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NUMBER THEORY

Lesson No. 1 .1

DIVISIBILITY THEORY IN THE INTEGERS

Structure :

1.1.1 Division Algorithm

1.1.2 The Greatest Common Divisor

1.1.3 Theorem

1.1.4 Euclidean Algorithm

1.1.5 Least Common Multiple

1.1.6 Fundamental Theorem of Arithmetic

1.1.1 Division Algorithm :

Given integers a and b, with b > 0, there exist unique integers q and r satisfying

a = qb + r, 0 < r < b

The integers q and r called respectively the quotient and remainder in the

division of a and b.

Proof: We begin by proving that the set

S = {a – xb/x and integer; a – xb > 0}

is non empty. For this, it is sufficient to prove that if show that  a value of x which

makes a – xb < 0.

Since  b > 1, we have a  b > a  and so

a – a b = a + a  b > a + a  > 0

Hence for the choice x – a , a – xb will lie in S. This paves the way for an

application of well known 'Well ordering principle' which states.

Every non-empty S of non-negative integers contains a least element; that is,

there is some integer a in S such that for a < b for all b belonging to S.

This implies that the set S contains a smallest interger, call it r.

By the definition of S,  a integer q

satisfying r = a – qb, 0 < r

We argue that r < b. If this were not the case, then r > b and

a – (q + 1) b = (q – qb) – b = r – b > 0

a – (q + 1) b has the proper from to belong to the set S. But a – (q + 1) b = r –

1
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b < r, leading to a contradiction of the choice of r as the smallest member of S.

Hence r < b.

We next prove that q and r are unique. Suppose that a has two representations

is

a = bq + r and a = bq' + r'

Where 0 < r = b, 0 < r' - b.

Then r' – r = b (q – q' ) and because of the fact ,

We have ' ' 'r r b q q b q q ; Note b is +ve.

We also have –b < –r < 0 and

0 < r' –r < b we get

–b < r' – r < b or

Thus 'r r b

'b q q b

'0 q q

Since 'q q  is a non-negative integer, the only possibility is that

q - q' = 0

q = q'

which gives r = r'

Hence uniqueness of r and q is proved, Hence the theorem is proved.

Corollary: If a and b are integers with b 0, then there exist unique integers

q and r such that

a = bq + r, 0 < r < b

Proof: We consider the case when b is –ve, because b > 0 part has already been

proved, Then b  > 0 and the theorem proved above implies the existence of unique

integers q' and r for which

a = q' b  + r, 0 < r < b

Noting that b  = –b as b < 0

we take q = –q' to get

  a = qb + r with 0 < r < b

This proves the corollary.
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To illustrate the Division algorithm when b < 0, let us take b = –5, then  for the

choices of a = 1, –3, 57 and –53, we get

1 = 0 (5) + 1

–3 = 1 (–5) + 2

57 = (–11) (–5) + 2

–53 = (–11) (–5) + 2

In this context, we want to concentrate on the application of Division Algorithm.

Example 1: Let a  Z (the set of integers) show that a2 leaves the remainder 0 or 1

when it is divided by 4.

OR

Square of any integer is of the form 4q or 4q + 1.

Solution : Divide a by 2 and use Division Algorithm, we get

a = 2q + r, 0 < r < 2

0 < r < 2 r = 0 or 1

Thus, a = 2q or a = 2q + 1

 a2 = 4q2 or a2 = 4q2 + 4q + 1

= 4 (q2 + q) + 1

 a2 = 4q1 a2 = 4q" + 1

where q1 = q2 and q" = q2 + q

 a2 when divided by 4 leaves remainder 0 or 1.

Similarly, we can prove that if a  Z, a3 leaves the remainder 0, 1 or 3 when

divided by 4.

Example 2 : Show that 

2a a 2

3
 is an integer for all a > 1.

Solution : When 'a' is divided by 3, then we get by Division Algorithm

a = 3q + r, 0 < r < 3 r = 0, 1, 2

a = 3q   or a = 3q + 1, or a = 3q + 2

Now when a = 3q

a (a2 + 2) = 3q (9q2 + 2)

or      
2 2a

a 2 q 9q 2
3

2a a 2

3
 is an integer.

when a = 3q + 1

2

2
a a 2 3q 1

9q 6q 1 2
3 3
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= (3q + 2) (3q2 + 2q + 1), which is again an integer.

Also when a = 3q + 2

2

2
a a 2 3q 2

9q 12q 4 2
3 3

= (3q + 2) (3q2 + 4q + 2), which is again an integer.

Hence we have proved that 

2a a 2

3
 is an integer for all a > 1.

On similar lines, the readers can easily prove that :

(i) Cube of any integer is of the form 9k, 9k + 1 or 9k + 8.

(ii) Square of any integer is of the form 3k or 3k + 1.

Example 3 : Prove that the fourth power of any integer is of the form 5k or 5k + 1.

OR

If a  Z, then a4 leaves remainder 0 or 1 when divided by 5.

Sol. : By Division Algorithm

a = 5q + r 0 < r < 5

a = 5q   or a = 5q + 1  or a = 5q + 2   or a = 5q + 3   or   a = 5q + 4

Now in 1st case a4 = 625q4 = (625 q3) q + 0 

 = 5 (125 q3) + 0  a4 = 5k, where k  = 125 q3

when a = 5q + 1  a4 = 625 q4 + 625 q3 + 250 q2 + 25q + 1

= 5 [125 q3 + 125 q2 + 50 q2 + 5 q] + 1

= 5 k + 1

when a = 5q + 2  q4 = (5q + 2)4

= 625 q4 + 1250 q3 + 1000 q2 + 200 q + 16

= 5 (125 q3 + 250 q3 + 200 q2 + 40 q + 3) + 1

= 5 k + 1

when a = 5q + 3

a4 = (5q + 3)4

  = 625 q4 + 1975 q3 + 2250 q2 + 4025 q + 81

 = 5 (125 q4 395 q3 + 450 q2 + 805 q + 16) + 1

Similarly we can prove the last part.

In this way, we have proved that a4 is always of the form 5k or 5k + 1.

1.1.2 The Greatest Common Divisor :

By Division algorithm, we know that

a = q b + r

i.e. when a is divided by b, q is the quotient and r is the remainder.

In case r = 0, we say that b divides a
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Now, an integer y is said to be divisible by an integer x 0, in symbols 
x

y , if

there exists some integer z such that y = xz. We write 
x

y  to indicate that y is not

divisible by x.

For example :  – 15 is divisible by 5 i.e. – 15 = 5 (–3)

and 10 is not divisible by 7 as there is no integer k such that 10 = 7k.

The above statement can also be rewritten as x is a divisor of y or x is a factor

of y or y is a multiple of x.

If x is a divisor of y, then y is also divisible by –x i.e. y = x z y = (–x) (–z), so

that divisors of an integer always occur in pairs.

Theorem 2 : For integers x, y, z, the following results hold :

(i) x 1 x, ,
0 x x

(ii) x
1  iff x = + 1

(iii) if 
xZx zand then

y u yu

(iv) if 
yx xand then

y z z .

(v) if 
yx and

y x if and only if x = + y

(vi) if  x and y 0,then x y
y

(vii) if 
x x xand , then

y z ay bz  for arbitrary integers and a and b.

Proof: We understand that the proofs of (i) to (v) are very trivial and students are

advised to prove these parts themselves.

We start with the proof of (vi)

If 
x

y  and y 0 then x y

If 
x

y  then there exists z such that
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   y = xz and y  0

   z  0

On taking absolute values, we have

   y x z z or x y

Proof of (vii) part :

x
y  and x

z  ensure that

y = xr, z = x s for suitable integers r and s.

But then, a y  + bz = a x r + b x s

  = x (a r + b s)

Whatever be the choice of a and b.

Since a r + bs is an integer, so a y + b z is divisible by x.

The lost part (vii) can be further extended by induction to the sums of more

than two terms. That is,

if
x

yi for i = 1, 2, ........... n, then

  1 1 2 n n2

x
(y a y a ....... y a )

for all integers a
1
, a

2
 ............, a

n

Definition: If x and y are arbitrary integers, then an integer d is said to be common

divisor of x and y if 
d dand

x y . Since 1 is a divisor of every integer, so 1 is a common

divisor of x and y; hence the set of positive common divisors is non-empty. Now every

integer divides 0, so if x = y = 0, then every integer serves as a common divisor of x

and y. At this instance, the set of positive common divisors of x and y is infinite.

However, when at least one of x or y is different from zero, there are only a finite

number of positive common divisors. Among these, there exists a largest one, called

the greatest common divisor of x and y.

If x and y are given integers, with at least one of them different from zero. The

greatest common divisor of x and y denoted by gcd (x, y), is the positive integer d

satisfying
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(1)
d d,

x y

(2) If 
z z,

x y  then z < d.

For Example : The positive divisors of –12 are 1, 2, 3, 4, 6, 12 while those of 30 are 1,

2, 3, 5, 6, 10, 15, 30; hence the positive common divisors of –12 and 30 are 1, 2, 3, 6.

As 6 is the largest of these integers, it follow that

g c d (–12, 30) = 6. In the same way, we can show that

g c d (8, –17) = 1, g c d of (–8, –36) = 4

g c d (–5, 5) = 1.

The next theorem is very important as it indicates that g c d of (x, y) can be

represented as a linear combination of x and y (by a linear combination of x, y we

mean that an expression of the form xr + ys where r and s are integers).

For instance

g c d (–12, 30) = 6 = (–12) 2 + 30 (1)

or

g c d (–8, 36) = 4 = (–8) 4 + 36 (–1)

Theorem 3 : Given integers x and y, not both of which are zero, there exist

integers r and s such that

g c d (x, y) = xr + ys

Proof: Consider the set S of all positive combinations of x and y;

S = {xu + yv / xu + yv < 0, u, k are integers}

Notice first that S is not empty. For example, if x  0, then the integer x,

x = xu + y, 0 will be in S

We choose d = 1 or u = –1 according as x is positive or negative. By virtue of the

well ordering principle, S must contain a smallest element d. Thus from the definition

of S, there exists integers r an s for which

d = rx + yx

We claim that d = g c d (x, y)

Taking stock of the Division Algorithm, one can obtain the integers q and q'

such that x = qd + q' where 0 < q' < d.

Then can be written in the form

q' = x – qd = x – q (ax + by)

= x (1 – qa) + y (–bq)

When q' < 0, this representation implies that q' is a member of S, contradicting

the fact that d is the least integer in S (recall that q' < d). Therefore q' = 0 and so x =
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qd or equivalently 
d

x
. By similar reasoning 

d

y
, the effect of which is to make d a

common divisor of both x and y.

Now if z is an arbitrary common divisors of x and y, then past (v) of the theorem

on page allows us to conclude that 
z

xr ys
; In other words, 

z

d
.

By (6) of the same theorem, z = z d d  so that d is greater than every

positive common divisor of x and y. Combining all the facts together, we see that

d = g c d (x, y)

Corollary : of x and y are given integers, nor both zero, then the set

T = {xr + ys /r, s are integers}

is precisely the set of all multiples of d = g c d (x, y)

Proof : Since 
d d

and
x y

, we know that d (xr + ys for all integers x and y).

Thus every member of T is a multiple of d. On the other hand d may be written

as d = xr = yx, for suitable integers x
0
 and y

0
 so that any multiple of nd of n is of the

form

nd = n (x x
0
 + y y

0
)

= x (n x
0
) + y (n y

0
)

Hence nd is a linear combination of x and y and by definition lies in T.

Note : It may happen that 1 and –1 are the only common divisors of x and y so that

g c d (x, y) = 1. For example

g c d (2, 5) = g c d (–9, 16) = g c d (–2 > 35 = 1)

We give a defnition below

Two integers x and y, not both of which are zero, are said to be relatively prime

whenever g c d (x, y) = 1.

Note : 1. If g c d (x, y) = d then

    g c d 
x y

, 1
d d

2. If 
yx and

y z  with g c d (x, y) = 1

then 
xy

z
.
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1.1.4 Euclidean Algorithm:

the Euclidean Algorithm may be described as follows: Let x and y be two integers

whose greatest common divisor is desired. Since g c d x , y  = g c d (x, y), there is no

harm in assuming that x > y > 0. The first step is to apply the Division Algorithm to x

and y we get

x = q
1
 y + r

1
0 < r

1
 < y

If it happens that r
1 
= 0 then y/x and

g c d (x, y) = y.   When r
1
  0, divided y by r, to produce integers q

2
 and r

2

satisfying

y = q
2
  r

1
 + r

2
0 < r

2
 < r

1

of r
2
 = 0, then we stop, otherwise we proceed as before to obtain

r
1
 = q

3
 r

2
 + r

3
0 < r

3
 < r

2

This division process continues until some zero remainder appears, say at

the (n + 1)th stage. When r
n –1

 is divided by r
n
 (a zero remainder occurs sooner or later

since the decreasing sequence y > r
1
 > r

2
 > .......... > 0 cannot contain more than y

integers).

The result is the following system of equations:

x = q
1
 y + r

1
0 < r

1
 < y

y = q
2
 r

1
 + r

2
0 < r

2
 < r

1

r
1
 = q

3
 r

2
 + r

3
0 < r

3
 < r

2

.

.

.

r
n–1

 = q
n+1

 r
n
 + 0 0 < r

n
 < r

n–1

We argue that r
n
, the last non-zero remainder which appears in this manner

is equal to g c d (x, y), our proof is based on lemma:

Lemma : of x = qy + r then  g c d (x, y) =  g c d (y, r) whose proof is as follows:

of d = g c d (x, y), then the relations

d d
and

x y

d d
or .

x qy r

Thus d is a common divisor of both y and r. On the other hand of Z is an

arbitrary common divisor of y and r, then 
z

,
yq r

 whence 
z

x
. This makes z a common

divisor of x and y, s that z < d. It now follow from the definition of

g c d (y, r) that d = g c d (y, r)

On using the result of this lemma, we simply work down the displayed system
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of equations obtaining.

g c d (x, y) = d = g c d (y, r
1
) = .............. = g c d (r

n
 0) = r

n

as claimed before.

Example : Find g c d of 12378 and 3054 and express g c d as the linear combination of

12378 and 354.

Solution :

Now 12378 = 4 (3054) + 162

3054 = 18 (162) + 138

162 = 1 (138) + 24

138 = 5 (24) + 18

24 = 1 (18) + 6

18 = 3 (6) + 0

Our previous theorem tell us that, 6 is the greatest divisor of 12378 and 6054.

