

## Centre for Distance and Online Education Punjabi University, Patiala

Class: B.A. I (Math) Paper: II (Differential Equations) Medium: English Semester : 1 Unit-1

## Lesson No.

- 1.1 LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER-I
- 1.2 LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER-II
- 1.3 LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER WITH CONSTANT COEFFICIENTS
- 1.4 LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER WITH VARIABLE COEFFICIENTS

**Department website : www.pbidde.org** 

#### B.A. / B.Sc. 1<sup>st</sup> Year (1<sup>st</sup> Semester) MATHEMATICS

#### **PAPER-II: DIFFERENTIAL EQUATIONS**

Maximum Marks: 50 Maximum Time: 3 Hrs Pass Percentage: 35%

#### **INSTRUCTIONS FOR THE PAPER SETTER**

The question paper will consist of three sections A, B and C. Sections A and 8 will have four questions each from the respective sections of the syllabus and Section C will consist of one compulsory question having eight short answer type questions covering the entire syllabus uniformly. Each question in sections A and B will be of 7.5 marks and Section C will be of 20 marks.

#### **INSTRUCTIONS FOR THE CANDIDATES**

Candidates are required to attempt five questions in all selecting two questions from each of the Section A and B and compulsory question of Section C.

#### Section-A

**First order differential equations:** Order and degree of a differential equation, Separable differential equations, Homogeneous differential equations, Equations reducible to homogenous differential equations, Exact differential equations, Linear differential equations and equations reducible to linear differential equations.

**Higher order differential equations:** Wronskian, Solution of linear homogeneous and non-homogeneous differential equations of higher order with constant coefficients and with variable coefficients, Method of variation of parameters.

#### Section-B

**Higher order differential equations:** Differential operator method, Linear non-homogeneous differential equations with variable coefficients, Euler's Cauchy method.

**Series solution of differential equation:** Regular point, Ordinary point, Power series method, Frobenius method, Bessel's and Legendre's Equations, Legendre's and Bessel's functions and their properties, Recurrence relations, Orthogonality, Rodrigue's formula.

#### **RECOMMENDED BOOKS:**

- 1. George F. Simmons: Differential Equations with Applications and Historic Notes (Textbooks in Mathematics) CRC press.
- 2. Rai Singhania: Ordinary and Partial Differential Equations, S.Chand & Company, New Delhi.
- 3. Zafar Ahsan: Differential Equations and their Applications, Prentice-Hall Pvt. Ltd. New Delhi-Second Edition.
- 4. H.T.H. Piaggio: An Elementary Treatise on Differential Equations, Barman Press.

#### B.A. PART - I (SEMESTER-I)

## LAST UPDATED: MAY, 2023 MATHEMATICS : PAPER-II DIFFERENTIAL EQUATIONS

#### **LESSON NO. 1.1**

Author : Dr. Chanchal

#### LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER-I

- 1.1.1 Objectives
- 1.1.2 Introduction
- 1.1.3 Order and Degree of a Differential Equation
- 1.1.4 Solution of a Differential Equation
- 1.1.5 Formation of a Differential Equation
- 1.1.6 Differential Equations of First Order and First Degree 1.1.6.1 Variables Separable Form
  - 1.1.6.2 Homogeneous Equations
- 1.1.7 Summary
- 1.1.8 Key Concepts
- 1.1.9 Long Questions
- **1.1.10 Short Questions**
- 1.1.11 Suggested Readings

#### 1.1.1 Objectives

The prime objective of this lesson is to study the basic features of an ordinary differential equation such as order and degree, types of solution, how to form a differential equation etc. Further, this lesson also deals with the solutions of differential equation with first order and first degree.

#### **1.1.2 Introduction**

Firstly, we introduce the concept of differential equation as :A differential equation is an equation which involves differential coefficients or differentials. For example :

(i) 
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2 = 0$$
 (ii)  $\frac{dy}{dx} = \sin x$ 

These differential equations are of two types :

The one in which differential coefficients, called derivatives are w.r.t. a single independent invariable, called the ordinary differential equation and the other in which differential coefficients are w.r.t. more than one independent variables, called

the partial differential equations. But, in this unit, we confine ourselves to the study of ordinary differential equations only.

#### 1.1.3 Order and Degree of a Differential Equation

**Order of a Differential Equation :** The order of a differential equation is the order of the highest differential coefficient occuring in it. For example :

Order of 
$$\frac{d^2y}{dx^2} + x \frac{dy}{dx} + 2 = 0$$
 is 2.

In simple words, Order of a differential equation is defined as the order of the highest order derivative of the dependent variable with respect to the independent variable involved in the given differential equation.

On the basis of degree, the differential equation can be classified as linear and nonlinear as :

A differential equation is said to be linear if the unkown function and all of its derivatives occuring in the equation occur only in the first degree and are not multiplied together.

The differential equations 
$$\frac{dy}{dx} = \sin x, \frac{d^2y}{dx^2} + y = 0$$
 are linear whereas

$$\left(\frac{d^2y}{dx^2}\right)^2 + x^2 \left(\frac{dy}{dx}\right)^3 = 0$$
 is non-linear.

It should be noted that a linear differential equation is always of the first degree but every differential equation of the first degree need not be linear. For example, the

differential equation  $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + y^2 = 0$  is not linear, though its degree is 1.

**Example 1 :** Write the order and degree of the differential equation  $\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{5}{2}}}{\frac{d^2y}{dx^2}} = 2$ 

**Sol.** The given differential equation is 
$$\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^2}{\frac{d^2y}{dx^2}} = 2$$

This can be written as

$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{5}{2}} = 2\frac{d^2y}{dx^2} \quad \text{or} \quad \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{5}{2}} = 4\left(\frac{d^2y}{dx^2}\right)^2$$

 $\therefore$  degree of differential equation is 2 and order is also 2.

#### **1.1.4 Solution of a Differential Equation**

A solution of a differential equation is a relation between the variables such that this relation and the derivatives obtained from this relation satisfy the given differential equation.

Solution of a differential equation is also called integral of the differential equation.

The solution of a differential equation is further classified into following three types: **Classification :** 

#### Classification :

**General (or Primitive) Solution :** The solution of a differential equation which involves as many arbitrary constants as the order of the differential equation, is called the general solution. It is also called complete solution.

#### **Particular Solution :**

A particular solution of a differential equation is that which contains no arbitrary constant and is obtained from the general solution by giving particular values to the arbitrary constants.

