12 2 23 3 3
2

dx dx dx
I I I

(x 1) (2 x) (x 1) (2 x) (x 1) (2 x)

    

     
  

For 

3

2

1 1 1
1 2 3

1
I dx,1

(x 1) (2 x)



 
  is the only point of infinite discontinuity.

Take 1

2

1
g(x)

(x 1)





 such that  
1

3

f(x) 1
1as x 1 0

g(x)
(2 x)

   


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But

3

2

1
1 2

1
dx converges at 1

(x 1)
  and , 1, converges at 1.

For

2

2 1 1
3 2 3
2

1
I dx,

(x 1) (2 x)



 
  is the only point of infinite discontinuity

Take 1

3

1
g(x)

(2 x)





 such that 1

2

f(x) 1
1 as x 2 0

g(x)
(x 1)

   



But
2

21
3 3
2

1
dx or I converges at 2

(2 x)
  and , I

2 
converges at 2.

Hence the given integral converges.

(ii) 
2

1

x
I dx

log x
 

1 is the only point of infinite discontinuity of f

 take 
1

g(x)
x 1




 such that 
f(x) x

(x 1)
g(x) log x

 

11
3 1 23
2 2

x 1 0 x 1 0 x 1 0

3 1
x x

f(x) x x 2 2L im L im L im
1g(x) log x

x



     




 

3 1

2 2

x 1 0

3 1 3 1
L im x x 1 0,

2 2 2 2 

 
        

 

But 
2 2

1 1

dx x
diverges at1. and therefore, dx also diverges at1.

(x 1) log x 
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(iii) 
2

m
0

sin x
I dx

x



 

When m > 0, the only point of infinite discontinuity is 0

Now,
m m 1 m 1

sin x sin x 1 1
.

xx x x 
 

sin x
1

x

 
 

 


But
2

m 1
0

dx

x



  is convergent for m–1 < 1 i.e. for m < 2


2

m
0

sin x
dx

x



  is convergent for m < 2  and is divergent for m 2.

2.3.5 Absolute and Conditional Convergence

Def : (i) The improper integral 
b

a

f(x) dx  is said to be absolutely convergent if 
b

a

|f(x)|dx

is convergent.

(ii) An improper integral 
a

f(x) dx


  is said to be absolutely convergent, if 
a

|f(x)|dx


  is

convergent.

Some Useful Results :

Result (1) : 
b b

a a

|f(x)|dx exist f(x) dx exists. 

or Every absolutly convergent integral is convergent.

Result (2) : If 
a

|f(x)|dx


  converges, then 
a

f(x) dx


  also converges.

Result (3) : Let be bounded in [a, ) and integrable in [a, t],  t a.
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Let 
a

f(x) dx


  converge absolutely at , then 
a

f(x) (x) dx


  is absolutely convergent.

Result (4) : A convergent integral not absolutely convergent, is conditionally

convergent.

Example 9 : Test the convergence of 
1

0

1
sin

x dx
x



Sol.

1
sin

xf(x)
x



1

0

11 sinsin
1 dxxxx (0,1], and dx is convergent

x x x x
    


1 1

0 0

1 1
sin sin

x xdx is convergent and hence, dx
x x

   is absolutely convergent.

2.3.6 Summary

In this lesson, we have elaborated the concept of improper integrals of first kind (one

or both of the limits are infinite) and second kind (limits are finite but the function

f(x) contains a point of discontinuity). For both of these improper integrals, we have

discussed various useful tests to check their convergence. Moreover, the concept of

absolute and conditional convergence is also explained. The concepts are  made more

clear with the help of various suitable examples.

2.3.7 Key Concepts

Convergence, Improper Integrals, Comparison Tests, Cauchy’s Tests, Abel’s Tests,

Dirichlet’s Tests, Absolute Convergence, Conditional Convergence

2.3.8 Long Questions

1. Examine for the convergence of 
0

1 1 dx

x sinh x x


 

 
 

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2. Discuss the convergence of 
2

0

sin (x ) dx




3. Test the convergence of the integrals :

(a) 
a

2 2
x

x
dx

a x 
 (b) 

1

0

log x
dx

x
 (c) 

2 m

n
0

sin x
dx

x





for n  1.