6 = g c d (12378, 3054)

Now we express 6 as linear combination of

12378 and 3054

Now 6 = 24 – 18

= 24 + (138 – 5.24)

= 6.24 – 138

= 7.0

= 6. (162 – 138) – 138

= 6.162 – 7.138

= 6.162 – 7 (3054 – 18.162)

= 132.162 – 7.3054

= 132.(12378 – 4.3054) – 7.3054

= 132.12378 + (–535). 3054

6 = g c d (12378, 3054)

   = 12378 r + 3054 s

Here r = 132 and s = –534.

French Mathematician Lama (1795-1870) proved that the number of steps

required in the Euclidean Algorithm is at most 5 times the number of digits in the

smaller integer.

Theorem : If k > 0, g c d (kx, ky) = k g c d (x, y).

Proof : If each of the equations appearing in the Euclidean algorithm, x and y is

multiplied by k, we get

x k = q
1
 (y k) + r

1
0 < r

1
 k < b k

y k = q
2
 (y k) + r

2
0 < r

2
 k < r

1
 k

r
1
 k = q

3
 (r

2
 k) + r

3
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. .

. .

. .

r
n–1

 k =- q
n+1

 (r
n
 k) + 0 0 < r

n
 k < r

n–1
 k

But this is clearly the Eucildean Algorithm applied to the integers xk and yk,

so that their greatest common divisor is the last non-zero remainder r
n
 k that

g c d (k x, k y) = r
n
 = k g c d (x, y)

Corollary : For any integer k > 0,

g c d (k x, k y) = k  g c d (x, y)

1.1.5 Least Common Multiple

The least common multiple of 1000 non-zero integers a and b denoted by lcm

(a,b) is the positive integer m satisfying

(1)
yx and

m m

(2) If 
yx and

z z
with z > 0, then m < Z.

As an example, the positive common multiples of the integers –12 and 30 are

60, 120, 180, 240, ............. Hence

cm (–12, 30) = 80

Given non-integers x and y, cm (x, y)

always exists and cm (x, y) < xy .

Theorem: For positive integers x and y

g c d (x, y). lcm (x, y) < xy

Proof : Take d = g c d (x, y) and

 x = dr, y = ds for integer r and s.

of m = 
xy

d
 then m = x s = r y,

the effective which is to make a (positive) common multiple of x and y. Now let

z be any positive integer that is a common multiple of x and y say definiteness z = x u

= y v. as are know, there exists p and q satisfying d  = xp + qy.

In consequence :

z z z(ps qy) z z
p q

m xy xy y x
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   = up + uq

The equation states that 
m

z
, allowing us to conclude that m < z.

cm (x, y) = 
xy

d
or xy = md.

1.1.6 Fundamental Theorem of Arithmetic:

Every positive integer n > 1 can be expressed as a product of primes, this

representation is unique, apart from the order in which the factors occur.

We assume that the students are now well aware with the primes, composite

numbers.

Some results (without proof):

(i) If p is a prime and 
p p pthen or

xy x y

(ii) or in general p is a prime and 
1 2 n

p
x x .............x  then 

k

p
x  for some k,

where 1 < k < n

Proof of Fundamental Theorem of Arithmetic :

Case I when n is a prime, then there is nothing to prove, then there is nothing

to prove.

Case II of n is composite, then there exists an integer of satisfying 
d

n
 and

1<d<n. Among all these integers d choose p
i
 to be the smallest (that is possible because

of well-ordering principle.). Then p
i
 must be a prime number. Otherwise it too would

have a divisor or q with 1 < q < p
1
, but then 

1

q

p
 and 

1
p q

n n
 which contradicts the

choice of p
i
 as the smallest positive divisor, not equal to 1, of n.

We may therefore write n = p
i
n

1
, where p

i
 is prime and 1 < n

i
 < n. If n

i
 happens

to be a prime, then we have our final representation. In the contrary case, the

argument is repeated to produce a second prime number p
2
 such that

n
i
 = p

2
n

2
, that is

n = p
1
p

2
n

2
1 < n

2
 < n

1

If n
2
 is prime, then it is not necessary to go further otherwise

n
2
 = p

3
n

3
 where p

3
 is a prime

n = p
1
p

2
p

3
n

3
1 < n

3
 < n

2
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The decreasing sequence

   n > n
1
 > n

2
 > ........... > 1

Cannot continue indefinitely, so that after a finite number of steps n – is a

prime say p
k
. This leads to the prime factorisation.

n = p
1
p

2
.........p

k

Second part:

Uniqueness of prime factorisation – let us suppose that the integer n can be

represented as a product of primes in two ways, say

n = p
1
p

2
 ......... p

r

   = q
1
q

2
........... q

s
r < s

Where p
i
 and q

i
 are all primes, written on increasing sequence so that

p
i
 < p

2
 < .............. < p

r
, q

i
 < q

2
 < q

3
 ............ < p

s

Since 
1

i 2 s

p

q q .......p
, the previous theorems tells us that p

1
 = q k for some k; but

then p
i
 > q

i
.

Similar reasoning gives q
i
 > p

i
 p

i
 > q

i
 may be cancel this common factor and

obtain

p
2
.........p

r
 = q

2
........q

s

Now repeat the process to get p
2
 = q

2
 and

p
3
p

4
..........p

r
 = q

3
q

4
........q

s

Continue in this fashion. If the in equality r < s held we should arrive at

1 = q
r+1

 q
r+2

........q
r+s

which is meaningless since each q
i
 > 1. Hence r = s and

p
1
 = q

1
, p

2
 = q

2
 .........., p

r
 = q

r

Hence the two representations are identical. This completes the proof.

Corollary : Any positive integer n > 1 can be written uniquely in a canonical form

i.e. n = 1 2 r

r1 2

k k k
, ..........,p p p

Where for i = 1, 2 ...........r, each k
i
 is a +ve integer and each p

i
 is a prime, with

p
1
 < p

2
 ......... < p

r

To illustrate, Take 4725, Now

4725 = 3 × 1575 = 3 × 3 × 525 = 3 × 3 × 5 × 5 × 7

= 32. 52 . 71

EXERCISE

1. Check whether 271 is a prime or not.

2. Lest all primes < 100.

3. Prove that the only prime of the form n3 – 1 is 7.
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4. State and prime Fundamental theorem of Arithmetic.

Note:

1. In the preparation of this lesson many books listed at the end of syllabus have

been consulted.

2 Students are advised to get/purchase at least one book on Number Theory.
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Lesson No. 1.2

THE THEORY OF CONGRUENCE

OBJECTIVES:

1.2.1 Definition of Congruence

1.2.2 Some Applications of Congruences

1.2.3 Euler Fermat's Theorem

1.2.4 Wilson's Theorem

1.2.1 Definition:

According to Gauss,

'If a number n divides the difference between two numbers a and b, then a and

b are said to be congruent with respect to n; if not, incongruent.

OR

Let n be a fixed positive integer. Two integers a and b are said to be congruent

modulo n, symbolically

a b (mod n)

If n divides the difference of a – b; that is

a – b = kn, for some integer k

Example : Take n = 7

3  32 (mode 7)

– 31  11 (mod 7)

– 15  – 64 (mode 7)

as (3 – 24) = – 21 is divisible by 7

(– 31 – 11) = – 42 is divisible by 7

but 25  12 (mod 7), since

25 – 12 = 13 is not divisible by 7

Hence 25 is not congruent to 12 mod 7, whereas first satisfy the definition of

congruence.

It should be noted that any two integers are congruent modulo 1, whereas two

integers are congruent modulo 2 when they are both even or both odd.

Given an integer a, let q and r be its quotient and remainder upon division by

n, then

a = qn + r , 0 < r < n

Since there are n choices (0, 1, 2...........n–1) for r; and in particular a, 0 (mod

n) f and only if n divides a.

15
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The set of integer 0, 1, 2........... (n –1) is called the set of least positive residues

modulo n.

In general a collection of n integers a
1
, a

2
,......., a

n
 is said to form a complete

set of residues (or a complete system of residues) modulo n of every integer is

congruent modulo n to one and one only one of the ak;

For instance

–12, –4, 11, 13, 22, 82, 91

Constitute a complete set of residues modulo 7; because the remainder which

we obtain when there numbers are divided by 7 are

2, 3, 4, 6, 1, 5, 0 respectively

This suggests a theorem, which states

Theorem : For arbitrary integers a and b, a b (mod n) if and ony if a and b

leave the same non-negative remainder when divided by it.

Proof : If a  b (mod n) then

a = b + kn for some integer k.

upon division by n, b leaves a certain remainder r then b = qn + r, where 0, r –

n.

Therefore a = b + kn = qn + r + kn = n (q + k) + r so leaves the same remainder

when divided by n.

Conversely if a and b leave the same remainder when divided by n, say r
1
 and

r
2
 then

a = q
1
n + r

1

b = q
2
n + r

1

then a – b = (q
1
 – q

2
)n suggesting that

a b (mod n)

Note : Some of the elementary properties of equality which carry over to

congruence appear in the next theorem.

Theorem 2 : Let n > 0 be fixed and a, b, c, d be arbitrary integers. Then the

following properties hold.

(i) a  a (mod n)

(ii) a  b (mod n), then b  a (mod n)

(iii) a  b (mod n), b  c(mod n) then a  c (mod n)

(iv) a  b (mod n) c  d (mod n) then

a + c = b + d (mod n) and ac = bd (mod n)

(v) a  d (mod n), a + n = b + c (mod n) and ac = bc (mod n)

(vi) If a  b (mod n), then ak = bk (mod n) for some positive integer k.

Proof: the proof of all these parts are very simple and easy say to prove

(i) a  a (mod n)

obviously (a – a) is divisible by n
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(ii) a – b is divisible by n then (b – a) is also divisible by n

(iii) If a – b is divisible by n, a – b = qn

and b – c is divisible by n, b – c = q' n

on adding a – c = (q + q' )n

a  c (mod n)

(iv) a – b = q, n, c – d = q
2
n

a + c – b – d = (q
1
 + q

2
)n

(a + c) – (b + d) = (q
1
 + q

2
)n

 a + c  (b + d) (mod n)

Similarly proof of other parts follow:

The first three parts of theorem suggest that the a  b (mod n) is an equivalence

relation and hence sets a partition in the set of integers.

1.2.2 Some Applications of Congruences

1. We show that 220 – 1 is divisible by 41. We begin by noting that

25   – 9 (mod 41) (25 – (–9) is divisible by 41)

 (25)4   (–9)4 (mod 41) (by last part of previous theorem)

or 20

2   81.81 (mod 41)

but 81  (–1) (–1) (mod 41)

  1 (mod 41)

Using these

220  1 (mod 41)

 220 – 1 is divisible by 41

Thus 41 divides 220 – 1

2. Let us find the remainder which we get when

   1 2 3 .................... 100  is divided by 12.

Since 4 24  and this leaves no remainder when divided by 12, hence

 K 4.5.6.......................K 0  (mod 12)

        1 2 3 4 5 .................... K 1 2 3   (mod 12)

+ 0 + 0 .............

  9 (mod 12)

Hence 9 is the remainder we got when

   1 2 3 ......................... 100  is divided by 12.

Theorem : If ca   cb (mod n) then

a    b (mod n/d) where

d = g c d (c, n)
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Proof: Since ca   cb (mod n)

 ca – cb = kn

c (a – b) = kn, for some integer k.

Since g c d of c & n = d,

so c = dr,

n = ds where r and s are primes

so dr (a – b) = kds

r (a – b) = ks

Hence s divides r (a – b)

and g c d of (r, s) = 1

Hence Theorem gets proved.

Cor. 1. I ca   cb (mod n) and gcd (c, n) = 1, then

a   b (mod n)

Exercise :

Use the thoery of Congruence to show that

89 divides 211 – 1

and 97 divides 248 – 1

Consider the congruence 33   15 (mod 9)

or

3.11 = 15 (mod 9)

c = 3, a = 11, b = 5 n = 9

Now, 3.1   3.5 (mod 9) and gcd (3, 9) = 3

So, by the application of previous theorem

of 11   5 mod (3).

Example : Find the remainder when 250 is divided by 7

Now 23 = 1 (mod 7)

(23)16 = 1 (mod 7)

248 = 1 (mod 7)

250 = 4 (mod 7)

Hence 4 is the remainder when 250 is divided by 7.

Definition : (n) is the number of positive integers   n and coprime to n. For

exmple

(1) = 1

(4) = 2 [1, 3 are two +ve integers < 4 and coprine to 4]

(6) = 2 [1, 5 are two positive integers < 6 and coprime to 6]

(10) = 4 [1, 3, 7, 9 satisfy the condition]
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(n) : Euler function

1.2.3 Euler-Fermat's theorem : If a is any integer and n is a +ve integer such that

(a, n) = 1

then 
(n)

a   1 (mod n)

Proof : Lemma : If a
1
, a

2
, ......., ( n )a  is reduced residue system modulo (RRS).

mod n s.t

a
1
, a

2
,......... ( n )a  < n and

b
1
, b

2
, ..........., ( n )b  is another RRS (mod n) then one bj is congruent to exactly

one

Proof : Let bj be one number among b
1
, b

2
, ..........., ( n )b

Now bj, n are integers such that n > o

By division algorithm, integers q and r are such that

bj = nq + r; o   r – n

Now (bj, n) = 1   r  0

 r is a +ve integer < n

Also bj  r (mod n)

(bj, n) = (r, n)

 1 = (r, n)  (r, n) = 1

so r is any one of a
1
, a

2
, ........ ( n )a

say r = ay

 bj  a
i
 (mod n)

Hence one bj is congruent to some a
i 
(mod n)

If br and bi are two distinct numbers among

b
1
, b

2
, ......... ( n )b  such that

b
r
  a

i
 (mod n) and b

t
 = ai (mod n)

then b
t
 = b

i
 (mod n)

which is a contradiction

(since b
1
, b

2
, ........... ( n )b  is RRS (mod n)

Hence one bj is congruent to exactly one oi (mod n)

Main proof:

Let a
1
, a

2
............., ( n )a  be a RRS (mod n)

since (a, n) = 1
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 aa
1
, aa

2
 ........., ( n )a  is also a RRS (mod n)

By lemmea one number among aa
1
, aa

2
,........., ( n )aa  is congruent to exactly

one of a
1
, a

2.........., ( n )a (mod n)

 aa
1
, aa

2
, ........., ( n )aa  = a

1
, a

2
............. ( n )a  mod (n)

 ( n )

a  a
1
, a

2
, ......... ( n )a  = a

1
, a

2
............. ( n )a  mod (n)

Since a
1
, a

2
, ........, ( n )a  is RRS (mod n)

 a
1
, a

2
, .........., ( n )a  are coprime to n

 (a
1
, a

2
, ........, ( n )a ) = 1

Hence 
( n )

a = 1 (mod n)

Cor 1. Fermat's theorem : If p is any prime number s.t p  a then ap–1 = 1 (mod p)

Proof : Now p a  (a, p) = 1

By Euler-Fermat's theorem

( n )

a  = 1 (mod p)

 ap–1  1 (mod p)

 ap  a (mod p)

Case 2 : If p/a then p/ap

 p/ap – a  ap  a (mod p)

Hence in each case ap  a (mod p)

Applications of Fermet's theorem:

Prove that 42 divides n7 – n for every integer n.