#### Singular Solution :

A singular solution of the differential equation is that which contains no arbitrary constant and cannot be obtained from the general solution by giving particular values to the arbitrary constants.

#### **1.1.5 Formation of a Differential Equation**

We follow the method given below to form the differential equation of an equation in x and y.

**Step I :** Write down the given equation.

**Step II**: Differentiate it w.r.t. x, as many times as the number of arbitrary constants.

Step III : Eliminate the arbitrary constants from the given equation and equations

... (1)

obtained in Step II.

The resulting equation is the required differential equation.

**Example 2**: Form the differential equation of the family of curves

$$y = Ax + \frac{B}{x}$$

**Sol.** The given equation is  $y = Ax + \frac{B}{x}$ 

$$\Rightarrow \qquad \frac{d^2 y}{dx^2} = \frac{2B}{x^3} \qquad \qquad \dots (3)$$

From (3),  $B = \frac{x^3}{2} \frac{d^2y}{dx^2}$ 

From (2),  $\frac{dy}{dx} = A - \frac{x}{2} \frac{d^2y}{dx^2} \Rightarrow A = \frac{x}{2} \frac{d^2y}{dx^2} + \frac{dy}{dx}$ 

Putting value of A and B in (1), we get,

$$y = \frac{x^2}{2} \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + \frac{x^2}{2} \frac{d^2 y}{dx^2} \text{ or } x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0$$

which is required differential equation.

#### 1.1.6 Differential Equations of First Order and First Degree

A general dif $\frac{dy}{dx}$  ential equation of first order and first degree is an equation of the form  $\frac{dy}{dx} = f(x, y)$  or M dx + N dy = 0 where M and N may be both functions of

form  $\frac{dy}{dx} = f(x, y)$  or M dx + N dy = 0 where M and N may be both functions of

x and y.

#### **Existance and Uniqueness Theorem**

If f(x, y) and an are continuous functions of x and y in a region D of the xy-plane and if P  $(x_0, y_0) \in D$ , then there exists one and only one function  $\phi(x)$ , say, which is in some neighbourhood of P (contained in D) is a solution of the differential equation

 $\frac{dy}{dx} = f(x, y) \text{ and is such that } \phi(x_0) = y_0.$ 

Now, differential equations with first order and first degree are of several types followed

5

by a special rule or method for solving them. In the coming subsections, we study that types alongwith their methods.

#### 1.1.6.1 Variables Separable

If in an equation it is possible to get all the functions of x and dx to one side, and all the functions of y and dy to the other, the variables are said to be separable.

Thus, in the equation  $\frac{dy}{dx} = XY$  where X is a function of x only and Y is a function of y

only, the variables are separable as this equation can be written as  $\frac{dy}{Y} = X dx$ .

**Example 3 :** Solve the differential equation  $\tan y \cdot \frac{dy}{dx} = \sin (x + y) + \sin (x - y)$ .

**Sol.** The given differential equation is

$$\tan y \cdot \frac{dy}{dx} = \sin (x + y) + \sin (x - y) \text{ or } \tan y \cdot \frac{dy}{dx} = 2 \sin x \cos y$$

Separating the variables, we get,

$$\frac{\tan y}{\cos y}$$
 dy = 2 sin x dx or sec y tan y dy = 2 sinx dx

Integrating,  $\int \sec y \tan y \, dy = 2 \int \sin x \, dx$ 

 $\therefore$  sec y = -2 cos x + c, which is the required solution.

**Note :** We may be given some equations of the form  $\frac{dy}{dx} = f(ax + by + c)$ , which are

originally, not in variables separable form, but can be reduced to that form and solved under the following rule :

#### **Rule : Equations Reducible to Variable Separable**

To solve 
$$\frac{dy}{dx} = f(ax + by + c)$$

- (i) Put ax + by + c = t.
- (ii) Separate the variables and integrate.
- (iii) In the solution put t = ax + by + c.

#### 1.1.6.2 Homogeneous Equations

Firstly, we define a homogeneous function of  $n^{th}$  degree in x and y as :-

in the form  $\mathbf{x}^{n} \mathbf{f}\left(\frac{\mathbf{y}}{\mathbf{x}}\right)$ . Consider  $f(x, y) = \frac{x^3 + y^3}{x^2 + y^2} = \frac{x^3 \left[1 + \left(\frac{y}{x}\right)^3\right]}{x^2 \left[1 + \left(\frac{y}{x}\right)^2\right]} = x \phi\left(\frac{y}{x}\right)$ 

> f(x, y) is a homogeneous function of degree 1. *.*..

Now, A homogeneous differential equation of the first degree is an equation of the

form 
$$\frac{dy}{dx} = \frac{f_1(x, y)}{f_2(x, y)}$$
 where  $f_1(x, y)$  and  $f_2(x, y)$  are homogeneous functions of the same

degree in x and y.

**Rule :** In order to solve such an equation, we follow the rule :

- (i) Put y = vx.
- Separate the variables and integrate (ii)
- (iii) In the solution, put  $v = \frac{y}{x}$ .

**Note :** Method to solve  $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$  is the same.

As we have discussed in case of variables separable, we may need to solve some equations which are not homogeneous but can be made homogeneous. Such equations, which are reducible to homogenous are further of two types as :-

**Type I**: 
$$\frac{dy}{dx} = \frac{ax + by + c}{a'x + b'y + c'}$$
 when  $\frac{a}{a'} \neq \frac{b}{b'}$ 

Rule: (i) Put x = x' + h, y = y' + k, where h, k are constants.

Put the constant terms in the numerator and denominator of R.H.S. (ii) each equal to zero and determine h and k.

Solve the resulting homogeneous equation in x' and y'. (iii)

In the solution, put x' = x - h, y' = y - k and substitute the values of (iv) h and k determined above.

6

**Def.** : A homogeneous function of the nth degree in x and y is that which can be put

MATHEMATICS PAPER-II

B.A. PART - I

**Type II :** 
$$\frac{dy}{dx} = \frac{ax + by + c}{a'x + b'y + c'}$$
 when  $\frac{a}{a'} = \frac{b}{b'}$ 

**Rule :** (i) Put ax + by = t

- (ii) Separate the variables t and x
- (iii) Integrate and put t = ax + by.