4. Show that 
0

sin x
dx

x



 is not absolutely convergent.

2.3.9 Short Questions

1. Test for the convergence of 5
1

x
dx

(1 x)



 .

2. Define improper integral of first kind.

3. State direct comparison test for the convergence of improper integral of first

kind.

4. State Cauchy’s test for the convergence of improper integral of first kind. 5.

State Dirichlet’s test for the convergence of improper integral of first kind. 6.

Write a note on absolute and conditional convergence.

2.3.10 Suggested Readings

1. Malik and Arora : Mathematical Analysis

2. Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry
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BETA AND GAMMA FUNCTIONS AND FRULLANI'S
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2.4.1 Objectives

2.4.2 Introduction

2.4.3 Convergence of Beta and Gamma Functions

2.4.4 Relation Between Beta and Gamma Functions

2.4.5 Properties of Beta Function

2.4.6 Properties of Gamma Function

2.4.6.1 Duplication Formula

2.4.7 Summary

2.4.8 Key Concepts

2.4.9 Long Questions

2.4.10Short Questions

2.4.11Suggested Readings

2.4.1 Objectives

The prime objective of this lesson is to discuss in detail about the two important

improper integrals known as Beta functions and Gamma functions.

2.4.2 Introduction

Firstly, we introduce the beta and gamma functions as :

Beta Functions : The integral 
1

m 1 n 1

0

x (1 x) dx   where m > 0, n > 0 is called a Beta

Function and is denoted by B (m, n). The quantities m, n are positive but not necessarily

integers.

For Example : 
1

3 5

0

x (1 x) dx  is a Beta Function and is denoted by B (4, 6).

23
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Gamma Function : The integral x n 1

0

e x dx, n 0


   is called a Gamma function and

is denoted by (n) . The quantity n is positive but not necessarily integer.

For Example : 3 x

0

x e dx




  is a Gamma function and is denoted by (4) .

2.4.3 Convergence of Beta and Gamma Functions

Art 1 : Show that 
1

m 1 n 1

0

(m,n) x (1 x) dx     exists, if and only if m and n are both

positive.

Proof : 
1

m 1 n 1

0

(m,n) x (1 x) dx   

The integral is proper, if m  1 and n  1.

The number 0 is a point of infinite discontinuity if m < 1 and the number 1 is a point

of infinite discontinuity if n < 1.

We take a number (say) 
1

2
, between 0 and 1 to examine the convergence of the

improper integrals 

1

12
m 1 n 1 m 1 n 1

10

2

x (1 x) dx and x (1 x) dx       at 0 and 1 respectively.

Convergence at 0 :- Consider 

1

2
m 1 n 1

0

x (1 x) dx 

Here 
n 1

m 1 n 1

1 m

(1 x)
f(x) x (1 x)

x


 




  

Take 1 m

1
g(x)

x 

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
n 1

1 m

1 mx 0 0 x 0 0

f(x) (1 x)
L im L im x 1

g(x) x




   


    which is non-zero finite.



1 1

2 2

0 0

f(x) dx and g(x) dx   behave alike.

But

1

2

1 m
0

1
dx

x   is convergent if 1 – m < 1 or if m > 0



1

2

0

f(x) dx  converges, for m > 0.

Convergence at 1 : Consider 

1
m 1 n 1

1

2

x (1 x) dx 

Here,
m 1

m 1 n 1

1 n

x
f(x) x (1 x)

(1 x)


 


  



Take 1 n

1
g(x)

(1 x) 




1 mx 1 0 x 1 0

f(x) 1
L im L im 1

g(x) x    
   which is non-zero finite



1 1

1 1

2 2

f(x) dx and g(x) dx behave alike 

But
1

1 n
1

2

1
dx

(1 x)   converges for 1 – n < 1, i.e., if n > 0.
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and
1

1

2

f(x) dx  converges for n > 0 ...(2)

From (1)and (2), we get

1
m 1 n 1

0

x (1 x) dx   converges for positive values of m and n only.

Cor. Using -function, discuss the convergence of the integral

2
p 1 q 1

0

sin x cos x dx



 



Proof : The proof is left as an exercise for the reader.

Art 2 : Show that, the integral n 1 x

0

x e dx


 

  is convergent, if and only n > 0.