Now 42 = 6, 7 and n7 – n = n (n – 1) (n + 1) (n4 + n2 + 1)

= (n – 1)n (n + 1) (n4 + n2 + 1)

Now n – 1, n, n + 1 three consecutive integers

  3 divides (n – 1) n (n + 1)

or 6 divides (n – 1) n (n + 1)

 6 divides (n – 1) n (n + 1) (n4 + n2 + 1)

 6 divides n7 – n by Fermet's the n7  m (mod 7)

 7/n2 – n

Also (6, 7) = 1

Hence 6, 7/n7 – n

 42 divides n7 – n for every integer.

Example : What is the last digit in ordinary decimal representation of 3400,
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Now 10 = 2 × 5

Since (3, 5) = 1

By Fermet's theorem

35–1  1 (mod 5)

34  1 (mod 5)

Also 34  1 (mod 2)

Since (2, 5) = 1

 34  1 (mod 2.5)

34  1 (mod 10)

Raise power 100

(34)100 = [1 (mod 10]100

3400 = 1 (mod 10)

 1 is the last digit in decimal representation of 3400

Example : Find the last positive remainder when (583)351 is divided by 91.

Now 91 = 7.13

583 = 2 (mod 7)

(583)34 = 2361 (mod 7) ......(i)

Since (2, 7) = 1

By Fermet's theorem

27–1  1 (mod 7)

26  1 (mod 7)

2360 = 160 (mod 7)

2361 = 2 (mod 7) .......(ii)

(583)361 = 2 (mod 7)

(583)361 = 2 or 0 or 16 or 23 or 30 or 37 or 44 (mod 7)

Again 583  11 (mod 13)

(583)361 = 11361 (mod 13)

Since (11, 13) = 1

By Fermet's theorem, we have

1113–1  1 (mod 13)

1112 1 (mod 13)

11360 = 130 (mod 13)

= 1 (mod 13)

By (4) and (5), we have

(583)361 = 11 (mod 13)

(583)361 = 11 or 24 or 37 (mod 13)

by (3) (583)361 = 37 (mod 7)

(583)361 = 37 (mod (3) when (7, 13) = 1
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(583)361 = 37 (mod 7.13)

(583)361 = 37 (mod 91)

 37 is the least positive remainder when (583)361 is divided by 91.

1.2.4 Theorem : Wilson's theorem. If p is a prime number, then  p – 1  – (mod p).

Proof : If p = 2, then the given congruence becomes

 2 – 1  – 1 (mod 2) i.e. 1  – 1 (mod 2), which is true.

If p = 3, then the given congruent becomes  3 – 1 = –1 (mod 3) i.e. 2  – 1 (mod

3) is which is tru e.

Theorem is verified for p = 2 and p = 3.

For p  5, consider a set

G = {1, 2, 3, ........., p – 1}

Let at  G be any number then (a, p) = 1

 The congruence ax  1 (mod p) has exactly one incoguent solution say, 'a' as

solution of their congruence.

If a' = 0, then a.i  1 (mod p)

i.e. 0  1 (mod p), which is not true

 a'  G

Thusifa  G, this a'  G s.t

aa'  1 (mod p)

Now a' = a if a2  2 (mod p)

i.e. if p/a2 – i.e. p/(a – 1) (a + 1)

i.e. if p/a – 1 or p/a + 1

but p/p

 p/a – 1 or p/p – (a + 1)

i.e. p/a – or p/(p – 1) – a

Now (a – 1) is one among 0, 1, 2, ........., (p – 2).

 p/a – 1  a – 1 = 0   a = 1

Again (p – 1) – a is one among 0, 1, 2, ........., (p – 2).

 p/(p – 1) – a  (p – 1) – a = 0  a = p – 1

 a' = a if a = 1 or (p – 1)

Let G
1
 = {2, 3, 4, 5, ........, p – 2}

 v a  G
1
, | a'  in G

1
 such that

aa'  1 (mod p)

 G
1
 can be arranged as

1 1 1

1 1 2 2 i i

p 3
, , ,..............., , where i

2
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1

1 1
1 (mod p)

1

2 2
1 (mod p)

1

1 1
1 (mod p)

 2.3.4 ........... (p – 2)  1 1 1

1 1 2 2 1 1..............., ,

   1.1...........1 (mod p)

   p – 2   1 (mod p)

(p – 1)  p – 2  (p – 1) (mod p)

 p – 1  (p – 1) (mod p)

But p – 1 = –1 (mod p)

  p – 1   –1 (mod p)

Hence Wilson's theorem is proved.

Converse of Wilson's theorem.

If  n – 1   –1 (mod n), then n is prime number.

Proof : If possible, let n be composite number. say, n = mk where 1 < m,  k < n

 m/n

Now  n – 1   –1 (mod n)

n/   n –1 =  + 1

by (1) and (2), m/   n – 1 + 1

but m < n   m   n –1   m/   n–1

by the last two results,

m/   n – 1

i.e. m/1, which is impossible

 n is a prime number.

Example : Prove that  18 + 875  0 (mod 437)

Now 437   19.23

Since 19 is a prime number

 by Wilson's theorem

  19 – 1   –1 (mod 19)

    18 + 1  0 (mod 19)

Again 23 is a prime number,

by Wilson's theorem

 23 – 1   –1 (mod 23)

 22   –1 (mod 23)   (22.21.20)   18   –1 (mod 23)

(–1) (–2) (–3) (–4)   18   –1 (mod 23)

24   18   –1 (mod 13) (24   1 (mod 23)

  18 1.   18   –1 (mod 23)  1 (mod 23)
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  18 + 1   0 (mod 23)

Since (19, 23 = 1

by (1) and (2)   18 + 1   0 (mod 19.23)

i.e.   18 + 1   0 (mod 437)

874   0 (mod 437)

Adding last two results, we set

  18 + 875   0 (mod 437)

Def. Fermat number : A number of the form Fn = 
n

22 + 1, n   0 is called a Fermat

number, if Fn is prime then Fn is Fermat prime

F
0
 = 

0
22  + 1 = 3  F

2
 = 

2
22  + 1 = 17

F
1
 = 

1
22  + 1 = 5  F

3
 = 

3
22  + 1 = 257

F
4
 = 

4
22  + 1 = 16

2  + 1

Note : F
5
 is not prime (Check).

Check that F
5
 is divisible by 641 and the last last of F

5
 is 7.
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2.1.8 Summary

2.1.9 Self Check Exercise

2.1.10Suggested Readings

2.1.0 Objectives

The prime goal of this unit is to enlighten the basic concepts of cryptography,

arithmetic functions, primitive roots, indices and quadratic residues with the

knowledge of quadratic reciprocity law. During the study in this particular lesson,

our main objectives are

* To learn how to convert plain text into Cipher text using Caesar Ciphers

and RSA public-key algorithm.

* To discuss about several kinds of arithmetic functions such as d(n),

(n), (n), (n) and to discuss the important results and definitions based

on these arithmetic functions.

25
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2.1.1 Introduction :

Firstly, we give a brief introduction to cryptography and arithmetic functions.

Cryptography is the science of making communications through secret codes.

The secret codes are known as ciphers and the message which is to be transmitted

is known as plain text. The process of converting the plain text to a secret form

(ciphertext) is known as Encryption (or Enciphering) and the reverse process for the

conversion of ciphertext to plaintext is called Decryption (or Deciphering).

Julius Caesar introduced a system of cryptography in which each letter of the

alphabet is replaced by the letter which occurs three places forward to the alphabet

and the last three letters are replaced with the first three letters. Such type of system

is known as Caesar cipher.

For example,

Plain Text : ZEBRA MATHEMATICS

Cipher Text : CHEUD PDWKHPDWLFV

Arithmetic Functions :

In brief, on arithmetic function 'f' may be defined as those function whose

domain is the set of positive integers and whose range is a subset of the complex

numbers. These functions are also called number theoretic functions, or simply

numerical functions.

2.1.2 Linear Cipher

If x is a digit of plain text and y is a digit of cipher text, then the congruence

y   ax + b (mod 26), where a, b are integers with (9, 26) = 1 is known as linear cipher.

2.1.3 RSA Public-Key Algerithm

Let p and q be two distinct primes large enough such that n = pq, where n is

known as enciphering modulus. Choose enciphering component k such that (k (n))=1.

Then, the pair (n, k) is known as user's encryption key.

The standard procedure of ciphering process starts from the conversion of

message into an integer M with the help of digital alphabet in which each letter,

number or punctuation mark of the plain text is replaced by a two digit integer, as

explained below :

A B C D E F G H I J K L M

01 02 03 04 05 06 07 08 09 10 11 12 13

N O P Q R S T U V W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 26

, × ? 0 1 2 3 4 5 6 7 8 9 !

27 28 29 30 31 32 33 34 35 36 37 38 38 40

Also, the two digits 00 indicates the space between words.
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2.1.3.1 Working Method for Converting Plain Text into Cipher Text Using RSA

System

1. Select two primes p and q such that the enciphering modulus is n=pq.

2. Choose enciphering exponent k among the prime factors of (n) + 1.

3. Find the recovery exponent j satisfying jk  1 (mod.(n)).

4. Transform the given message into plain text number M. If m > n, then

split M into blocks M
1
, M

2
, ........ M

t 
such that M

i
 < M for i = 1, 2,.....t.

5. Let M
i
K   r

i
 (mod. n) for i = 1, 2, ....... t.

Then, the cipher text is r
1 
r

2 
........... r

3
.

6. To recover plain text number, compute.

r
i 
j   M

i 
(mod n) and we get M = M

1
 M

2 
......... M

t
.

Example 1 : Encrypt the message RETURN HOME using caesar cipher.

Sol. : Numerically, RETURN HOME is written as

x : 18 05 20 21 18 14; 11 18 16 08

using the congruence y   x + 3 (mod. 26)

y = 21 08 23 24 21 17; 11 18 16 08

Cipher text : UHWXUQ   K RPH

Note :  In caesar cipher, the alphabets are also written digitally as mentioned under

the RSA public key algorithm and the space is represented by ';'. Also, if x is a

digit of plain text and y is the corresponding digit of cipher text in caesar

cipher, then

y   x + 3 (mod 26) and x   y – 3 (mod. 26)

Example 2 : Encrypt the message NO WAY using the RSA system with key

(n, k) = (1537, 47)

Sol. : Here, n = 1537 = 29 × 53

 (n) = (29) (53) = 28×52 = 1456

 (n) + 1 = 1457 = 31×47

Here, K = 47 and jk   1 (mod. (n))

 j   1 (mod 1456)

 The recovery exponent j = 31.

Numerically, NO WAY can be written as M = 141500230125 clearly, M > n. So,

split M into blocks of three digit numbers as 141 500 230 125

47 47141 658 (mod1537), 500 1408 (mod1537) 

47 47230 1250 (mod1537),125 1252 (mod1537) 

 In RSA system, the given message is written as

0658 1408 1250 1252.
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2.1.4 Arithmetic Functions

A real or complex valued function defined on the set of positive integers is

known as Arithmetic function or number theoretic or numerical function.

For a positive integer n,

d (n) denote the number of positive divisors of n and

(n) denote the sum of positive divisors of n.

Mathematically, 
d/n d/n

d(n) 1 and (n) d    .

2.1.4.1 Multiplicative Function

An arithmetic function f which is not identically zero, is said to be multiplicative

if f(mn) = f(m) f(n) for (m, n) = 1.

If f(mn) = f(m) f(n) for all m, n then f is said to be totally multiplicative or

completely multiplicative.

If f is a multiplicative function, then

f (n) = f(n.1) = f(n) f(1)  (n,1) 1

But f(n)  0 for any n, so f(1) = 1

2.1.4.2 The Mobius Function (n)

It may be defined as :

2

k
1 2 k i

1 if n = 1

(n) 0 if p /n for some prime p

(-1) if  n = p p p  where p 's are different primes




  
 

Some Important Numbers

1. An integer is called square free if it is not divisible by the square of any

integer > 1.

2. An integer n > 1 is said to be a perfect number if it is the sum of its

divisors other than itself. For example : 6 = 1 + 2 + 3

2.1.5 Some Important Results

Theorem 1 : For every positive integer n > 1, prove that

(i) 
p ||n

d(n) ( 1)


   (ii) 

1

p ||n

p 1
(n)

p 1





 
   

 


Where p||n indicates that p|n but p+1  n.

Proof : (i) Let 
K1

21 k i
1 2 k i

i 1

n p p .....p p
 



   be the canonical form of n.
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 The positive divisors of n are of the form 
K

i
i

i 1

d p



  where 0  
i 
 

i 
for all

i = 1, 2, ....., k.

 There are  
K

i

i 1

1


   possible divisers of n because there are 
i 
+ 1 possible

values for 
i
, i = 1, 2, .... k which are 0, 1, 2, ....... 

i
.

    
K

i

i 1 p ||n

d(n) 1 1


      

(ii) Since 

K

i
i

i 1

n p



  is the canonical form of n.

 Each positive divisor of n appears only single time in the expansion of the

product.

     2 2 221 k
1 1 1 2 2 2 k k k1 p p .......... p 1 p p ......... p 1 p p ......... p             

Also, every divisor of n is of the form 
k

i
i

i 1

p ,


  0  

i 
 

i
. Therefore, we can

observe that d is among the terms of above product and all these terms are

distinct.