**Example 4 :** Solve  $\frac{dy}{dx} = \frac{x+y+4}{x+y-6}$ 

**Sol.** The given differential equation is  $\frac{dy}{dx} = \frac{x+y+4}{x+y-6}$  ... (1)

Comparing (1) with  $\frac{dy}{dx} = \frac{ax + by + c}{a'x + b'y + c'}$ , we get,

$$\frac{a}{a'} = \frac{b}{b'} = 1$$

Put x + y = t or  $1 + \frac{dy}{dx} = \frac{dt}{dx} \Rightarrow \frac{dy}{dx} = \frac{dt}{dx} - 1$  in (1), we get  $\frac{dt}{dx} - 1 = \frac{t+4}{t-6} \quad \text{or} \quad \frac{dt}{dx} = \frac{t+4}{t-6} + 1$ 

$$\therefore \qquad \frac{\mathrm{dt}}{\mathrm{dx}} = \frac{2\mathrm{t}-2}{\mathrm{t}-6}$$

Separating the variables, we get,

$$\frac{t-6}{2t-2}dt = dx \quad \text{or} \quad \frac{1}{2}\int \frac{t-6}{t-1}dt = \int 1 dx$$
  
$$\therefore \qquad \frac{1}{2}\int \left(1-\frac{5}{t-1}\right)dt = \int 1 dx$$
  
$$\therefore \qquad \frac{1}{2}\left[t-5\log|t-1|\right] = x+c \quad \text{or} \quad \frac{1}{2}\left[x+y-5\log|x+y-1|\right] = x+c.$$

#### 1.1.7 Summary

In this lesson, we have discussed the methods like variable separable form and homogeneous equation form, for solving differential equations of first order and first degree. The methods are made more understandable with the help of various suitable examples.

#### 1.1.8 Key Concepts

Order and degree, Formation of differential equation, Solution, Variable Separable form, Homogeneous equation form.

#### 1.1.9 Long Questions

- 1. Discuss in detail about the various solution of a differential equation.
- 2. How a differential equation can be formed for a given family of curves? Explain it with the help of suitable example.

#### 1.1.10 Short Questions

- 1. Solve the following differential equations :
  - (i)  $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$

(ii) 
$$\frac{dy}{dx} = \frac{x (2 \log x + 1)}{\sin y + y \cos y}$$

(iii) 
$$x \frac{dy}{dx} = y - x \cos^2 \frac{y}{x}$$

(iv) (2x + y + 1) dx + (4x + 2y - 1) dy = 0

- 2. Define order and degree of a differential equation.
- 3. Define particular solution of a differential equation.
- 4. Define singular solution of a differential equation.

#### 1.1.11 Suggested Readings

- 1. R.K. Jain, S.R.K. Lyengar, Advanced Engineering Mathematics, Narosa Publishing House.
- 2. Rai Singhania : Ordinary and Partial Differential Equations, S. Chand & Company, New Delhi.
- 3. Zafar Ahsan, Differential Equations and their Applications, Prentice-Hall of India Pvt. Ltd., New Delhi 2nd Ed.

#### B.A. PART - I (SEMESTER-I)

## LAST UPDATED: MAY, 2023 MATHEMATICS : PAPER-II DIFFERENTIAL EQUATIONS

LESSON NO. 1.2

Author : Dr. Chanchal

## LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER-II

- 1.2.1 Objectives
- 1.2.2 Linear Equation
- 1.2.3 Exact Differential Equation
- 1.2.4 Summary
- 1.2.5 Key Concepts
- 1.2.6 Long Questions
- 1.2.7 Short Questions
- 1.2.8 Suggested Readings

#### 1.2.1 Objectives :

We have already discussed about the two types of differential equations of first order and first degree in lesson 1.1. Here, in this lesson, we discuss about the other remaining types viz. linear equation and exact differential equation and the equations that can be reduced to the above types.

#### **1.2.2 Linear Equation**

The standard form of a linear equation of the first order is  $\frac{dy}{dx} + Py = Q$ , where P and Q

are functions of x. This equation is also known as Leibnitz's equation. The solution of such a linear equation is given by :

$$y \cdot e^{\int Pdx} = \int \theta e^{\int Pdx} dx + c$$

Here, the term  $e^{\int Pdx}$  is called integrating factor and is denoted by I.F.

**Example 1 :** Solve  $(1 + y^2) dx = (\tan^{-1}y - x) dy$ .

MATHEMATICS PAPER-II

B.A. PART - I

$$Solve \ \left(1+y^2\right) + \left(x-e^{\tan^{-1}y}\right) \frac{dy}{dx} = 0 \ . \label{eq:solve}$$

**Sol.** The given equation is 
$$(1 + y^2) dx = (\tan^{-1}y - x) dy$$

or 
$$(1 + y^2)\frac{dx}{dy} = \tan^{-1} y - x$$
 or  $(1 + y^2)\frac{dx}{dy} + x = \tan^{-1} y$ 

or 
$$\frac{dx}{dy} + \frac{1}{1+y^2} x = \frac{\tan^{-1} y}{1+y^2}$$

Comparing with  $\frac{dx}{dy} + Px = Q$ , we get,  $P = \frac{1}{1 + y^2}$ ,  $Q = \frac{tan^{-1}y}{1 + y^2}$ 

:. I.F. = 
$$e^{\int P \, dy} = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y}$$

 $\therefore$  solution of given equation is

$$x.e^{\tan^{-1} y} = \int \frac{\tan^{-1} y}{1+y^2} e^{\tan^{-1} y} dy + c \qquad \dots (1)$$

$$\left[ \because \mathbf{x} \cdot \mathbf{e}^{\int \mathbf{P} \, dy} = \int \mathbf{Q} \cdot \mathbf{e}^{\int \mathbf{P} \, dy} d\mathbf{y} + \mathbf{c} \right]$$

Put  $\tan^{-1} y = t$ ,  $\therefore \frac{1}{1 + y^2} dy = dt$ 

 $\therefore \qquad I = \int t e^{t} dt = t e^{t} - \int 1 e^{t} dt = t e^{t} - e^{t} = (t - 1) e^{t} = (t a n^{-1} y - 1) e^{t a n^{-1} y}$ 

: from (1), 
$$xe^{\tan^{-1}y} = e^{\tan^{-1}y} (\tan^{-1}y - 1) + c$$
.

Like the previous cases, there may be equations which may not be linear but can be reduced to linear form and solved accordingly. Such type of equations are discussed below :

## **1.** Bernoulli's Equation : An equation of the form $\frac{dy}{dx} + Py = Qy^n$ where P, Q

are functions of x is not linear, but it can be reduced to linear and solved accordingly under the following rule :

**Rule :** (i) Divide throughout by  $y^n$ .

- B.A. PART I
  - (ii) Put  $y^{1-n} = t$ .
  - (iii) Solve the linear equation in t and then put  $t = y^{1-n}$ .