Proof : Let 
x

n 1 x

1 n

e
f(x) x e

x


 


 

Clearly f has infinite discontinuity at 0, if 1 – n > 0 i.e. if n < 1.

 we have to discuss convergence at 0 and both.

Now

1
n 1 x n 1 x n 1 x

1 2

0 0 1

x e dx x e dx x e dx I I
 

          

Convergence at 0 of I
1 
(m < 1)

Take 
x

1 n

1 f(x)
g(x) so that e 1, as x 0

g(x)x




   

But
1 1

1 n
0 0

dx
g(x) dx ,

x 
   which converges iff 1–n < 1 i.e. iff n > 0.


1

n 1 x

0

x e dx 

  converges iff n > 0.
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Convergence at of I
2

Take

n 1

2 x

1 f(x) x
g(x) so that 0, as x n

g(x)x e



     

But
n 1 x

2
1 1

dx
converges x e dx also converges for n

x

 
   

Hence
n 1 x

1

x e dx


 

  is convergent, iff n > 0

Cor.1 : Prove that (1) 1 

Proof : Put n = 1



tt x
x x t

t t t
0 0 0

e
(1) e dx lim e dx lim lim (1 e ) 1

1

 
  

  

 
       

 
 

Cor.2 : If n > 1 is any real number, then (n) (n 1) (n 1)   

Proof : 
t

n 1 x n 1 x

t
0 0

(n) x e dx lim x e dx (n 1)


   


    

 
t

tn 1 x n 2 x

0t
0

lim (x ) ( e ) (n 1) x e dx   


   

(Integrating by parts)

 
t

t n 1 n 2 x

t t
0

lim 0 e t lim (n 1) x e dx   

 
   

n 2 x

0

0 (n 1) x e dx (n 1) (n 1)


       

 (n) = (n – 1)(n–1)

Cor. 3 : If n is a+ve integer, then (n) = n 1

Proof : The proof is left as an exercise for the reader.

Note : The formulal deduced under Cor. 2 and Cor. 3 are known as Recurrence

Formulae for Gamma function.
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2.4.4 Relation Between Beta and Gamma Functions

Art 3 : Prove that 
(m) (n)

B(m,n)
(m n)

 


 
 where m > 0, n > 0.

Proof : We have n 1 x

0

(n) x e dx


   

Put x = tz,  dx = t dz and x = 0 z = 0, x z 

 n 1 tz n n 1 tz

0 0

(n) (tz) e .t dz t z e dz
 

      

Multiplying both sides by e–t tm–1, we get,

t m 1 t m 1 n n 1 tz

0

e t (n) e t t z e dz


       

or t m 1 m n 1 n 1 t(z 1)

0

(n) . e t t z e dz


        

Integrating both sides w.r.t. t between the limits 0 to , we get,

t m 1 m n 1 n 1 t(z 1)

0 0 0

(n) e t dt t z e dz dt
  

      
 

   
 

  

 t m 1 n 1 m n 1 t(z 1)

0 0 0

(n) e t dt z t e dt dz
  

      
 

   
 

   ... (1)

Put t (z + 1) = y 
y

t
z 1





dy

dt
z 1




Now t = 0 y = 0 and t y 

 from (1), we get, 
m n 1

t m 1 n 1 y

0 0 0

y dy
(n) e t dt z e dz

z 1 z 1

   
   

  
    

    
  


n 1

m n 1 y

m n
0 0

z
(n) (m) y e dy dz

(z 1)

 
  



 
    

  
 
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
n 1 n 1

m n m n
0 0

z z
(m) (n) (m n) dz (m n) dz

(z 1) (z 1)

  

 
       

  


(m) (n)

(m) (n) (m n) B (m, n) i.e. B (m, n)
(m n)

 
     

 

Cor 1. Prove that 
1

2

 
   

 

Proof : The proof is left as an exercise for the reader.

1 1
Hint: Put m= , n

2 2

 
 

 
.