Therefore,  
k

2 i
i i i

i 1

(n) 1 p p ...... p



     

1 1k i
i

i 1 i p ||n

p 1 p 1

p 1 p 1

  



 
 

  

Theorem 2 : Show that d(n) and (n) are multiplicative functions.

Proof :Let (m, n) = 1

For m = n = 1 d(mn) = d(1) = 1 = d(1) d(1) = d(m) d(n)

and (mn) = (1) = 1 = (1) (1) = (m) (n)

For n = 1, m 1 (or m = 1, n 1)

d(mn) = d(m) = d(m) d(1) = d(m) d(n)

and (mn) = (m) = (m) (1) = (m) (n)

For m > 1, n > 1.

Let 2 21 k 1
1 2 k 1 2m p p .........p and n q q ........q

      l

l
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be the canonical forms of m and n.

Because (m, n) = 1, therefore all the p
i
's are different from q

j
's and canonical

form of mn can be expressed as

mn = 2 21 k 1
1 2 k 1 2p p ........p q q .........q

     l

l

 d(mn) = (
1 
+ 1) (

2 
+ 1) .......... (

k+1
) (

1
+1) (

2 
+ 1) .......... (

l 
+ 1)

= d(m) d(n)

and
1 1 11 1 12 21 k 1

2 21 k 1

1 2 k 1 2

p 1 q 1 q 1p 1 p 1 q 1
(mn) ..... ..... . . ......

p 1 p 1 p 1 q 1 q 1 q 1

              
 

     

l

l

l

= (m) (n)

 d and are multiplicative functions.

Self Prove Results :

1. Prove that mobius function is multiplicative.

2. Let (m, n) = 1 and d/mn. Then, d = d
1
d

2 
such that d

1
/m, d

2
/n and

(d
1
,d

2
) = 1.

3. If f is a multiplicative function and n > 1 has canonical form

k

i
i i

i 1

n p , 0



    then,  
k

i
i

i 1

f(n) f p



  .

4. If f is a multiplicative function and 
d/n

f(n) f(d)  . Then, F is also

multiplicative.

5. For each +ve integer n  1,

d/n

1 if n 11
(d)

0 if n 1n

        


6. For each n  1, 
d/n

n
(n) (d)

d
   .

Theorem 3 (Mobius Inversion Formula) : Let F and f are two arithmetic functions.

For every integer n
1 
if

d/n

F(n) f(d),   then
d/n

f(n) (d) F(n/d) 
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Proof :
d/n d/n k /(n/d)

(d) F(n/d) (d) f(k)
 

     
 

  

d/n k /(n/d)

(d) f(k)  

Since d/n and k/(n/d) k/n and d/(n/k)


d/n k /n d/(n/k)

(d) F(n/d) (d) f(k)
 

    
 

  

k /n d/(n/k)

f(k) (d)
 

   
 

  .................... (1)

Also, we know that 
d/(n/k)

n
1 if 1 or n k

k
(d)

n
0 if 1 or n k

k

  
  

  




Taking k = n in (1), we have

d/n k n

(d) F(n/d) f(k) 1 f(n)


     .

Example 3 : Verify Mobines Inversion Formula for n = 24.

Sol. Let 
d/24

F(24) f(d)   where F and f are two arithmetic functions.


d/24

(d) F(n/d)   (1) F (24) + (2) F(12) + (3) F(8) + (4) F(6) + (6) F(4) + (8) F(3)

+ (12) F(2) + (24) F(1)

= F(24) – F(12) – F(8) + 0 + F(4) + 0+0+0

= 
d/24 d/12 d/8 d/4

f(d) f(d) f(8) f(d)     

= f(1) + f(2) + f(3) + f(4) + f(6) + f(8) + f(12) + f(24)

– f(1) – f(2) – f(3) – f(4) – f(6) – f(12)
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– f (1) – f(2) – f(4) – f(8) + f(1) + f(2) + f(4)

= f (24)

So, Mobius Inversion Formula is verified for n = 24.

2.1.6 Euler's Function

For n 1, (n) represents the number of positive integers less than or equal to

n which are relatively prime to n.

Also, for any prime number p, (p) = p – 1 and is also multiplicative function

(Prove yourself).

2.1.6.1 Gauss Theorem : For any positive integer 
d/n

n 1, n (d)   .

Proof :For 
d/n d/1

n 1, (d) (d) (1) 1 n        

the result is true for n = 1.

For n > 1, Let 21 k
1 2 kn p p ........p

   be the canonical form of n.

Let 
d/n

F(n) (d)   and F is multiplicative since  is multiplicative function.

        2 21 k 1 k
1 2 k 1 2 kF(n) F p p ........p F p F p .......F p     

Now,   2

d/p

F p (d) (1) (p) (p ) ....... (p ) 



          

= 1 + (p – 1) + (p2 – p) +...........+ (p– p–1) = p

 21 k
1 2 kF(n) p p ..........p n

  

or
d/n

n (d)  .

2.1.6.2 Some Useful Results :

(1) For any +ve integer  n
1

(i)
d/n

d
n

n

   
 

 (ii) 
d/n d/n

n n
(n) (d) d

d d

       
 

 

(2) (n) is an even integer for all n 3.

Example 4 : Find all possible values of n which satisfies (n) = 91.

Sol. We know, for n 3, (n) is even and
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(n) = 1 for n = 1 or 2.

 (n) = 91 has no solution.

Example 5 : Find the values of d(180) and (180).

Sol. Since 180 = 23.32.51 is the canonical form of 180.

 d(180) = (2 + 1) (2 + 1) (1 + 1) = .18

and

3 3 22 1 3 1 5 1
(180) . . 7.13.6 546

2 1 3 1 5 1

  
   

  

Example 6 : For all n  1, show that (12n – )   0 (mod 12).

Sol. Let the positive divisors of 12n–1 in ascending orders are

1 2

2 1

12n 1 12n 1
d d ,........., ,

d d

 

 1 2

2 1

12n 1 12n 1
(12n 1) d d .....

d d

 
      

1 2

1 2

12n 1 12n 1
d d .........

d d

   
      

   

22
21

1 2

d 12n 1d 12n 1
........

d d

 
  

2

d/12n 1

d 12n 1

d

 
 

Since d/12n–1 (d, 12) = 1 

if (d,12) g, then

g/12n 1 and g/12n

g/1 or g 1

 
  
   



Now, By Format's Theorem

d2   1 (mod 3) and d2   1 (mod. 4)  d2   1 (mod. 12)

 d2 + 12n –1   0 (mod. 12)

Also, d2 + 12n – 1   0 (mod. d)

Since d/d2 + 12n–1 and (d, 12) = 1

 d2 + 12n –1   0 (mod. 12d)


2d 12n 1

0
d

 
  (mod. 12)
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
2

d/n

d 12n 1
0 (mod.12)

d

 


 (12n – 1)   0 (mod. 12).

Example 7 : Prove that (n) (n + 1) (n + 2) (n + 3) = 0 for any +ve integer n.

Sol. Since n is a +ve integer.

 By division algorithm, n = 4q + r; r = 0, 1, 2, 3 and q is an integer.

 Any +ve integer n is of the form

4q, 4q + 1, 4q + 2, 4q + 3.

If n = 4q, then 4/n

If n = 4q + 1, then 4/n+3

If n = 4q+2, then 4/n+2

and if n = 4q + 3, then 4/n+1.

Therefore, for any +ve integer n, 4 = 22 divides either of n, n+1, n+2, n+3.

 (n) (n + 1) (n + 2) (n + 3) = 0

2.1.7 Some Other Results and Definitions

Result : Let p denote a prime. Then, the largest exponent e such that pe|n ! is

i
i 1

n
e

p





 
  

 


Definition : If 2n –1 is a prime, then the numbers of the form 2n–1 (2n – 1) is called

Euclid Number.

Note : Every even perfect number is Euclid Number.

Definition : For any +ve integer n, 
k
(n) denote the sum of kth powers of the divisors

of n.

or k
k

d /n

(n) d  

For example : 
2
(3) = 12 + 32 = 1 + 9 = 10

Example 8 : Find the highest power of 9 dividing 365 !

Sol. Since 9 = 32

 Highest Power of 3 that divides 365 !

365 365 365 365 365 365

3 9 27 81 283 729

                                      

= 121 + 40 + 13 + 4 + 1 + 0 = 179

 Highest Power of 9 = 32 that divides 
179

365! 89
2

    
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Example 9 : Show that if the integer n has k distinct odd prime factors, then 2k|(n).

Sol. Let n = p
1
p

2 
............ p

k 
where pi's are distinct primes.

 (n) = (p
1
p

2 
............p

k
) = (p

1
)  (p

2
) .......... (p

k
)

= (p
1 
= 1) (p

2 
= 1) ............. (p

k 
– 1)

Since p
i 
is odd prime for all i = 1, 2, ..........k.

 p
i 
– 1 is even number for all i = 1, 2, ........ k.

 2/p
i 
– 1   i = 1, 2 .......... k.

 2k| (p
1 
– 1) (p

2 
– 1) .......... (p

k 
–1)

 2k |(n)

2.1.8 Summary :

In this lesson, we have studied about the various techniques of cryptography

that how we can convert the linear text into cipher text and how to encrypt the message

from cipher text. We have also discussed in detail about the arithmetic functions and

various useful results concerning these functions. Now, we have the enough

knowledge to understand the further concepts of number theory that we will study in

the coming part of this unit.

2.1.9 Self Check Exercise

1. Using linear cipher C   5P + 11 (mod. 26), encrypt the message "NUMBER

THEORY IS EASY".

2. Encrypt the message "SOFT TOY" using the RSA algerithm with key

(n, k) = (3233, 37).

3. Show that d(n) is an odd integer iff n is a perfect square where n > 1 is

an integer.

4. For all +ve integer n, show that 
d/n

1 (n)

d n




5. If n > 1 is an integer with canonical form 21 k
1 2 kn p p ........p  .

Then show that 
k

a /n

(a) d(a) ( 1)   .

6. Prove that for any +ve integer n,

n

d 1

n n (n 1)
(d)

d 2

    


2.1.10  Suggested Readings :

1. Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery, An Introduction

to the Theory of Numbers, Wiley-India Edition.

2. T.N. Apostal, An Introduction to Analytic Number Theory, Springer Verlag.
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NUMBER THEORY

LESSON NO. 2.2 Author : Dr. Chanchal

PRIMITIVE ROOTS AND INDICES – I

Structure :

2.2.0 Objectives

2.2.1 Introduction

2.2.2 Primitive Root

2.2.3 Polynomial Congruences

2.2.4 Some Important Theorems

2.2.4.1 Some Other Useful Results

2.2.5 Some Important Examples

2.2.6 Self Check Exercise

2.2.7 Suggested Readings

2.2.0 Objectives

The prime objective of this lesson is to discuss the concepts of primitive roots

and polynomial congruences alongwith the study of important results and theorems

concerning them. Further, to understand the applicability of results, several important

examples are also discussed under this lesson.

2.2.1 Introduction

Before discussing the concept of primitive root, it is required to define the

following concept :

Def. :  Let m denote a positive integer and a be any integer such that (a, m) = 1. Let h

be the smallest positive integer such that ah   1 (mod m). Then, we say that order of

a modulo m is h or a belongs to the exponent h modulo m. It is denoted as ord
m
a.

For Example : Order of 2 modulo 5 is 4 since 21   2 (mod 5), 22 4 (mod 5), 23   3 (mod

5) and 24   1 (mod 5).

It is important to notice that there may exist many such positive integers h

such that ah   1 (mod m) but order of a modulo m is the smallest one. Further, we

already know from the Euler's Fermat theorem that a(m)   1 (mod m), so it is clear

that order of a modulo m cannot exceed (m). Now, it is appropriate to discuss about

the primitive roots.

36
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2.2.2 Primitive Root

Def. : An integer g is called to be primitive root modulo m if order of g modulo

m is  (m).

For Example : 2 is the primitive root of 11, as discussed below :

Since, 21   2 (mod 11), 22   4 (mod 11), 23   8 (mod 11), 24   5(mod 11), 25   10

(mod 11), 26   9 (mod 11), 27   7 (mod 11), 28   3 (mod 11), 29   6 (mod 11) and 210  1

(mod 11). So, order of 2 modulo 11 is 10 = (11). Thus, 2 is the primitive root of 11.

Note : (i) As 11   1 (mod m) and (m) 2 for all m 3. So, 1 cannot be the primitive

root of any integer 3.

(ii) If g is the primitive root of m, then all integers of the residue class

containing g are primitive roots of m.

2.2.3 Polynomial Congruences

Let m > 1 be a positive integer.

1. Def : If 
n

i

i

i 0

f(x) a x


 and 
n

i
i

i 0

g(x) b x


 are two polynomials with integral

coefficients such that a
i 
 b

i 
(mod m)   i = 0, 1, 2, ............, n, then

f (x)  g (x) (mod m)

For example : 7x3 + 4x2 + 2x + 9  11x2  – 5x + 2 (mod 7).

2. Def : Let 
n

i

i

i 0

f(x) a x


 be an integral polynomial such that a
n 
 0 (mod

m). Then, we say that degree of f(x) is n (mod m).

3. Def : Let 
n

i

i

i 0

f(x) a x


  be an integral polynomial. An integer x = a is said

to be a root of f(x) (mod m) iff f(a)  0 (mod m).

For example : Readers may easily verify that x = 1, 2, –3 are the roots of

x2 + 2x – 3 (mod 5).

4. Def : Let f(x) and g(x) be two integral polynomials. Then we say f(x) is

divisible by g(x) to modulus m if there exist an integral polynomial h(x)

such that f(x)  g(x) h(x) (mod m) and we write g(x) | f(x) (mod m).

2.2.4 Some Important Theorems

Theorem 1 : If a  b (mod m) and ord
m 

a = h, then ord
m 

b = h.

Proof : Since ord
m 

a = h,

so ah  1 (mod m)

Now a  b (mod m)
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 ah  bh (mod m)

 1  bh (mod m)

 bh  1 (mod m)

Suppose bk  1 (mod m) for any positive integer k

Then a  b (mod m)

 ak  bk (mod m)

 ak  1 (mod m)

Since Ord
m 

a = h

 h k

Hence Ord
m 

b = h.

Theorem 2 :

If a has order h modulo m and k be a positive integer, then ak  1 (mod m) iff

h/k.