**2.** General Equation : An equation of the form  $f'(y) \frac{dy}{dx} + Pf(y) = Q$ , where P

and Q are functions, can be reduced to linear by substituting f(y) = t so that  $f'(y) \frac{dy}{dx} = \frac{dt}{dx}$ 

and the original equation is reduced to the linear form in variable 't' as:-

$$\frac{dt}{dx} = Pt + Q$$

#### **1.2.3 Exact Differential Equation**

The equation M dx + N dy = 0 (where M and N are functions of x and y), is said to be exact if M dx + N dy is the exact differential of a function of x and y, i.e., if

M dx + N dy = du, where u is a function of x and y.

For example : The differential equation  $\sin x \cos y \, dy + \cos x \sin y \, dx = 0$  is an exact differential equation as

 $\sin x \cos y \, dy + \cos x \sin y \, dx = d (\sin x \cos y).$ 

Art 1 : Find the necessary and sufficient condition that the equation M dx + N dy=0

(where M and N are functions of x and y with the condition that M, N,  $\frac{\partial M}{\partial y}$ ,  $\frac{\partial N}{\partial x}$  are

continuous functions of x and y) may be exact.

#### **Proof**: (i) Necessary Condition

Assume M dx + N dy = 0 is exact.

 $\therefore$  M dx + N dy = du, where u is function of x and y.

But 
$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$

$$\therefore \qquad M \, dx + N \, dy = \frac{\partial u}{\partial x} \, dx + \frac{\partial u}{\partial y} \, dy$$

Equating coeffs. of dx and dy on both sides,  $M = \frac{\partial u}{\partial x}$  and  $N = \frac{\partial u}{\partial y}$ 

$$\therefore \qquad \frac{\partial M}{\partial y} = \frac{\partial^2 u}{\partial y \, \partial x}, \frac{\partial N}{\partial x} = \frac{\partial^2 u}{\partial x \, \partial y}$$

But 
$$\frac{\partial^2 u}{\partial y \,\partial x} = \frac{\partial^2 u}{\partial x \,\partial y}$$
  $\left[ \because \frac{\partial^2 u}{\partial x \,\partial y} \text{ and } \frac{\partial^2 u}{\partial y \,\partial x} \text{ are given to be continuous} \right]$ 

 $\therefore \qquad \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}, \text{ which is the required necessary condition.}$ 

#### (ii) Condition is sufficient

Assume that  $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ 

We have to prove that M dx + N dy = 0 is exact.

Let 
$$M dx = u$$
 ... (1)

where integration is performed on the supposition that y is constant.

$$\frac{\partial}{\partial \mathbf{x}} \left[ \int \mathbf{M} \, d\mathbf{x} \right] = \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \quad \text{or} \quad \mathbf{M} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \qquad \dots (2)$$

Also 
$$\frac{\partial M}{\partial y} = \frac{\partial^2 u}{\partial y \, \partial x}$$
 ... (3)

But  $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$  (given) and  $\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$  (Assumption)

$$\therefore \qquad \text{from (3), } \frac{\partial N}{\partial x} = \frac{\partial^2 u}{\partial x \, \partial y} \text{ or } \frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left( \frac{\partial u}{\partial y} \right)$$

Integrating both sides w.r.t. x, regarding y as constant,

$$N = \frac{\partial u}{\partial y} + f(y), (say) \qquad \dots (4)$$

From (2) and (4), we get,

$$M dx + N dy = \frac{\partial u}{\partial x} dx + \left[\frac{\partial u}{\partial y} + f(y)\right] dy = \left(\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy\right) + f(y) dy$$
  

$$\therefore \qquad M dx + N dy = du + f(y) dy \qquad \dots (5)$$

13

[∵ of (4)]

which is an exact differential

 $[:: f(y) dy is an exact differential as f(y) dy = d \{ \int f(y) dy \} ]$ 

 $\therefore$  M dx + N dy = 0 is exact.

 $\therefore$  condition is sufficient.

**Cor.** If the condition is satisfied, solve the equation M dx + N dy = 0

**Proof :** The given equation is 
$$Mdx + Ndy = 0$$

or 
$$du + f(y) dy = 0$$
 [: of (5)]

Integrating both sides, we get,

$$u + \int f(y) \, dy = c \qquad \qquad \dots (6)$$

But 
$$u = \int_{y \cosh tant} M \, dx$$
 [:: of (1)]

and f (y) = terms in N not containing x

 $\therefore$  from (6), we get,

 $\int_{y \text{ constant}} M \, dx + \int (\text{terms in } N \text{ not containing } x) \, dy = c$ 

which is the required solution.

**Example 6 :** Show that the differential equation  $2x \sin 3y \, dx + 3x^2 \cos 3y \, dy = 0$  is exact and hence solve it.

Sol. The given differential equation is 2x sin 3y dx + 3x<sup>2</sup> cos 3y dy = 0 Comparing it with M dx + N dy = 0, we get,

 $M = 2x \sin 3y, N = 3x^2 \cos 3y$ 

Now 
$$\frac{\partial M}{\partial y} = 6x \cos 3y$$
 and  $\frac{\partial N}{\partial x} = 6x \cos 3y$ 

Since 
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

 $\therefore$  given equation is exact and its solution is

 $\int_{y \text{ constant}} M \, dx + \int (\text{terms in N not containing x}) \, dy = c$ 

or  $2(\sin 3y) \int x \, dx + 0 = c$ 

#### **Integrating Factor:**

In case of linear differential equation, we have noticed a term integrating factor.

14

Now, we define that term as :

Def. : An integrating factor (abbreviated I.F.) of a differential equation is a factor such that if the equation is multiplied by it, the resulting equation is exact.