2.4.5 Properties of Beta Function

Property I : B (m, n) = B (n, m) (Symmetry of Beta Function)

Property II : 
m 1 n 1

m n m n
0 0

x x
B(m,n) dx dx; m, n 0

(1 x) (1 x)

  

 
  

  

Property III :  
1 m 1 n 1

m n
0

x x
B (m,n) dx; m, n 0

(1 x)

 




 



Property IV :  B (m, n) = B (m, n + 1) + B (m + 1, n)

Property V : 
B (m,n 1) B (m 1, n)

n m

 


Property VI : B (m,n 1) B (m,n) B (m 1, n)

n m n m

 
 



Property VII : m 1 n 1
B (m,n) ; m, n 0 and m,n Z

m n 1

 
  

 

Property VIII : 
2

2m 1 2n 1

0

B(m, n) 2 sin cos d , m,n 0



     

Now, we will prove the properties II, VII and VIII, while the proof of rest of the properties

is an easy exercise for the reader.
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Proof of Property II : 
m 1 n 1

m n m n
0 0

x x
B(m,n) dx dx; m, n 0

(1 x) (1 x)

  

 
  

   .

As
1

m 1 n 1

0
B (m,n) x (1 x) dx; m, n 0   

Put 2 2

t (1 t) t(1) 1
x , dx dt dx dt

1 t (1 t) (1 t)

  
     

   

Now x (1 + t) = t x + t x = t x = t – t x x = t (1 – x) 
x

t
1 x




When x = 0, t = 0 and when x = 1, t 


m 1 n 1 m 1

2 m 1 n 1 2
0 0

t t 1 t 1 1
B(m,n) 1 dt . . dt

1 t 1 t (1 t) (1 t) (1 t) (1 t)

   

 

   
     

        
 

m 1 m 1

m 1 n 1 2 m n
0 0

t t
dt dt

(1 t) (1 t)

  

    
 

  


m 1

m n
0

x
B (m,n) dx

(1 x)

 




 ... (1)

[Since variable of integration can be changed in definite integration]

  
n 1

m n
0

x
B(m,n) dx ...(2) B (m,n) B(n,m)

(1 x)

 


 

 

 of (1)

From (1)and (2), we get,

m 1 n 1

m n m n
0 0

x x
B (m,n) dx dx

(1 x) (1 x)

  

 
 

   .

Proof of Property VII : 
m 1 n 1

B (m,n) ; m, n 0 and m, n Z
m n 1

 
  

 

As
1

m 1 n 1

0

B (m,n) x (1 x) dx ; m, n 0   
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1 1n 1 1 n 1 1
m 1 m 2

00

(1 x) (1 x)
x (m 1) x .1 dx

(n 1 1) ( 1) (n 1 1) ( 1)

   
   

   
      



1
m 2 n

0

m 1 m 1
[0 0] x (1 x) dx B (m 2 1, n 1)

n n
 

       


m 1

B (m,n) B (m 1, n 1)
n


   ... (1)

Changing m to (m–1) and n to (n + 1) on both sides of (1), we get

m 2
B (m 1, n 1) B (m 2, n 2)

n 1


    



 from (1), we get

m 1 m 2
B (m,n) B (m 2, n 2)

n n 1

    
     

   
... (2)

Changing m to (m–2) and n to (n + 2) in (1), we get

m 3
B (m 2, n 2) B (m 3, n 3)

n 2


    



 from (2), we get

m 1 m 2 m 3
B(m,n) B (m 3, n 3) and so on

n n 1 n 2

       
       

      

 (m 1) (m 2) ..... 2.1
B (m,n) B (1, m n 1)

n (n 1) (n 2) ..... (m n 3) (m n 2)

 
  

     

[(m 1) (m 2) ..... 2.1] [(n 1) (n 2) ......... 2.1]

[1.2.3.... (n 1)] [n (n 1) (n 2).......(m n 3) (m n 2)]

   


      

1
1 1 m n 1 1

0

x (1 x) dx    


1 m n 2

0

m 1 n 1
B (m,n) (1 x) dx

m n 2
  

 
   ... (3)
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
m 1 n 1 1

B (m,n) .
m n 2 (m n 1)

 


   

 m 1 n 1
B (m,n)

m n 1

 


 
 where m, n are +ve integers.



11 m n 1
m n 2

0 0

(1 x) 1 1
(1 x) dx 0

(m n 1) ( 1) m n 1 m n 1

 
     

                
 .