Proof : Firstly let h|k h
1 
Z such that k = hh

1

Since h is order of a (mod m)

 ah  1 (mod m)

  h1ha 1 (mod m)

i.e. hh1a 1(mod m) or ak  1 (mod m)

Conversely let ak  1 (mod m)

Since h is order of a

 h k

By the division algorithm, integer q and r such that

k = q h + r, 0 r < h

 aqh + r  1 (mod m)

 (ah)q . ar  1 (mod m)

 ar  1 (mod m)

Since 0 r < h and h is the least positive integer such that

ah  1 (mod m)

 r = 0

and hence k = qh  h/k.

Theorem 3 : If a has order h modulo m and b has order k modulo m such that (h, k) =

1, then ab has order hk modulo m.

Proof : Let r = order of ab modulo m. Then, (ab)r  1 (mod m)

To prove r = hk

(ab)hk = ahk bhk = (ah)k (bk)h   1k . 1h (mod m)

i.e. (ab)hk  1 (mod m)
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 r|hk

Since Ord
m 

b = k, ... (1)

bk  1 (mod m)

 brk  1 (mod m)

 ark brk  ark (mod m)

 (ab)rk  ark (mod m)

   krrka ab (mod m)

 ark  1 (mod m)

As Ord a = h, h|rk

Since (h, k) = 1, therefore h|r

Similarly we have k|r

Thus, hk/r ... (2)

So, (1) and (2)  r = hk.

Theorem 4 : Let (g, m) = 1. Then g is a primitive root modulo m iff the numbers g,

g2,.....,g(m) form a reduced residue system modulo m.

Proof : Firstly let g is primitive root mod m.

Since (g, m) = 1, (gk, m) = 1 k {1, 2, ......, (m)}

Now gi  gj (mod m); i, j [1, 2, ......, (m)]

 gi–j  1 (mod m)

 (m)|i – j

 (n)|| i – j| [order of g(mod m) is (m)]

 i = j [1 i, j (m)]

Thus, (1) g, g2, ...........g(m) are relatively prime to m

(2) they are (m) in numbers

(3) they are incongruent modulo m

Thus g, g2 ,..........., g(m) form a reduced residue system modulo m.

Conversely, let {g, g2, ......., g(m)} form a reduced residue system modulo m.

Then (g, m) = 1 By

Fermat's theorem g(m)  1 (mod m)

Let Ord
m
g = h

Then gh  1 (mod m)

 gh  g(m) (mod m)

Since 1 h (m) and {g, g2,......, g(m)} is rrs,

so h = (m)

and hence g is primitive root mod m.

Cor. 1 : If an integer m has a primitive root, then there are ((m)) primitive roots of

m.
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Proof : Let g be a primitive root of m.

Then g, g2, ........., g(m) form a reduced residue system mod m.

Let a be any primitive root of m.

 (a, m) = 1

Since g, g2, ......., g(m) is RRS (mod m)

 a  gr (mod m) for r {1, 2, ....., (m)}.

Since a is primitive root of m

 gr is also primitive root of m

 gr is of order (m) (mod m)

Also
r , (m)

ord (g )
(r, (m))






so ord (gr) = (m)

iff (r, (m)) = 1

Thus (r, (m)) = 1 where r {1, 2,......, (m)}

 there are ((m)) choices of r

 gr has exactly ((m)) choices and hence m has exactly ((m)) primtive roots.

Cor. 2 : If a prime p has a primitive root, then it has exactly (p – 1) primitive roots.

Proof : We have seen that if an integer m has a primitive roots then it has exactly

((m)) primitive roots.

Take m = p where p is a prime

Then (m) = (p) = p – 1

 ((m)) = (p – 1)

Thus there are (p–1) primitive roots of prime p.

Theorem 5 (Lagrange's Theorem) : If p is a prime and degree of f(x) (mod p) is n, then

f(x)  0 (mod p) cannot have more than n incongruent solutions.

Proof : Let n = 1.

Then f(x) = ax + b, where a  0 (mod p)

 (a, p) = 1

and hence f(x)  0 (mod p) has exactly one solution. We'll prove the theorem by

induction on n.

Assume that the theorem is true for polynomials of degree n – 1.

Let f(x) be of degree n (mod p)

Then either f(x)  0 (mod p) has no solution or has solution

In the first case, we have nothing to do

In the second case, let x = a is a solution of f (x)  0 (mod p)

Then f (a) = 0 (mod p)

 an integral polynomial q(x) such that
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f (x)  (x – a) q(x) (mod p)

and q (x) is of degree n – 1 (mod p)

Suppose x = b is a solution of f(x)  0 (mod p) other than a.

Then f (b)  0 (mod p)

and (b – a) q (b)  0 (mod p)

but b  0 (mod p)

 q(b)  0 (mod p)

 b is a solution of q (x)  0 (mod p)

Thus any solution of f(x)  0 (mod p)

other than x = a is also a solution of q (x)  0 (mod p)

Since q (x) is of degree n – 1

 q(x) has at most n – 1 solutions mod p

Hence by induction, f (x)  0 (mod p) cannot have more than n solutions.

Theorem 6 : If p is a prime and d/p–1, then xd–1  0 (mod p) has exactly d solutions.

Proof : Since d|p–1, so k Z such that

p – 1 = dk

xp–1 –1 = xdk – 1 = (xd)k –1

= (xd – 1) (xd(k–1) + xd(k–2) +.......+ xd + 1)

= (xd – 1) (xp–1–d + xp–1–2d +.......+ xd + 1)

xp–1 – 1 = (xd – 1) h (x)

where h(x) = xp–1–d + xp–1–2d +.......+ xd + 1

Now, by Femat's Theorem

xp–1  1 (mod p) where (x, p) = 1

By Largrange's theorem, xp–1 – 1  0 (mod p) cannot have more than p – 1

solutions.

Also since 1, 2, ..........., p–1 are all incongruent solutions of xp–1 –1  0 (mod p)

therefore, xp–1 –1  0 (mod p) has exactly p –1 solutions

As h (x)  0 (mod p) has at most p –1 – d solutions

so xd – 1  0 (mod p) has at least d solutions and hence exactly d solutions.

Theorem 7 : Every prime number has a primitive root.

Proof :

Let p be a prime number.

Then p = 2 or p is an odd prime

If p = 2, then 11  1 (mod 2)

 order of 1 (mod 2) = 1 = (2)

 1 is primitive root of 2.

Now let p be any odd prime

 p–1 is an even number.
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Let 21 k
1 2 kp 1 p p ...........p

   be the prime factorization of p–1, where all p
i
's are

distinct primes and 
i 
i

For each r = 1, 2,........, k, consider

rprx 1 0 (mod p)


  ..... (1)

and
r 1prx 1 0 (mod p)

 
  ..... (2)

Since
1r rp pr rx |p 1 and x |p 1

  
 

 (1) has exactly r
rp  solutions

and (2) has exactly 1r
rp    solutions

Let x = a be a solution of (2)

i.e.
1r

rp 1 0 (mod p)   

i.e.
1r

rp 0 (mod p)  

  
pra pr 1r ra 1 (mod p)

 

i.e. rpra 1(mod p)




or rpra 1 0 (mod p)


 

 x = a is also a solution of (1)

 every solution of (2) is also a solution of (1)

Now since 1r r
r rp p  

i.e. Number of solution of (2) < number of solutions of (1)

 a solution, say x = b
r
, of (1) which is not a solution of (2)

i.e. rpr
rb 1 0 (mod p)


 

but r 1pr
rb 1 0 (mod p)

 
 

 rpr
rb 1 0 (mod p)


 

and
ipr

r rb 1 (mod p) 0 i 1      
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 r
rp   is the least positive integer such that rpr

rb 1(mod p)




 order of b
r 
(mod p)= r

rp 
r = 1, 2, ........, k

Since all p
i
's are distinct primes

 order of b
1
b

2 
......... b

k 
(mod p) = 21 k

1 2 kp p ..............p
 

 order of b (mod p) = p – 1,

= (p) where b = b
1 
b

2
 .........b

k

 b is primitive root of p.

Thus every prime must have a primitive root.

Theorem 8 : Let m > 2 has a primitive root g. Then 
(m)

2g 1


   (mod m).

Proof :

Since g is a primitive root of m, therefore

g(m)  1 (mod m) ...... (1)

For m > 2, (m) is even. Therefore we can rewrite (1) as

2
(m)

2g 1 0 (mod m)
 

   
 


(m) (m)

2 2g 1 g 1 0 (mod m)
    

        
   


(m)

2g 1(mod m)


 or
(m)

2g 1(mod m)


 

As g is a primitive root of m, so 
(m)

2g 1(mod m)


 

Hence 
(m)

2g 1(mod m)


  .

2.2.4.1 Some Other Useful Results

1. x = a is a root of f(x) (mod m) iff (x – a)/f(x) (mod m).

2. If p is a prime and f(x)  g (x) h(x) (mod p), then any root of f(x) (mod p) is

a root either of g(x) or of h(x).
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2.2.5 Some Important Examples

Example 1 : Find order of 23 modulo 13. Also find k such that 2k has the same order as

the order of 2 modulo 3.

Sol. Since 21  2,22  4, 23  8, 24  3, 25  6, 26  12, 27  11, 28  9, 29  5, 210  10

211  7, 212  1 modulo 13

 order of 2 modulo 13 is 12.

 order of 23 modulo 
12 12

13 4
(3,12) 3

  

Now order of 2k modulo 13 = 12 = order of 2 modulo 13

iff (k, 12) = 1

i.e. iff k = 1, 5, 7, 11.

Example 2 : If the order of a modulo a prime p is h such that h is even, then show

that 
h

2a 1   (mod p)

Sol. Given that order of a modulo p is h. Therefore

ah  1 (mod p) ..... (1)

Since h is even, there is an integer k such that

h = 2 k .... (2)

From (1)

a2k  1 (mod p)

 (ak)2 –1  0 (mod p)

 (ak – 1) (ak + 1)  0 (mod p)

 ak –1  0 (mod p)

or ak +1  0 (mod p)

 ak  1 (mod p)

or ak  –1 (mod p)

Since order of a (mod p) is h and k < h, therefore ak  1 (mod p)

Hence ak  –1 (mod p)

From (2), we have 
h

2a 1(mod p)  .

Example 3 : Let a be a positive integer and p be a prime. Show that if a is a primitive

root of p and ap–1   1 (mod p2), then a is also a primitive root of p2.

Sol. Let a has order h modulo p2

Then ah  1 (mod p2)  ah  1 (mod p)

Since a has order (p) = p –1 modulo p

So p –1 |h
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 h = k (p – 1), k Z

As a is a primitive root of p

 (a, p) = 1  (a, p2) = 1

By Euler's Fermat theorem

2(p ) 2a 1 (mod p ) 

 ap(p–1)  1 (mod p2)

 h |p (p – 1)

i.e. k (p – 1) |p (p–1)

 k|p  k = 1 or p

If k = 1, then h = p –1

and ap–1  1 (mod p2)

which is not so

Therefore, k = p

and h = p (p – 1) = (p2)

i.e. a has order (p2) modulo p2

Hence a is a primitive root modulo p2.

Example 4 : Show that f (x) = x3 is divisible by g(x) = x2 + 2x + 4 to modulus 4.

Sol. Since (x2 + 2x + 4) (x + 2)

= x3 + 4x2 + 8x + 8

  x3 (mod 4)

i.e. x3  (x2 + 2x + 4) (x + 2) (mod 4)

or f (x)  g(x) h(x) (mod 4)

where h(x) = x + 2 is an integral polynomial

 x2 + 2x + 4|x3 (mod 4).

Example 5 : Find all the primitive roots of 17.

Sol. Here p = 17

 p –1 = 16 = 24

22  4, 24  –1, 28  1 (mod 17)

 2 is not primitive root of 17

32  9, 34  14, 38  16, 316  1 (mod 17)

 3 is a primitive root of 17.

All primitive roots of 17 are

3, 33, 35, 37, 39, 311, 313, 1315

 3, 10, 5, 11, 14, 7, 12, 6 (mod 17)

Hence 3, 5, 6, 7, 10, 11, 12, 14 are all primitive roots of 17.

Example 6 : If p is an odd prime and g,g' are primitive roots modulo p, then show that

gg' is not a primitive root modulo p.

Sol. Since g and g' are primitive roots of p, so
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p 1

2g 1(mod p)


 

and
p 1

2g 1(mod p)


  

p 1 p 1

2 2g g ( 1) ( 1) (mod p)
 

   

 
p 1

2gg ' 1(mod p)




Thus gg' cannot be primitive root modulo p.

2.2.6 Self Check Exercise

1. If ab  1(mod m), then a and b have the same order modulo m.

2. If a has order hk modulo m, then ah has order k modulo m.

3. If a is primitive root of m and b  a (mod m), then b is also a primitive

root of m.

4. Prove Wilson's theorem by using the fact that each prime p has a

primitive root.

5. If g is a primitive root of a prime p, then 

p 1

2g 1


   (mod p).

2.2.7 Suggested Readings

1. Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery, An Introduction

to the Theory of Numbers, Wiley-India Edition.

2. T.N. Apostal, An Introduction to Analytic Number Theory, Springer Verlag.
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NUMBER THEORY

LESSON NO. 2.3 Author : Dr. Chanchal

PRIMITIVE ROOTS AND INDICES – II

Structure :

2.3.0 Objectives

2.3.1 Introduction

2.3.2 Fundamental Theorem of Primitive Roots

2.3.3 Indices

2.3.4 Properties of the Index

2.3.5 Euler's Criterion

2.3.6 Self Check Exercise

2.3.7 Suggested Readings

2.3.0 Objectives

The prime objective of this lesson is understand the fundamental theorem of

primitive roots. Further, the idea of indices alongwith its various properties and Euler's

criterion is also discussed in detail.

2.3.1 Introduction

In continuation with the previous lesson, we are already familiar with the

concept of primitive roots. In this lesson, we will introduce about the fundamental

theorem of primitive roots and indices, as and when they occur.

2.3.2 Fundamental Theorem of Primitive Roots

The above Theorem states that

Theorem 1 : An integer m > 1 has primitive roots if and only if m is one of the

following

2, 4, pk, 2pk

where p is an odd prime and k be any positive integer.

Proof : The proof of this theorem is actually based upon the following theorems and

lemmas.

Theorem 2 : If p is an odd prime, then pk has a primitive root for all k  1.

Proof : The proof of this theorem is further based upon the following two Lemmas.