**Note :** 1. The number of integrating factors of the equation Mdx + Ndy = 0 is infinite. 2. The integrating factors can be judged sometimes by insepction otherwise by the specific rules, as discussed below :

#### **Integrating Factors by Inspection**

|    | Group of terms | I.F.                    | Exact differential                                                                                                                            |
|----|----------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | x dy – y dx    | $\frac{1}{x^2}$         | $d\left(\frac{\mathbf{y}}{\mathbf{x}}\right)$                                                                                                 |
|    |                | $\frac{1}{y^2}$         | $d\left(-\frac{\mathbf{x}}{\mathbf{y}}\right)$                                                                                                |
|    |                | $\frac{1}{xy}$          | $d\left[\log\left \frac{y}{x}\right \right]$                                                                                                  |
|    |                | $\frac{1}{x^2+y^2}$     | $d\left[\tan^{-1}\frac{y}{x}\right]$                                                                                                          |
| 2. | x dy + y dx    | $\frac{1}{(xy)^n}$      | $\begin{cases} d\left[\frac{-1}{(n-1)(xy)^{n-1}}\right], & n \neq 1 \\ d\left(\log xy \right), & n = 1 \end{cases}$                           |
| 3. | x dx + y dy    | $\frac{1}{(x^2+y^2)^n}$ | $\begin{cases} d\left[\frac{-1}{2(n-1)(x^{2}+y^{2})^{n-1}}\right], n \neq 1 \\ d\left[\frac{1}{2}\log(x^{2}+y^{2})\right], n = 1 \end{cases}$ |
|    |                |                         |                                                                                                                                               |

#### **Five Rules for Finding Integrating Factors :**

**Rule I :** If the equation M dx + N dy = 0 is homogeneous in x and y i.e., if M and N are homogeneous functions of the same degree in x and y, then  $\frac{1}{Mx + Ny}$  is an I.F. provided  $Mx + Ny \neq 0$ .

**Note :** 1. This method is suitable when Mx + Ny consists of only one term. Otherwise it is better to put y = vx.

2. If Mx + Ny = 0, then this method fails and the solution is given by

$$\therefore \left| \frac{\mathbf{y}}{\mathbf{x}} \right| = \mathbf{c} \text{ or } |\mathbf{y}| = \mathbf{c} |\mathbf{x}|.$$

**Rule II**: If an equation M dx + N dy = 0 is of the form

 $f_1(x y) y dx + f_2(x y) x dy = 0$ , then  $\frac{1}{Mx - Ny}$  is an I.F. provided  $Mx - Ny \neq 0$ .

**Note :** This rule fails if  $M \ge -Ny = 0$  and the solution is given by |xy| = c.

**Rule III :** If in an equation M dx + N dy = 0,  $\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$  is a function of x only say f(x),

then  $e^{\int f(x) dx}$  is an I.F.

**Rule IV :** If in an equation M dx + N dy = 0,  $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$  is a function of y only say f(y),

then  $e^{\int f(y) dy}$  is an I.F.

Rule V : If an equation is

 $x^{a} y^{b}$  (my dx + nx dy) +  $x^{a'} y^{b'}$  (m' y dx + n'x dy) = 0, then  $x^{h} y^{k}$  is an I.F. where

 $\frac{a+h+1}{m} = \frac{b+k+1}{n}, \frac{a\,{}^{\prime}\!+h+1}{m\,{}^{\prime}} = \frac{b\,{}^{\prime}\!+k+1}{n\,{}^{\prime}}\,.$ 

**Example 3 :** Solve y ( $xy + 2x^2y^2$ ) dx + x ( $xy - x^2y^2$ ) dy = 0.

Sol. The given differential equation is

y (xy + 2x<sup>2</sup>y<sup>2</sup>) dx + x (xy - x<sup>2</sup>y<sup>2</sup>) dy = 0 ... (1)  
which is of the form 
$$f_1(x y) y dx + f_2(x y) x dy = 0$$
  
∴ comparing with M dx + N dy = 0, we get,  
M = y (xy + 2x<sup>2</sup>y<sup>2</sup>), N = x (xy - x<sup>2</sup>y<sup>2</sup>)

$$\therefore \qquad \text{I.F.} = \frac{1}{\text{Mx} - \text{Ny}} = \frac{1}{\text{xy}(\text{xy} + 2\text{x}^2\text{y}^2 - \text{xy} + \text{x}^2\text{y}^2)} = \frac{1}{3\text{x}^3\text{y}^3}$$

... (1)

 $\therefore$  multiplying both sides of (1) by  $\frac{1}{3x^3y^3}$ , we get,

$$\frac{1+2xy}{3x^2y}\,dx + \frac{1-xy}{3xy^2}\,dy = 0$$

which is exact and its solution is

$$\frac{1}{3y} \int \frac{1}{x^2} dx + \frac{2}{3} \int \frac{1}{x} dx + \frac{1}{3} \int -\frac{1}{y} dy = c$$
  
or 
$$\frac{-1}{3xy} + \frac{2}{3} \log |x| - \frac{1}{3} \log |y| = c$$
  
or 
$$\frac{-1}{xy} + \log \frac{x^2}{|y|} = 3c = C, \text{ say }.$$

**Example 4 :** Solve the differential equation  $(x + 2y^3) \frac{dy}{dx} = y$ .

Sol. Given differential equation is

$$(x+2y^3)\frac{dy}{dx} = y \text{ or } (x+2y^3) dy = y dx$$

or  $y \, dx - (x + 2y^3) \, dy = 0$ 

Comparing (1) with M dx + N dy = 0, we get, M = y, N =  $-(x + 2y^3)$ 

$$\frac{\partial M}{\partial y} = 1, \frac{\partial N}{\partial x} = -1$$

Now 
$$\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M} = \frac{-1-1}{y} = \frac{-2}{y} = f(y)$$

Multiplying both sides of (1) by  $\frac{1}{y^2}$ , we get

I.F. =  $e^{\int f(y) dy} = e^{\int \frac{-2}{y} dy} = e^{-2\log y} = e^{\log y^{-2}} = y^{-2} = \frac{1}{y^2}$ 

$$\frac{1}{y}dx - \left(\frac{x}{y^2} + 2y\right)dy = 0 \quad \text{which is exact and its solution is}$$

$$\int_{y \text{ constant}} \frac{1}{y} \, dx - \int 2y \, dx = c$$

or 
$$\frac{x}{y} - y^2 = c$$
 or  $x - y^3 = cy$ 

which is the required solution.

#### 1.2.4 Summary

The other two forms viz. linear form and exact differential form, of differential equation of first order and first degree have been clearly elaborated in this lesson. We discussed about the solutions of these two particular forms with the help of some suitable examples.