Proof of Property VIII : 
2

2m 1 2n 1

0

B (m, n) 2 sin cos d



    

As

1
m 1 n 1

0

B (m, n) x (1 x) dx; m, n 0   

Put x = sin2 ,  dx = 2 sin cos d

Now x = 0 = 0 and x = 1 
2


  


2

2 m 1 2 (n 1)

0

B (m,n) (sin ) (1 sin ) .2 sin cos d



       

2 2
2 m 1 2 n 1 2m 2 1 2n 2 1

0 0

2 (sin ) (cos ) . sin cos d 2 (sin ) (cos ) d

 

               


2

2m 1 2n 1

0

B (m, n) 2 sin cos d



     .

Art 4 : Prove that 
2

p q

0

1 p 1 q 1
sin cos d B ,

2 2 2



  
     

 
 .
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Proof : Let 
p q2 2

p q 2 22 2

0 0

I sin cos d (sin ) (cos ) d

 

        


p q2

2 22 2

0

I (sin ) (1 sin ) d



     ... (1)

Put sin2= t,  2 sin cosd= dt


2

1 1 1 dt
d dt dt

2sin cos 2 t 1 t2sin 1 sin
   

    

When = 0, t = 0 and when = /2, t = 1


p q p 1 q 11 1

2 2 2 2 2 2

0 0

1 1
I t (1 t) . dt t (1 t) dt

22 t 1 t

 

   


 

1 p 1 q 1 1 p 1 q 1
B , B ,

2 2 2 2 2 2 2 2

    
      

   


2

p q

0

1 p 1 q 1
sin cos d B ,

2 2 2



  
    

 
 .

Example 1 : Evaluate : 
1

5 3 3

0

x (1 x ) dx

Sol. Let 
1 1

5 3 3 3 3 3 2

0 0

I x (1 x ) dx x (1 x ) . x dx    

Put
3 2 2 1

x t, 3x dx dt x dx dt
3

    

Now x = 0 t = 0 and x = 1 t = 1


1 1

3 3

0 0

1 1
I t (1 t) dt t (1 t) dt

2 3
    
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2 1 4 11 1 1
B(1 1, 3 1) B (2, 4)

3 3 3 6 1

 
    



1 1 3 1 3 1
. .

3 5 3 5 4 3 60
  

  .

Example 2 : Show that 
3

7
0

x 1
dx

60(1 x)






Sol. Let 
3 4 1

7 3 4
0 0

x x
I dx dx

(1 x) (1 x)

  


 

  

= B (4, 3)
m 1

m n
0

x
B (m, n) dx

(1 x)

 



 
 

 


3 24 1 3 1 (3 2 1) (2 1) 1

4 3 1 6 6 5 4 3 2 1 60

     
   

      

2.4.6 Properties of Gamma Functions

Art 5 : Prove that 
2

p q

0

p 1 q 1

1 2 2
sin x cos x dx

2 p 1 q 1

2 2

     
   
   

  
 

 

  p > –1, q > –1.

Proof : Let 
2 2

p q p 1 q 1

0 0

I sin x cos x dx sin x cos x (sin x cos x) dx

 

   

p 1 q 12
2 22 2

0

(sin x) (cos x) (sin x cos x) dx



 

 


p 1 q 12

2 22 2

0

1
I (sin x) (1 sin x) (2 sin x cos x) dx

2



 

 

Put sin2 x = t  2 sin x cos x dx = dt
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When x = 0, t = 0 and when x = /2, t = 1


p 1 q 11

2 2

0

1 1 p 1 q 1
I t (1 t) dt B 1, 1

2 2 2 2

 
  

     
 



p 1 q 1

1 p 1 q 1 1 2 2
B ,

p 1 q 12 2 2 2

2 2

    
                   

 


2

p q

0

p 1 q 1

1 2 2
sin x cos xdx

p 1 q 12

2 2

     
    
   

  
  

 

 .