Lemma 1 : If p is an odd prime, there exists a primitive root g (mod p) such that

gp–1  1 (mod p2)

47
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Proof :  Since every prime p has a primitive root, let g be a primitive root of p

As g + p  g (mod p)

so g + p is also a primitive root of p

Now either gp–1  1 (mod p2) or gp–1  1 (mod p2)

If gp–1  1 (mod p2), we have done

If gp–1  1 (mod p2), then consider

 p 1 p 1 p 2 p 3 2 p 11
g p g (p 1) g p (p 1) (p 2) g p .... p

2

            

p 1 p 2 2 p 2 p 3 p 31
g p g p g (p 1) (p 2) g .... p

2

              

 gp–1 – p gp–2 (mod p2)

 1 – p gp–2 (mod p2) p 1 2| g 1(mod p )  

Since g is primitive root of p

 (g, p) = 1

 (gp–2 , p) = 1

i.e. p  gp–2

 p2  pgp–2

or pgp–2  0 (mod p2)

and then (g + p)p–1  1 (mod p2)

Thus there is a primitive root g + p such that

(g + p)p–1  1 (mod p2)

Lemma 2 : If p be an odd prime and g is a primitive root (mod p) such that

gp–1  1 (mod p2), then

k 2p (p 1) kg (mod p )
   k 2.

Proof :Applying induction on k, we prove the lemma

For k = 2, 
k 2p (p 1)g
 

  1 (mod pk) becomes gp–1   1 (mod p2)

which is true by lemma 1. So, Lemma is true for k = 2.

Assume the lemma is true for k > 2

i.e. 
k 2p (p 1) kg 1(mod p ) for k 2
   

Since g is primitive root modulo p.

so (g, p) = 1
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 (g, pk–1) = 1

By Euler's Theorem

k 1(p )g 1
   (mod pk–1)

i.e.
k 2 (p 1)p k 1g 1 (mod p )
  


k 2p (p 1) k 1g 1 t p for some t Z
     ... (2)


p pk 2p (p 1) k 1g 1 t p

         

k 1p (p 1) k k 1g 1 tp terms containing p
    


k 1p (p 1) k k 1g 1 t p (mod p )
   

Claim : (p, t) = 1

If (p, t)  1, then p|t

 pk|t pk–1

i.e. tpk–1  0 (mod pk)

or 1 + tpk–1  1 (mod pk)

From (2) 
k 2p (p 1)g 1
    (mod pk)

which contradict (1)

 (p, t) = 1 and then tpk  0 (mod pk+1)


k 1 (p 1)p k 1g 1(mod p )
  

which show that Lemma is true for k + 1.

Now, we can prove the main theorem as :

Proof of Main Theorem 2 : Since p is a prime, a primitive root g (mod p) such that

k 2p (p 1) kg 1(mod p ) k 2
    

Claim : g is also a primitive root (mod pk) for all k 1

Obviously theorem is true for k = 1

Let k  2 and let order of g (mod pk) = h

Then h| (pk)

i.e. h| pk–1 (p –1) ... (1)

Also gh  1 (mod pk)

 gh  1 (mod p)

Since g is primitive root of p, so order of g (mod p) = (p) = p –1

 p –1 |h ... (2)
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From (1) and (2)

h = pr (p – 1); 0 r k – 1


rp (p 1) kg 1 (mod p )  ... (3)

Suppose 0  r < k –1 i.e. 0  r  k –2

Raising the power pk–2–r both sides of (3), we have

k 2p (p 1) kg 1(mod p )
  

which is a contradiction

Thus r = k –1 and then

Order of g (mod pk) = h = pk–1 (p – 1) = (pk)

and hence g is a primitive root of pk k 1.

Note : If g is a primitive root of an odd prime p such that

gp–1 1 (mod p2),

then g is also a primitive root of pk, k 1

Theorem 3 : If p is odd prime and k 1, then 2pk has primitive roots.

Proof : For any odd prime p and k 1, pk has primitive roots.

Let g be a primitive root of pk

Since g + pk g (mod pk)

so g + pk is also a primitive root of pk

If g is odd, then gr  1 (mod 2) r 1

So gr  1 (mod 2pk)

iff gr  1 (mod pk)

Since order of g (mod pk) = (pk),

so order of g (mod 2pk) = (pk)

Also (2pk) = (2) (pk) = (pk)

 Order of g (mod 2pk) = (2pk)

 g is primitive root of 2pk

If g is even, then g + pk is odd

and g + pk is a primitive root of 2pk.

Note : (1) If g is odd primitive root (mod pk), then g is also primitive root (mod 2pk).

(2) If g is even primitive root (mod pk), then g + pk is a primitive root

(mod 2pk).

Lemma 5.1 :Prove that there is no primitive root of 2k, k 3.

Proof : If an integer a is primitive root of 2k, then (a, 2k) = 1

and Order of a (mod 2k) = (2k) = 2k – 1

(a, 2k) = 1 a is odd number

Now, by induction, we'll prove that
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k 22 ka 1 (mod 2 ) for k 3


  ... (1)

Let k = 3. Some a is odd,

so a = 2 r + 1 where r is positive integer

a2 = 4r2 + 4r + 1

a2 = 4r (r + 1) + 1

Since one of r and r + 1 is even

 a2 = 8s + 1 for some integer s

 a2  1 (mod 8)

i.e.
3 22 3a 1 (mod 2 )




 (1) is true for k = 3

Assume (1) hold for an integer k

i.e.
k 22 ka 1(mod 2 )




 k 22a
  = 1 + t.2k, for some integer t

 2k 22 k 2Now a (1 t.2 )


 


k 12 k 1 2 2ka 1 t.2 t 2
   

= 1 + (t + t2 . 2k–1) 2k+1

= 1 + t' . 2k+1 for some integer t'


k 12 k 1a 1 (mod 2 )
 

(1) is true for k + 1

Thus for k 3, 
k 22 ka 1(mod 2 )




As 2k–2 < 2k–1 = (2k)

So, a cannot be a primitive root of 2k

Hence there is no primitive root of 2k, k 3.

Cor. : Prove that 2k has primitive root only for k = 1, 2.

Proof : Do yourself.

Lemma 2 : For integers m > 2 and n > 2 with (m, n) = 1, prove that mn has no primitive

root.

Proof : Let a be an integer such that (a, mn) = 1. Then

(a, m) = 1 and (a, n) = 1

By Euler's Theorem
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a(m)  1 (mod m)

and a(n)  1 (mod n)

 a[(m), (n)]  1 (mod m) and a[(m), (n)]  1 (mod n)

 a[(m), (n)]  1 (mod m n)

Since both (m) and (n) are even for m > 2, and n > 2

so ((m), (n)) 2

Also we have, 
(m) (n)

[ (m), (n)] (m) (n) (mn)
( (m), (n))

 
       

 

Thus we have an integer k = [(m), (n)] < (m n) such that

ak 1 (mod mn)

a cannot be a primitive root of m n and hence mn has no primitive root.

Proof of Theorem 1 : Combining the results of theorem 5.2, theorem 5.3, lemma 5.1

and lemma 5.2, theorem 5.1 is proved.

Example 1 : Calculate the eight primitive roots of 25.

Sol. We have

25 = 52

Firstly we find primitive roots of 5

As (5) = 4 and 22 4, 24 1 (mod 5)

so 2 is a primitive root of 5

Since 25–1 = 16  1 (mod 52)

 2 is also a primitive root of 25

As ((25)) = (20) = 8

and (k, 20) = 1 k = 1, 3, 7, 9, 11, 13, 17, 19

 the eight distinct primitive roots are given by

2, 23, 27, 29, 211, 213, 217, 219 (mod 25)

Further

2  2, 23  8, 27  3, 29  12,

211  23, 213  17, 217  22, 219  13 (mod 25)

Thus the eight distinct primitive roots (mod 25) are

2, 3, 8, 12, 13, 17, 22 and 23.

2.3.3 Indices

If m has a primitive root g, then g, g2, g3, ...., g(m) form a reduced residue

system mod m. Since g(m) = 1, equivalently the numbers. 1, g, g2, ....., g(m)–1 also form

a reduced residue system mod m. If a be any integer such that (a, m) = 1, then there

is a unique integer i, 1 i (m), for which a  gi (mod m).

Definition : Let g be primitive root modulo m and a be an integer such that (a, m) = 1.

The smallest positive integer i such that



53B.A. Part – II (SEM-IV) Paper–VI

g'  a (mod m)

is called the index of a relative to g and is denoted as i = ind
g
a = ind a.

An Important Result : Let g be a primitive root modulo m and (a, m) = 1.

Then gk  a (mod m) if, and only if,

k  ind a (mod (m)).

2.3.4 Properties of the Index

If g be primitive root mod m then, the following properties hold :

Prop. I. :  Ind a = Ind b iff a  b (mod m)

Proof : Let Ind a = i and Ind b = j

 a  gi (mod m) and b  gj (mod m)

Now Ind a = Ind b  i = j

 gi   gj (mod m)

 a  b (mod m)

Conversely let a  b (mod m)

Since g, g2, ...., g(m) is a reduced residue system mod m

 a  gi (mod m)

and b  gj (mod m) where 1 i, j (m)

 gi  gj (mod m) ind.ab  i + j (mod (m))

 (m) |i–j

 i = j

i.e. ind a = ind b

Prop. II. : ind a b  ind a + ind b (mod (m))

Proof : Let Ind a = i and Ind b = j

 a  gi (mod m)

and b  gj (mod m); 1 i, j (m)

 ab  gi + j (mod m)

 ind a b  ind a + ind b (mod (m))

Prop. III. : Ind an  n Ind a (mod (m)), n is a positive integer.

Proof : Let Ind a = i and g be a primitive root (mod m)

 a  gi (mod m) where 1 i (m)

 an  gin (mod m)

 ind an  i n (mod (m))

i.e. ind an  n ind a (mod (m))

Prop. IV. : ind 1  0 (mod (m)) and ind g  1 (mod (m))

Proof : Let g be the primitive root of m

Since 1  g(m) (mod m) and g  g1 (mod m)

 ind 1  (m) (mod (m))  0 (mod (m))
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and ind g  1 (mod (m))

Prop. V. : ind (–1) = 
(m)

2


 for all m > 2

Proof : The proof is left for the reader.

Remarks :

1. Suppose m has a primitive root and (a, m) = (b, m) = 1. Then the linear

congruence ax  b (mod m) has a unique solution and is given by

ind a + ind x  ind b (mod (m))

or ind x  ind b – ind a (mod (m))

2. Binomial congruence : A congruence of the form

xn  a (mod m) ... (1)

is called binomial congruence. If (a, m) = 1 and m has a primitive root, then (1) is

equivalent to n ind x  ind a (mod (m))

which is linear congruence with ind x as a variable.

3. Exponential Congruence : A congruence of the form ax  b (mod m)

is called exponential congruence. If (a, m) = (b, m) = 1 and m has a primitive root,

then it is equivalent to the linear congruence x ind a  ind b (mod  (m)).

Example 2 : Solve 11x  28 (mod 31) using 3 as a primitive root (mod 31).

Sol. To construct index table modulo 31 using 3 as a primitive root, we have

31  3 32  9 33  9 34  19 35  26

36  16 37  17 38  20 39  29 310  25

311  13 312  8 313  24 314  10 315  30

316  28 317  22 318  4 319  12 320  5

321  15 322  14 323  11 324  2 325  6

326  18 327  23 328  7 329  21 330  1

    Index Table :

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3Ind a 30 24 1 18 20 25 28 12 2 14 23 19 11 22 21
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a 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

3Ind a 6 7 26 4 8 29 17 27 13 10 5 3 16 9 15

Given congruence

11x  28 (mod 31) ... (1)

is equivalent to

x ind 11  ind 28 (mod (31))

Using index table

23x  16 (mod 30) ... (2)

Since (23, 30) = 1, (2) and hence (1) have a unique solution

Now 23 x  16 (mod 30)

 23x  16 + 30 (mod 30)

 23x  46 (mod 30)

 x  2 (mod 30)

which is the required solution of (1).

Example 3 : Construct a table of indices for the prime 17 with respect to the primitive

root 5 and solve the congruence 8x5  10 (mod 17)

Sol. To construct a table of indices of 17 w.r.t. the primitive root 5, calculate

5, 52, 53, ........, 516 modulo 17

 51  5 55  14 59  12 513  3

52  8 56  2 510  9 514  15

53  6 57  10 511  11 515  7

54  13 58  16 512  4 516  1

Index Table :

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ind
5
a 16 6 13 12 1 3 15 2 10 7 11 9 4 5 14 8

Given 8x5 10 (mod 17)

 ind 8 + 5 ind x  ind 10 (mod 16)

From above Table, we have

ind 8 = 2 and ind 10 = 7

 2 + 5 ind x  7 (mod 16)

 5 ind x  5 (mod 16)

As (5, 16) = 1,

 ind x  1 (mod 16)
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 ind x = 1

Again using the table of indices, we have x  5 (mod 17).

Example 4 : Using indices, find the remainder when 324 × 513 is divided by 17.

Sol. Firstly construct index table (mod 17) using any primitive root of 17

Corresponding to the primitive root 3 of 17 we have, modulo 17,

31  3, 32  9, 33  10, 34  13,

35  5, 36  15, 37  11, 38  16,

39  14, 310  8, 311  7, 312  4,

313  12, 314  2, 315  6, 316  1,

Index Table :

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ind
5
a 16 6 13 12 1 3 15 2 10 7 11 9 4 5 14 8

Let r be the remainder when 324 . 513 is divided by 17. Then

324 . 513  r (mod 17)

ind (324 . 513)  ind r (mod 16)

ind 324 + ind 513  ind r (mod 16)

24 ind 3 + 13 ind 5  ind 5 (mod 16)

24 × 1 + 13 × 5  ind r (mod 16)

ind r  89 (mod 16)

ind r  9 (mod 16)

r  14 (mod 17)

Thus r = 14.