#### 1.2.5 Key Concepts

Integrating Factor, Linear Equation, Bernoulli's Equation, Exact Differential Equation

#### **1.2.6 Long Questions**

- 1. Solve the differential equation y(x + y + 1) dx + x(x + 3y + 2) dy = 0, y>0
- 2. Find the integrating factor and hence solve

$$\left(y + \frac{y^3}{3} + \frac{x^2}{2}\right) dx + \frac{1}{4} (x + xy^2) dy = 0.$$

#### **1.2.7 Short Questions**

1. 
$$(x + y^3)\frac{dy}{dx} = y$$

2. 
$$(x+1)\frac{dy}{dx} + 1 = e^{x-y}$$

3. Solve 
$$x \, dx + y \, dy \, \frac{a^2(xdy - ydx)}{x^2 + y^2}$$

4. Define an exact differential equation.

#### **1.2.8 Suggested Readings**

- 1. R.K. Jain, S.R.K. Lyengar, Advanced Engineering Mathematics, Narosa Publishing House.
- 2. Rai Singhania : Ordinary and Partial Differential Equations, S. Chand & Company, New Delhi.
- 3. Zafar Ahsan, Differential Equations and their Applications, Prentice-Hall of India Pvt. Ltd., New Delhi 2nd Ed.

B.A. PART - I (SEMESTER-I) LAST UPDATED: MAY, 2023 MATHEMATICS : PAPER-II DIFFERENTIAL EQUATIONS

**LESSON NO. 1.3** 

Author : Dr. Chanchal

## LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER WITH CONSTANT COEFFICIENTS

#### **Structure :**

- 1.3.1 Objectives
- 1.3.2 Introduction
- 1.3.3 Solution of Homogeneous Linear Equation with Constant Coefficients
- 1.3.4 Solution of Non-Homogeneous Linear Equation with Constant Coefficients 1.3.4.1 Five Rules for Finding Particular Integrals
- 1.3.5 Method of Variation of Parameters
- 1.3.6 Method of Undetermined Coefficients
- 1.3.7 Summary
- 1.3.8 Key Concepts
- **1.3.9 Long Questions**
- **1.3.10 Short Questions**
- 1.3.11 Suggested Readings

#### 1.3.1 Objectives

After studying the linear differential equations of first order, in this lesson, we will learn to find out the solutions of linear differential equations of order more than one. Such equations are of two types : the one with constant coefficients and the other with vairable coefficients. In this lesson, we focus on the methods for finding solutions of linear differential equations of higher order with constant coefficients.

#### **1.3.2 Introduction**

In this lesson, we will be studying in detail about the solutions of linear homogeneous and non-homogeneous equations of higher order with constant coefficients. Firstly, we introduce these equations as :-

The non-homogeneous linear differential equation of order n with constant coefficients is

$$P_0 \frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + P_n y = Q \qquad \dots (1)$$

where  $P_0$ ,  $P_1$ ,  $P_2$ ,...,  $P_n$  are constants and Q is a function of x. Also  $P_0 \neq 0$ . The corresponding homogeneous linear differential equation is

$$P_0 \frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + P_n y = 0 \cdot (\text{Here,} = 0)$$

#### 1.3.3 Solution of Homogeneous Linear Equation with Constant Coefficients

The given differential equation is

$$P_0 \frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + P_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + P_n y = 0, \text{ where } P_1, P_2, \dots, P_n \text{ are real}$$

constants,  $P_0 \neq 0$ .

Step 1. Write the equation in the symbolic form (S.F.)

$$(P_0 D^n + P_1 D^{n-1} + P_2 D^{n-2} + \dots + P_n) y = 0$$

$$\left(\text{By putting } \frac{d}{dx} = D, \frac{d^2}{dx^2} = D^2..., \frac{d^n}{dx^n} = D^n\right)$$

Step 2. Write down the auxiliary equation (A. E.) as

 $P_0 D^n + P_1 D^{n-1} + \dots + P_n = 0$ 

[By equating to zero the symbolic coeff. of y] and solve it for D as it is an ordinary algebraic quantity.

**Step 3.** From the roots of the A.E., write down the corresponding part of the complete solution (C.S.) as follows :

|     | Roots of A.E. |                                                                        | Corresponding part of $C^{\alpha \frac{N}{2}}$ . |
|-----|---------------|------------------------------------------------------------------------|--------------------------------------------------|
| (a) | (i)           | Two real and different roots $\mathbf{m_{_1}},\mathbf{m_{_2}}$         | $c_1 e^{m_1 x} + c_2 e^{m_2 x}$                  |
|     | (ii)          | Two real and equal roots $\mathbf{m}_{_{1}},\mathbf{m}_{_{1}}$         | $e^{m_1x}(c_1 + c_2x)$                           |
|     | (iii)         | Three real and equal roots $m_{_1}$ ,                                  | $e^{m_1x}(c_1 + c_2x + c_3x^2)$                  |
| (b) | (i)           | $m_{1}, m_{1}. \qquad \alpha$<br>and so on.<br>One pair of complex and | $e^{ax}(c_1\cos\beta x + c_2\sin\beta x)$        |
|     |               | different roots $\pm i\beta$                                           |                                                  |

(ii) Two pairs of complex and equal  $e^{ax} [(c_1+c_2x) \cos \beta x + roots \pm i\beta, \pm i\beta]$ and so on  $(c_3+c_4x) \sin \beta x$ 

**Example 1 :** Solve  $(D^2 + 1)^3 (D^2 + D + 1)^2 y = 0$ .

Sol. The given differential equation is  $(D^2 + 1)^3 (D^2 + D + 1)^2 y = 0$ The A.E. is  $(D^2 + 1)^3 (D^2 + D + 1)^2 = 0$ Either  $(D^2 + 1)^3 = 0$  or  $(D^2 + D + 1)^2 = 0$   $\therefore D^2 = -1, -1, -1$  or  $D = \frac{-1 \pm \sqrt{1 - 4}}{2}, \frac{-1 \pm \sqrt{1 - 4}}{2}$   $\therefore D = \pm i, \pm i, \pm i$  or  $D = \frac{-1 \pm i \sqrt{3}}{2}, \frac{-1 \pm i \sqrt{3}}{2}$   $\therefore$  we have  $D = 0 \pm i, 0 \pm i, 0 \pm i, -\frac{1}{2} \pm \frac{\sqrt{3}}{2} i, -\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$   $\therefore$  the C.S. is  $y = e^{0x} [(c_1 + c_2 x + c_3 x^2) \cos x + (c_4 + c_5 x + c_6 x^2) \sin x]$  $+e^{-\frac{x}{2}} [(c_7 + c_8 x) \cos \frac{\sqrt{3}}{2} x + (c_9 + c_{10} x) \sin \frac{\sqrt{3}}{2} x]$ 

or 
$$y = (c_1 + c_2 x + c_3 x^2) \cos x + (c_4 + c_5 x + c_6 x^2) \sin x$$

$$+e^{-\frac{x}{2}}\left[(c_7 + c_8 x)\cos\frac{\sqrt{3}}{2}x + (c_9 + c_{10} x)\sin\frac{\sqrt{3}}{2}x\right]$$