2.4.6.1 Duplication Formula

Art 6 : Show that 
2m 1

1
(m) m (2m)

2 2 

 
     

 

Proof : We have 
1

m 1 m 1

0

B (m, m) x (1 x) dx  

Put x = sin2 , dx = 2 sin cos d

When x = 0, = 0 and When x = 1, 
2


 


2

2 m 1 2 m 1

0

B (m, m) (sin ) (1 sin ) . 2 sin cos d



       

2
2 m 1 2 m 1

0

(sin ) (cos ) . 2 sin cos d



      
2

2m 1 2m 1

0

2 sin cos d



    

2m 1 2m 12 2

0 0

2sin cos sin 2
2 d 2 d

2 2

 
 

     
      

   
 
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
2

2m 1

2m 1
0

2
B (m, m) sin 2 d

2






  

Put 2= z i.e. 
1 1

z d dz
2 2

    

When = 0, z = 0 and When , z
2


   

 2m 1

2m 1
0

2 1
B (m, m) sin z . dz

22





 


2

2m 1 2m 1

2m 1 2m 1
0 0

(m) (m) 1 2
sin z dz sin z dz

(2m) 2 2




 

 

 
 

  

2a a

0 0

f(x) dx 2 f(x) dx if f(2a x) f(x)
 

   
 

 

2
2m 1 0

2m 1 2m 1
0

2m 1 1 0 1

2 2 1 2 2
sin cos z dz .

2m 1 1 0 122 2

2 2





 

     
    
    

   
  

 



 2m 1 2m 1

1 1
(m)

(m) (m) 1 (m) 12 2
.

2m 1 1(2m) (2m)2 2
m

2 2

 

   
            

    
     

   


2m 1

(m) 1
.

1(2m) 2
m

2



 


  
  

 

1

2

  
    

  



2m 1

1
(m) m (2m)

2 2 

 
     

 
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Example 3 : Evaluate 
52

3 2

0

sin x cos x dx





Sol. Let 
52

3 2

0

I sin x cos x dx



 
5

p 3, q
2

 
  

 

5
1

3 1 2
7 72 2 (2) 1.

84 4

5 15 11 7 7 77
1 2 2 . . .

3 1 2 4 4 4 42
2 2

 
  

                   
        

     
            

  
 

.

Example 4 : Show that 
4 5

15
0

x (1 x ) 1
dx

5005(1 x)







Sol. Let 
4 5 4 9 4 9

15 15 15 15
0 0 0 0

x (1 x ) x x x x
I dx dx dx dx

(1 x) (1 x) (1 x) (1 x)

   
 

   
      

5 1 10 1

5 10 10 5
0 0

x x
dx dx

(1 x) (1 x)

  

 
 

  

= B (5, 10) + B (10, 5) = B (5, 10) + B (5, 10)  B (m,n) B(n,m)

(5) (10) (5) (10) 4 9 1
2B (5,10) 2 2 2

(5 10) (15) 14 5005

   
    

  
.

2.4.7 Summary

In this lesson, we have discussed about the convergence and properties of two special

improper integrals called Beta and Gamma functions. The concepts are  made more

elaborative with the help of some suitable examples.
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2.4.8 Key Concepts

Convergence, Improper Integrals, Beta Function, Gamma Function, Duplication

Formula

2.4.9 Long Questions

1. Show that 
a

m 1 n 1 m n 1

0

x (a x) dx a B (m,n)    

2. Show 
n 1

2 n 1.3.5............... (2n 1)
2

 
    

 

3. Show that 
2

0

tan d
2




  

4. Prove that 
1

4m

1 1 m
B (m,m) . B m , m

2 2 2 1

 
   

 

5. Prove that 
2 2

2 2
0

log (1 a x ) a
dx 1

b b1 b x


   

  
  



6. State and prove Duplication formula.

2.4.10 Short Questions

1. Define beta function.

2. Define gamma function.

3. Discuss the convergence of beta function.

4. Discuss the convergence of gamma function.

5. State duplication formula.

2.4.11 Suggested Readings

1. Malik and Arora : Mathematical Analysis

2. Thomas and Finney Calculus and

(Ninth Edition) Analytic Geometry



 

Mandatory Student Feedback Form 

https://forms.gle/KS5CLhvpwrpgjwN98 

 

Note: Students, kindly click this google form link, and fill this feedback form once. 

https://forms.gle/KS5CLhvpwrpgjwN98

	Title & Syllabus.pdf
	2.3.pdf
	2.4.pdf