2.3.5 Euler's Criterion

Firstly, we will prove an important theorem which states that

Theorem 4 : Let m be an integer which has a primitive root and (a, m) = 1. Then the

congruence xn  a (mod m) has a solution iff a(m)/d  1 (mod m), where d = (n, (m))

If it has a solution, there are exactly d solutions

Proof :

As d = (n, (m)) d\(m)

 (m) = dd
1 
for some integer d

1

 1

(m)
d

d



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Now a(m)/d  (mod m)

iff
(m)

d


 ind a  ind 1 (mod (m))

i.e. iff d
1 
ind a  0 (mod d d

1
)

i.e. iff ind a  0 (mod d)

i.e. iff d|ind a ... (i)

Also xn  a (mod m)

iff n ind x  ind a (mod (m))

 it has solution iff d = (n, (m))|ind a

i.e. iff a(m)/d  (1 mod m)

Cor. (Euler's Criterion) : Let p a prime and (a, p) = 1. Then x2  a (mod p) has a

solution iff a(p–1)/2  1 (mod p)

Proof :We have xn  a (mod m) has a solution

iff a(m)/d  1 (mod m)

where m hasa primitive root and (a, m) = 1, d = (n, (m))

Therefore the congruence x2  a (mod p) has a solution

iff a(p)/d  1 (mod p) where (p) = p – 1 and d =(2, p–1) = 2

Thus x2  a (mod p) has a solution iff a(p–1)/2  1 (mod p).

Example 5 : If p is an odd prime, then show that x2  –1 (mod p) is solvable iff p  1 (mod

4)

Sol. We have, if p is a prime and (a, p) = 1, then x2  a (mod p) has a solution iff

a(p–1)/2  1 (mod p)

Given

x2  –1 (mod p) ... (1)

 a = –1 and (–1, p) = 1

(1) is solvable iff (–1)(p–1)/2  1 (mod p)

Now 
p 1

2


 is either odd or even.

If 
p 1

2


 is odd, then 

p 1

2( 1) 1


  

 –1 1 (mod p)  –2  0 (mod p)

or 2  0 (mod p)

which is not possible as p is an odd prime


p 1

2


 must be even
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Thus x2  –1 (mod p) is solvable iff 
p 1

2


 is even

i.e. iff 
p 1

2 k,
2


  for some integer k

i.e. iff p = 1 + 4k

i.e. iff p  1 (mod 4).

2.3.6 Self Check Exercise

1. Solve 5x   4 (mod 19)

2. Solve 13x8  3 (mod 25)

3. If p is an odd prime, then show that x4  –1 (mod p) is solvable iff p  1

(mod 8).

2.3.7 Suggested Readings

1. Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery, An Introduction

to the Theory of Numbers, Wiley-India Edition.

2. T.N. Apostal, An Introduction to Analytic Number Theory, Springer Verlag.
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QUADRATIC RESIDUES AND QUADRATIC RECIPROCITY LAW

Structure :
2.4.0 Objectives
2.4.1 Introduction
2.4.2 Quadratic Residue Modulo m
2.4.3 Legendre's Symbol
2.4.4 Quadratic Reciprocity Law
2.4.5 Jacobi's Symbol
2.4.6 Self Check Exercise
2.4.7 Suggested Readings

2.4.0 Objectives
The prime objective of this lesson is to understand the concept of residues

specially quadratic residues modulo m. During the study, we will discuss the following
important topics.

* Quadratic residues and Euler's criterion based on them.
* Legendre's Symbol with Euler's Criterion.
* Gauss Lemma.
* Jacobi's Symbol.
* Quadratic Reciprocity and Jacobi's Reciprocity Law.

2.4.1 Introduction
In order to understand the concept of quadratic residues, it is required to be

familiar with the knowledge of nth power residue modulo m, which may be defined as:
An integer a is said to be an nth power residue modulo m or nth power residue

of m if the congruence xn  a (mod m) has atleast one solution modulo m.
In particular for n = 2, 3, 4 we call a as a quadratic, cubic, biquadratic residue

modulo m respectively.
In this lesson, we deals with the Quadratic Congruences of the form

x2  a (mod m) where (a, m) = 1.
2.4.2 Quadratic Residue Modulo m
Def : Let a be any integer and m be a positive integer such that (a, m) = 1.

Then, a is called quadratic residue modulo m if the congruence
x2  a (mod m) has a solution.

If x2  a (mod m) has no solution, then a is called quadratic non-residue modulo
m.
For Example : 2 is a quadratic residue modulo 7 but 3 is not a quadratic residue
modulo 7. (since x2  2 (mod. 7) but x2 3 (mod. 7))
Remarks :

1. Since x2  1 (mod m) has solution for all m 1, so 1 is a quadratic residue
for all m.

2. Since x2  a (mod m) x2  a + m (mod m), a + m is a quadratic residue
or non-residue modulo m according as a is or is not a quadratic residue.

59
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3. If a  b (mod m), then a is quadratic residue or non-residue of m if and
only if b is quadratic residue or non-residue of m.

4. Any integer a with (a, m) = 1 is either a quadratic residue or quadratic
non-residue of m.

5. Since x2  a2 (mod m) has solution for all integers a, so a2 is quadratic
residue of m iff (a, m) = 1.

Theorem 1 : Let a be an integer and m > 2 such that (a, m) = 1.
Prove that a is quadratic residue of m iff ind a is even.

Proof : We have a is quadratic residue of m
iff x2  a (mod m) has a solution

i.e. iff 2 ind x  ind a (mod (m)) has a solution
i.e. iff (2,  (m)) | ind a [  for m > 2, (m) is even]
i.e. iff 2|ind a
i.e. iff ind a is an even number.
Note : The readers can easily prove the corollary based on above theorem, which
states that "a is quadratic non-residue of m iff ind a is odd."
Theorem 2 (Euler's Criterion) : Let p be an odd prime and (a, p) = 1. Then a is quadratic
residue of p iff

p 1

2a 1(mod p)




First Proof : Firstly let a be quadratic residue of p

 x2  a (mod p) has a solution say x = 

i.e. 2 a (mod p) 

 
p 1 p 1

2 p 12 2a (mod p)
 

   

Since (a, p) = 1,  (, p) = 1
By using Fermat's theorem, we have

p–1  1 (mod p)

and so
p 1

2a 1(mod p)




Conversely, let 
p 1

2a 1(mod p)




Let g be a primitive root of p
Then {g, g2,......., gp–1} form a reduced residue system mod p.
For any a such that (a, p) = 1,

a  gr (mod p), where 1 r p – 1 ... (1)


r (p 1)p 1

2 2a g (mod p)


 
r (p 1)

2g 1(mod p)




 order of 
r (p 1)

g|
2




r (p 1)
p 1|

2




 2|r  r is even number.
 r = 2 k; k is an integer
(1)  g2k a (mod p)
or (gk)2 a (mod p)
 x = gk is a solution of x2 a (mod p)
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Thus a is quadratic residue of p.
Cor. :Let p be on odd prime such that (a,p) = 1, then a is quadratic non-residue iff

p 1

2a 1(mod p)


 

Proof : The proof is left as an exercise for the reader.

Theorem 3 : For any odd prime p, prove that there are 
p 1

2


quadratic residues and

p 1

2


 quadratic non-residue.

OR
Let g be a primitive root of an odd prime p. Prove that the quadratic residue of

p are congruent to g2, g4, ........, gp–1 and that the non-residues are congruent to
g, g3,....., gp–2.
Proof : Let g be a primitive root of p.

Then {g, g2, g3, ........., gp–1} form a reduced residue system modulo p.
Let a be an integer such that (a, p) = 1

Then a  gr (mod p) for some 1  r  p – 1
 ind a = r, 1  r  p – 1

Since a is quadratic residue or non-residue according as ind a = r is even or
odd,
 g2, g4, ......., gp–1 are quadratic residue of p.
and g, g3, ........, gp–2 are quadratic non-residue of p.

Thus there are 
p 1

2


quadratic residue as well as non-residue of p.

Example 1 : Let r be quadratic residue modulo prime p. Is r primitive root mod p ?
Justify.
Sol. No.

Let r be a quadratic residue modulo p.
Then, x2  r (mod p) has a solution ... (1)
Let it be x = x

0
.

Therefor ex
0

2  r (mod p)
Since (r, p) = 1, therefore (x

0
2, p) = 1

 (x
0
, p) = 1

By Fermat's Theorem,
x

0
p–1  1 (mod p) ... (2)

From (1),we have

p 1 p 1

2 2 2
0(x ) r (mod p)

 




p 1

p 1 2
0x r (mod p)


  ... (3)

From (2)and (3), we get

p 1

2r 1(mod p)




Therefore order of r (mod p) 
p 1

2


 .
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Hence r cannot be a primitive root of p.
Example 2 : Find all the quadratic residues of 13.
Sol. Here p = 13

Number of quadratic residue of 
13 1

13 6
2


 

We have
12  1 (mod 13), 22  4 (mod 13), 32  9 (mod 13)
42  3 (mod 13), 52  12 (mod 13), 62  10 (mod 13)

Therefore, all the quadratic residue of 13 are 1, 3, 4, 9, 10 and 12.
Example 3 :  Show that 3 is a quadratic residue of 13 but a quadratic non-residue of 7.

Sol. We have 
13 1

623 3 1(mod13)


 

and
7 1

323 3 1(mod 7)


  

By Euler's Criterion 3 is a quadratic residue of 13 and a quadratic non-residue
of 7.
2.4.3 Legendre's Symbol

Def : If p is an odd prime and (a, p) = 1, then the Legendre symbol 
a

p

 
 
 

 is defined as

follows :

1 if a is a quadratic residue of pa

1 if a is a quadratic non-residue of pp

  
    

Theorem 2.4.4 (Euler's Criterion) : Let p be an odd prime and a an integer such that
(a, p) = 1, then

p 1 p 1

2 2
a a

a (mod p) or a (mod p)
p p

    
    

   
Proof :Let p be an odd prime and (a, p) = 1, By Fermat's theorem

ap–1  1 (mod p)
ap–1 –1  0 (mod p)

(a(p–1)/2–1) (a (p–1)/2 + 1)  0 (mod p)
so a(p–1)/2  ± 1 (mod p)
We know that
(i) a is quadratic residue of p iff a(p–1)/2  1 (mod p)
(ii) a is quadratic non residue of p iff a(p–1)/2  –1 (mod p)
Consequently, we have

(p 1)/2 a
a (mod p)

p

  
  
 

.

Theorem 2.4.5 :  Let p be an odd prime. Then

(1)

2a
1

p

 
 

 

(2) If a b (mod p), then 
a b

p p

   
   

   
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(3)
ab a b

p p p

     
     

     

(4)

p 1

2
1 1

1and ( 1)
p p

   
     

   

(5) If (r, p) = 1, then 

2ar a

p p

   
   
  

Proof : (1) Since x2  a2 (mod p) has solutions namely x = ± a
 a2 is a quadratic residue of p


2a

1
p

 
 

 
(2) If a b (mod p), then

either both a and b are quadratic residues or non-residue of p.
In each case, we have

a b

p p

   
   

   
(3) If both a and b are quadratic residues of p then, a b is also quadratic residue of
p


a b ab

1, 1, and 1
p p p

     
       

     


ab a b

p p p

     
     

     
If both a and b are quadratic non-residue of p then, a b is quadratic residue of

p.


a b ab

1, 1, and 1
p p p

     
         

     


ab a b

p p p

     
     

     
If one of a and b is quadratic residue and other is non-residue of p, then a b is

quadratic non-residue of p.
Let a be quadratic residue of p and b be non-residue of p.

Then
a b ab

1, 1, and 1
p p p

     
         

     


ab a b

p p p

     
     

     



64B.A. Part – II (SEM-IV) Paper–VI

The proof of (4) and (5) is left as an exercise for the reader.
Cor. : If p is an odd prime, then

1 if p 1 (mod 4)1

1 if p 3 (mod 4)p

  
     

Proof :Given p be an odd prime
 (–1, p) = 1


p 1

2
1

( 1)
p

 
  

 
Every odd prime is either of the form 4k + 1 or 4k + 3.

If p = 4 k + 1, then 
p 1

2k
2




i.e.
p 1

2


 is even number


1

1
p

 
 

 

If p = 4 k + 3, then p –1 = 4 k + 2 
p 1

2k 1
2


 

i.e.
p 1

2


 is odd number

 1
1

p

 
  

 
.

Theorem 2.4.6 (Gauss Lemma) : Let p be an odd prime and a be any integer such that
(a, p)  = 1.  Consider the least  posit ive residues mod p of  the integers

p 1
a, 2a, 3a,......., a

2



If n denotes the number of these residues which exceed 
p

,
2

 then

na
( 1)

p

 
  

 

Proof :The integers a, 2a, 3a, ......, 
p 1

a
2


are incongruent mod p

 if 
p 1

r a s a (mod p),1 r, s
2


  

then r  s (mod p) [ (a,p) 1]

 r = s [ 0 |r s| p]  

Divide a, 2a + 3a, ...., 
p 1

a
2


by p
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Let A = {
1 


2
,........, 

m
} be the set of all least positive residues < 

p

2
and

B = {
1 


2
,........, 

n
} be the set of all least positive residue > 

p

2
. Then all 

i 
and 

i 
are

distinct and non-zero.

Also
p 1

m n
2


 

Consider the set
C = {p – 

1
, p–

2
, ......., p – 

n
}

As i i i

p p p
p p 0 p

2 2 2
            

The members of A and C lies between 0 and 
p

2
 and are distinct.

 if 
i 
= p – 

j

then 
i 
a (mod p) and 

j 
a (mod p) for 

p 1
1 ,

2


   

 (+ ) a 
i 
+ 

i 
p 0 (mod p)

 + 0 (mod p)
This is impossible   1 < + p – 1.
Thus the set A C = {

1
, 

2
, ........., 

m
, p – 

1
,p – 

2
,........, p – 

n
}

consists of m + n = 
p 1

2


 integers in the interval 

p 1
1,

2

 
  

 and hence

{
1
, 

2
, ........., 

m
, p – 

1
,p – 

2
,........, p – 

n
} = 

p 1
1,2,3........,

2

 
 
 

 
1


2 
..........

m 
(p – 

1
) (p – 

2
).........(p–

n
) = 1.2.3..... 

p 1

2

 
 
 

 
p 1

!
2

   
 

 n
1 2 m 1 2 n

p 1
! ( 1) ...... ......... (mod p)

2

          
 

n p 1
( 1) a.2 a.3 a.... a (mod p)

2

    
 

p 1

n 2
p 1

( 1) a ! (mod p)
2

     
 


p 1

n 2( 1) a 1 (mod p)


 


p 1

2n n2( 1) a ( 1) (mod p)


  


p 1

n2a ( 1) (mod p)


 
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Since
p 1

2
a

a (mod p)
p

  
  
 

 na
( 1) (mod p)

p

 
  

 

 na
( 1)

p

 
  

 
.