### 1.3.4 Solution of Non-Homogeneous Linear Equation with Constant Coefficients

The given differential equation is

$$P_{0} \frac{d^{n}y}{dx^{n}} + P_{1} \frac{d^{n-1}y}{dx^{n-1}} + P_{2} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0}, P_{1}, P_{2}, \dots, P_{n} \text{ are constants, and } Q \text{ is } P_{0} \frac{d^{n-1}y}{dx^{n-1}} + P_{2} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0}, P_{1}, P_{2}, \dots, P_{n} \text{ are constants, and } Q \text{ is } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0}, P_{1}, P_{2}, \dots, P_{n} \text{ are constants, and } Q \text{ is } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0}, P_{1}, P_{2}, \dots, P_{n} \text{ are constants, and } Q \text{ is } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0}, P_{1}, P_{2}, \dots, P_{n} \text{ are constants, and } Q \text{ is } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0}, P_{1}, P_{2}, \dots, P_{n} \text{ are constants, and } Q \text{ is } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0}, P_{1}, P_{2}, \dots, P_{n} \text{ are constants, and } Q \text{ is } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n}y = \theta, \text{ where } P_{0} \frac{d^{n-2}y}{dx^{n-2}}$$

a function of x.

**Step 1.** Write the equation in the S.F.

$$(P_0 D^n + P_1 D^{n-1} + P_2 D^{n-2} + \dots + P_n) y = Q$$

Step 2. Write down the A.E.

 $P_0 D^n + P_1 D^{n-1} + P_2 D^{n-2} + \dots + P_n = 0$ , and solve it for D.

Step 3. From the roots of the A.E., write down the corresponding part of the C.F. by

the same rule by which we write the C.S. if the R.H.S. of the given equation were zero, instead of Q.

**Step 4.** Find the particular integral given by,  $P.I. = \frac{1}{f(D)}Q$ 

The methods to find P.I. are discussed in the succeding part. **Step 5.** The C.S. is y = C.F. + P.I.

**Note :** 1.  $\frac{1}{f(D)}$  is the inverse of the operator f(D)2.  $\frac{1}{f(D)} Q$  is the particular integral of the equation f(D) y = Q. 3.  $\frac{1}{D}Q = \int Q \, dx$ , no arbitrary constants being added. 4.  $\frac{1}{D-a}Q = e^{ax}\int Qe^{-ax} \, dx$ , no arbitrary constant being added. also,  $\frac{1}{(D-a)^2}e^{ax} = \frac{x^2}{2}e^{ax}$  and  $\frac{1}{(D-a)^n}e^{ax} = \frac{x^n}{|n|}e^{ax}$ .

#### 1.3.4.1 Five Rules for Finding Particular Integrals

**Rule I**: Rule to evaluate  $\frac{1}{f(D)}e^{ax}$ ,  $f(a) \neq 0$ 

1. Put D = a and we get  $\frac{1}{f(D)}e^{ax} = \frac{e^{ax}}{f(a)}$  provided  $f(a) \neq 0$ 

2. If f (a) = 0, then there is case of failure and in that case

$$\frac{1}{f(D)} e^{ax} = x \frac{1}{\frac{d}{dD} [f(D)]} e^{ax}$$

**Note :** If by using the above rule, we again get zero in the denominator, we repeat the rule and so on.

**Rule II :** Rule to evaluate 
$$\frac{1}{f(D^2)}\cos ax$$
,  $\frac{1}{f(D^2)}\sin ax$ 

1. Put  $D^2 = -a^2$  and we get,

$$\frac{1}{f(D^2)} \cos ax \text{ (or sin ax)} = \frac{1}{f(-a^2)} \cos ax \text{ (or sin ax) provided } f(-a^2) \neq 0$$

2. If  $f(-a^2) = 0$ , then case of failure and we have,

$$\frac{1}{f(D^2)} \cos ax \text{ (or sin ax)} = x \frac{1}{\frac{d}{dD} \left[ f(D^2) \right]} \cos ax \text{ (or sin ax)}$$

**Rule III :** Rule to evaluate  $\frac{1}{f(D)}x^m$ , where m is a positive integer.

1. To evaluate  $\frac{1}{f(D)}x^m$ , we resolve  $\frac{1}{f(D)}$  into partial fractions and then expand

each partial fraction in ascending powers of D.

For example : Consider the partial fraction  $\frac{1}{D-a}x^m$  we can expand it as :-

$$\frac{1}{D-a} \mathbf{x}^{m} = \frac{1}{-a+D} \mathbf{x}^{m} = \frac{1}{-a\left(1-\frac{D}{a}\right)} \mathbf{x}^{m} = -\frac{1}{a} \left(1-\frac{D}{a}\right)^{-1} \mathbf{x}^{m}$$
$$= -\frac{1}{a} \left[1+\frac{D}{a}+\frac{D^{2}}{a^{2}}+\ldots+\frac{D^{m}}{a^{m}}+\frac{D^{m+1}}{a^{m+1}}+\ldots\right] \mathbf{x}^{m}$$
$$= -\frac{1}{a} \left[\mathbf{x}^{m}+\frac{1}{a} \mathbf{m} \mathbf{x}^{m-1}+\frac{1}{a^{2}} \mathbf{m} \left(\mathbf{m}-1\right) \mathbf{x}^{m-2}+\ldots+\frac{1}{a^{m}} \left|\underline{\mathbf{m}}+0\right]$$
$$= -\frac{1}{a} \left[\mathbf{x}^{m}+\frac{\mathbf{m}}{a} \mathbf{x}^{m-1}+\frac{\mathbf{m} \left(\mathbf{m}-1\right)}{a^{2}} \mathbf{x}^{m-2}+\ldots+\frac{\mathbf{m}}{a^{m}}\right].$$

**Example 2**: Solve the differential equation :

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y - 8(x^2 + e^{2x} + \sin 2x).$$