Now, the readers can easily prove the below stated theorem and corollary.
Theorem 2.4.7 : If p is an odd prime and a is an odd integer such that (a, p) = 1, then,

(p 1)/2
t

j 1

a j a
( 1) where t

p p





   
     

   


Cor. : If p is an odd prime, then

2(p 1)

8
2

( 1)
p

 
  

 
Theorem 2.4.8 : If pis an odd prime, then

1 if p 1 (mod 8)2

1 if p 3 (mod 8)p

   
      

Proof :We know that

2p 1

8
2

( 1)
p

 
  

 
Any odd prime p is one of the form

8 k + 1, 8k + 3, 8k + 5 or 8k + 7

If

2
2 2p 1 1

p 8k 1, (64k 16k 1 1) 8k 2k
8 8


       


2p 1

8


 is even.

If p = 8 k + 3, 

2p 1 1

8 8


  (64k2 + 48k + 9 – 1) = 8k2 + 6k + 1


2p 1

is odd.
8



If p = 8 k + 5, 

2p 1 1

8 8


  (64k2 + 80k + 25 –1) = 8k2 + 10k + 1


2p 1

is odd.
8



If p = 8 k + 7, 

2p 1 1

8 8


  (64k2 + 112k + 49 – 1) = 8k2 + 4k + 6
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
2p 1

is even.
8



Thus 

2p 1

8


 is even if p = 8 k + 1 or 8k + 7

and 

2p 1

8


 is odd if p = 8 k + 3 or 8k + 5


1 if p 8k 1or 8k 72

1 if p 8k 3 or 8k 5p

    
       

In other words

1 if p 1or 7 (mod 8)2

1 if p 3 or 5 (mod 8)p

  
     

1 if p 1 (mod 8)

1 if p 3 (mod 8)

 
 

  
Example 2.4.4 :

Find 
38

13

  
 

Sol.
38 1 38

13 13 13

           
     

38
1.

13

   
 

[  13  1 (mod 4)]

12

13

   
 

[  38  12 (mod 13)]

13 12
6 22

2 .3 3
3 3 (27) 1 (mod.13)

13 13

           
  

 
3 38

1
13 13

        
   

.

Example 2.4.5 : Show that there are infinitely many primes of the form 4k + 1.
Sol. Suppose there are finitely many primes of the form 4k + 1.

Let they are 5, 13, 17, ......., q
where q is the largest prime of the form 4k + 1.
Consider N = (2.5.13.17.........q)2 + 1
Then N is an odd and therefore there exists an odd prime p such that

p|N ... (1)
 N 0 (mod p)
 (2.5.13.17.......q)2 –1 (mod p)
 x2 –1 (mod p) has a solution

Thus –1 is a quadratic residue of p and 
1

1
p

 
 

 

But
1

1
p

 
 

 
 if p is of the form 4k + 1
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 p is one of 5, 13, 17,......., q
 p | (2.5.13.17 ......... q)2

i.e. p | N–1 ... (2)
(1) and (2) p |N – (N – 1) i.e. p | 1
which is a contradiction
Hence there must exist infinitely many prime of the form 4k + 1.

Example 2.4.6 : Using Gauss Lemma, show that 2 is quadratic non residue and 3 is
a quadratic residue modulo 13.
Sol. Here p = 13

Firstly take a = 2
Consider the integers

2, 2.2, 3.2, 4.2, 5.2, 6.2
2  2 (mod. 13), 2.2 4 (mod 13), 3.2  6 (mod. 13), 4.2  8 (mod. 13),
5.2  10 (mod. 13), 6.2  12 (mod 13)

Here, n = number of residues which exceed 
13

2
 = 3

so, 32
( 1) 1

13

      
 

 2 is a quadratic non residue of 13
Now take a = 3
Consider the integers

3, 2.3, 3.3, 4.3, 5.3, 6.3

3  3 (mod 13), 2.3  6 (mod 13), 3.3  9 (mod 13)

4.3  12 (mod 13), 5.3  2 (mod 13), 6.3  5 (mod 13)

Here, n = number of residues which exceed 
13

2
 = 2

so 23
( 1) 1

13

     
 

 3 is a quadratic residue of 13.
Example 2.4.7 :Verify that 3 is a quadratic residue of 23.
Sol. Since 23 is a prime number and 23  –1 (mod 12)

Therefore, 
3

1
23

   
 

Hence 3 is a quadratic residue of 23.

Example 2.4.8 : Find the value of 
150

1009

 
 
 

Sol.

2150 2.3.5

1009 1009

      
   

 

22 3 5

1009 1009 1009

         
     

2 3

1009 1009

       
   

3

1009

   
 

1009  1 (mod 8)
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1009

3

   
 

1009  1 (mod 4)

1

3

   
 

1009  1 (mod 3)

= 1.
Example 2.4.9 : Show that the congruence x2  105 (mod 199) has no solution.
Sol. The given congruence is x2  105 (mod 199)

We have

105 3 5 7

199 199

       
   

3 5 7

199 199 199

           
     

Now, 
3 199

199 3

       
   

 3  3 (mod 4) and 199  3 (mod 4)

1

3

   
 

199  1 (mod 3)

= –1

5 199

199 5

      
   

5  1 (mod 4)

4

5

   
 

199  4 (mod 5)

= 1 4 = 22

7 199

199 7

      
    7  3 (mod 4) and 199  3 (mod 4)

3

7

   
 

199  3 (mod 7)

7

3

   
 

3  3 (mod 4) and 7  3 (mod 4)

1

3

   
 

7  1 (mod 3)

= 1
Therefore

105
( 1) 1 1 1

199

        
 

.

Thus the given congruence (1) has no solution.
Example 2.4.10 :  List all the quadratic residues of prime number 7.

Sol. An integer a is a quadratic residue of an odd prime p iff 
a

1
p

 
 

 
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We have 
1 2

1and 1
7 7

       
   

3 7 1
1

7 3 3

               
     

24 2
1

7 7

      
   

5 7 2
1

7 5 5

             
     

6 2 3
1

7 7 7

            
     

Thus all the integers a such that
a  1, 2 or 4

(mod 7) are quadratic residues of 7.
2.4.4 Quadratic Reciprocity Law

Theorem 2.4.9 : If p and q are distinct odd primes, then 
p 1 q 1

.
2 2

p q
( 1)

q p

    
    

   
Proof :Since p and q are distinct odd primes,  (p, q) = 1
 (p, q) = 1 and By Gauss' Lemma

(q 1)

2 j p

q
j 1p

( 1)
q



 
 
 

 
  

 
 and

(p 1)

2 j q

p
j 1q

( 1)
p



 
 
 

 
  

 



(q 1) (p 1)

2 2j p j q

q p
j 1 j 1p q

( 1)
q p

 

   
   

    
    

    
   

We have to prove

(q 1) (p 1)

2 2

j 1 j 1

j p j q p 1 q 1
.

q p 2 2

 

 

     
    

   
 

For this consider the set

p 1 q 1
S (x,y) ;1 x ,1 y where x, y are integers

2 2

       
 

Then S has 
p 1 q 1

.
2 2

 
members.

Note that there is no pairs of integers in S such that qx = py
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 if qx = py then 
p p

x y y
q q

  is integer but it is not possible

 p and q are distinct primes and 
q 1

1 y
2


 

Take S
1 
= {(x, y); qx > py} and S

2 
= {(x, y); qx < py}

i.e.
1

p 1 q
S (x, y);1 x and 1 y x

2 p

 
     
 

and 2

p q 1
S (x, y);1 x y and1 y

q 2

 
     
 



(p 1)

2

1
x 1

qx
S has

p





 
 
 

  members and 

(p 1)

2

2
y 1

py
S has

q





 
 
 

  members

Also, S
1 
S

2 
= S and S

1 
S

2 
= 

 O (S
1
) + O (S

2
) = O (S)



(p 1) (q 1)

2 2

j 1 j 1

j q j p p 1 q 1
.

p q 2 2

 

 

     
    

   
 

Consequently, 

p 1 q 1
.

2 2
p q

( 1)
q p

    
    

   
.

Now, the readers can easily prove the below stated cordlaries and theorem.

Cor. 1 : Prove that  
p 1 q 1

.
2 2

p q
1

q p

    
    

   

Cor. 2 : If atleast one of the primes p and q is of the form 4k+1, then 
p q

q p

   
   

   
.

Cor. 3 : If both primes p and q are of the form 4k + 3, then 
p q

q p

   
    

   
.

Theorem 2.4.10 : If p  3 is an odd prime, show that

1 if p 1(mod12)3

1 if p 5 (mod 12)p

   
      

Example 2.4.11 : If p and q are odd primes such that p is a qudratic residue of q and
p  1 (mod 4) then show that q is a quadratic residue of p.

Sol. Since p is a quadratic residue of q, so, 
p

1
q

 
 

 
Now as, p  1 (mod 4)

therefore,
q p

p q

   
   

   
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Thus
q

1
p

 
 

 
so q is a quadratic residue of p.

2.4.5 Jacobi's Symbol
Def. : Let Q be an odd positive integer and P be any integer such that (P, Q) = 1

If Q = q
1
q

2 
......q

k
, where q

1
, q

2
,....., q

k 
are odd primes not necessarily distinct,

then Jacobi's symbol 
P

Q

 
 
 

is defined by 

1 2 k

P P P P
.......

Q q q q

     
      

      
 where 

1

P

q

 
 
 

 is

Legendre symbol.
Theorem 2.4.11 : Let Q and Q' be two odd positive integers and Pand P' are integers
such that (PP', QQ') = 1. Then

1. P P P

QQ' Q Q

     
          

2.
PP P P

Q Q Q

      
     

     

3.
2

2

P P
1

Q Q

   
    
  

4.
2

2

P P P

QQ Q

   
      

5. P  P' (mod Q)  P P

Q Q

   
   

   

Proof :Let Q = q
1
q

2 
.......q

r  
and ' ' '

1 2 rQ q q ......q 
where q

i 
and q

1
' are odd primes not necessarily distincts.

1.
' ' '

1 i r 1 2 s

P P

QQ q q .......q q q .......q

  
      

' ' '
1 2 r 1 2 s

P P P P P P
..... ......

q q q q q q

        
         
         

P P

Q Q

   
    
   

2.
1 2 r

PP PP PP PP
.......

Q q q q

        
      

      

1 1 2 2 r r

P P P P P P
.....

q q q q q q

            
           
          

1 2 r 1 2 r

P P P P P P
..... .....

q q q q q q

            
           
          

P P

Q Q

   
    
   

The proof of (3) to (5) parts is left as an exercise for the reader.
Theorem 2.4.12 : If Q is an odd integer and Q > 0, then
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I.

Q 1

2
1

( 1) and
Q

 
  

 
II.

2Q 1

8
2

( 1)
Q

 
  

 
Proof :  Do yourself.
Theorem 2.4.13 : (Jacobi's Reciprocity Law) : If P and Q are positive odd integers

with (P, Q) = 1, then 

P 1 Q 1
.

2 2
P Q

( 1)
Q P

         
  

Proof :Let P = p
1
p

2 
..........p

r 
and Q = q

1
q

2 
........q

s

where p
i
's and q

j
's are odd primes and (p

i
, q

j
) = 1

Now
1 2 s

P P

Q q q .......q

  
   

   

1 2 s

P P P
.........

q q q

    
     
    

.... (1)

For any prime q
k
, we have

1 2 r

k k

p p ........pP

q q

   
   

   

21 r

k k k

pp p
.....

q q q

     
      
     

q 1 p 1 p 1q 1 2k 1 k. .
k k2 2 2 2

1 2

q q
( 1) ( 1)

p p

     
     

   

q 1 p 1k r.
k2 2

r

q
....( 1)

p

   
  

 

Using Legendre's Reciprocity Law

p 1q 1 p 1 p 12k 1 r.....
2 2 2 2 k

1 2 r

q
( 1) .

p p .......p

   
   

 
 

   
 

q 1 p 1k .
k2 2

q
( 1)

P

 
 

   
 

 
21 rp 1p 1 p 1 P 1

....... (mod 2)
2 2 2 2

   
    

 


(1) 
1 2 s

P P P P
......

Q q q q

     
      

      

q 1q 1 P 1 P 121 . .
212 2 2 2

qq
( 1) ( 1)

P P

     
     

   

q 1 P 1s .
s2 2

q
........( 1)

P

 
 

  
 

q 1 q 1q 1P 1 2 s1 .......
2 2 2 2 1 2 sq q .........q

( 1)
P

   
   

   
   

 

P 1 Q 1
.

2 2
Q

( 1)
P

 
    
 

 
2 s1 q 1 q 1q 1 Q 1

..... (mod 2)
2 2 2 2

   
    

 




2P 1 Q 1
.

2 2
P Q Q

( 1)
Q P P

            
    

P 1 Q 1
.

2 2( 1)
 

 

Cor : The Reciprocity Law can also be stated as follows :
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Q
if atleast one of P and Q is of the form 4n+1

PP

Q Q
if both P and Q are of the form 4n+3

P

  
     

  
       

Proof :Do yourself.
Example 2.4.12 : Apply both Jacobi and Legendre symbol to determine whether the
congruence x2  21 (mod. 253) has a solution.
Sol. Given congruence x2  21 (mod 253) where 253 is not a prime.

Using Jacobi symbol, we have

21 253

253 21

      
   

1

21

   
 

 = 1

However, we also have

21 21 21 21

253 11.23 11 23

               
       

Using Legendre symbol, we have

21 1
1

11 11

        
   

So, there is no solution of x2  21 (mod 11)

Also as 
21 3.7

23 23

      
   

3 7

23 23

       
   

23 23

3 7

       
   

2 2

3 7

       
   

 = –1

So there is no solution of x2  21 (mod 23)
Hence there is no solution of x2  21 (mod 253).

2.4.6 Self Check Exercise

1. If a is a quadratic residue of m > 2, then 
(n)

2a 1


  (mod m).

2. Define legendre symbol and find 
5

13

 
 
 

.

3. List all quadratic residues of mod 11.
4. Prove that there are infinitely many primes of the form 4k + 1.

5. Solve 
2 10

and
61 89

   
   
   

.

2.4.7 Suggested Readings
1. Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery, An Introduction

to the Theory of Numbers, Wiley-India Edition.
2. T.N. Apostal, An Introduction to Analytic Number Theory, Springer Verlag.