Sol. The given equation is 
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y - 8(x^2 + e^{2x} + \sin 2x)$$
  
or, in S.F., (D<sup>2</sup> - 4D + 4) y = 8(x<sup>2</sup> + e<sup>2x</sup> + sin 2x)  
The A.E. is D<sup>2</sup> - 4D + 4 = 0, or (D-2)<sup>2</sup> = 0  
∴ D = 2, 2  
C.F. =  $(c_1 + c_2x) e^{2x}$   
P.I. =  $8\left[\frac{1}{D^2 - 4D + 4}x^2 + \frac{1}{D^2 - 4D + 4}e^{2x} + \frac{1}{D^2 - 4D + 4}sin 2x\right]$  .... (1)  
Now  $\frac{1}{D^2 - 4D + 4}x^2 = \frac{1}{4} \cdot \frac{1}{(1 - \frac{D}{2})^2}x^2 = \frac{1}{4}(1 - \frac{D}{2})^{-2}x^2$   
 $= \frac{1}{4}\left[1 + 2 \cdot \frac{D}{2} + 3 \cdot \frac{D^2}{4} + ...\right]x^2 = \frac{1}{4}\left[x^2 + Dx^2 + \frac{3}{4}D^2x^2 + ...\right]$   
 $= \frac{1}{4}\left[x^2 + 2x + \frac{3}{2}\right] = \frac{1}{8}(2x^2 + 4x + 3)$   
and  $\frac{1}{D^2 - 4D + 4}e^{2x} = \frac{1}{2^2 - 4(2) + 4}e^{2x} = \frac{1}{0}e^{2x}$   
∴ the rule fails  
 $\therefore \frac{1}{D^2 - 4D + 4}e^{2x} = x \cdot \frac{1}{2D - 4}e^{2x} = x \cdot \frac{1}{2(2) - 4}e^{2x} = x \cdot \frac{1}{0}e^{2x}$   
The rule fails again.

$$\therefore \qquad \frac{1}{D^2 - 4D + 4} = x^2 \cdot \frac{1}{2} e^{2x} = \frac{x^2 e^{2x}}{2}$$

and 
$$\frac{1}{D^2 - 4D + 4} \sin 2x = \frac{1}{-4 - 4D + 4} \sin 2x = -\frac{1}{4} \cdot \frac{1}{D} \sin 2x$$

$$=\frac{1}{4}\cdot\frac{\cos 2x}{2}=\frac{1}{8}\cos 2x$$

$$\therefore \qquad \text{from (1), P.I.} = 8 \left[ \frac{1}{8} (2x^2 + 4x + 3) + \frac{x^2 e^{2x}}{2} + \frac{1}{8} \cos 2x \right]$$

$$= 2x^{2} + 4x + 3 + 4x^{2} e^{2x} + \cos 2x$$
  

$$\therefore \quad \text{C.S.} = (c_{1} + c_{2}x) e^{2x} + 2x^{2} + 4x + 3 + 4x^{2} e^{2x} + \cos 2x.$$

**Rule IV :** Rule to evaluate  $\frac{1}{f(D)} (e^{ax} V)$ , where V is any function of x.

$$\frac{1}{f(D)} \left( e^{ax} V \right) = e^{ax} \frac{1}{f(D+a)} V$$

**Example 3 :** Solve the differential equation :  $(D^2 - 4D + 4) y = e^{2x} \cos^2 x$ .

Sol. The given equation in S.F. is 
$$(D^2 - 4D + 4) y = e^{2x} \cos^2 x$$
  
The A.E. is  $D^2 - 4D + 4 = 0$ , or  $(D - 2)^2 = 0$   
∴  $D = 2, 2$   
C.F. =  $(c_1 + c_2 x) e^{2x}$   
P.I. =  $\frac{1}{D^2 - 4D + 4} e^{2x} \cos^2 x = e^{2x} \cdot \frac{1}{(D + 2)^2 - 4(D + 2) + 4} (\cos^2 x)$   
 $= e^{2x} \cdot \frac{1}{D^2} \left( \frac{1 + \cos 2x}{2} \right) = \frac{1}{2} \cdot e^{2x} \left[ \frac{1}{D^2} + \frac{1}{D^2} \cos 2x \right]$   
 $= \frac{1}{2} e^{2x} \left[ \frac{x^2}{2} + \frac{\cos 2x}{-4} \right] = \frac{1}{8} e^{2x} (2x^2 - \cos 2x)$   
∴ C.S. is,  $y = (c_1 + c_2 x) e^{2x} + \frac{1}{8} e^{2x} (2x^2 - \cos 2x)$ .

**Rule V**: Rule to evaluate  $\frac{1}{f(D)}$  (xV), where V is any function of x.

$$\frac{1}{f(D)} \left( xV \right) = x \frac{1}{f(D)} V + \frac{d}{dD} \left[ \frac{1}{f(D)} \right] V$$

**Example 4 :** Solve the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$$

**Sol.** The given equation is  $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$ 

or, in S.F. 
$$(D^2 - 2D + 1) y = x e^x \sin x$$
  
 $\therefore$  the A.E. is  $D^2 - 2D + 1 = 0$ , or  $D = 1, 1$   
 $\therefore$  C.F. =  $(c_1 + c_2 x) e^x$ 

P.I. = 
$$\frac{1}{D^2 - 2D + 1} \operatorname{xe}^x \sin x = \frac{1}{(D - 1)^2} \operatorname{xe}^x \sin x$$

$$= e^{x} \frac{1}{(D+1-1)^{2}} (x \sin x) = e^{x} \cdot \frac{1}{D^{2}} (x \sin x)$$

$$= e^{x} \left[ x \cdot \frac{1}{D^{2}} \sin x + \frac{d}{dD} \left( \frac{1}{D^{2}} \right) \sin x \right]$$
$$= e^{x} \left[ x \cdot \frac{\sin x}{-1} - \frac{2}{D^{3}} \sin x \right] = e^{x} \left[ -x \sin x - \frac{2}{D(-1)} \sin x \right]$$

$$= e^{x} [-x \sin x + 2 (-\cos x)] = e^{x} (-x \sin x - 2 \cos x)$$
$$= -e^{x} (x \sin x + 2 \cos x)$$

:. C.S. is, 
$$y = (c_1 + c_2 x) e^x - e^x (x \sin x + 2 \cos x)$$
.

**Example 5 :** Solve the differential equation  $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \sin e^{-x}$ .

**Sol.** The given equation is 
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \sin e^{-x}$$
  
or in S.F.,  $(D^2 - 3D + 2) \ y = \sin e^{-x}$   
The A.E. is  $D^2 - 3D + 2 = 0$ , or  $(D-1) \ (D-2) = 0$   
 $\therefore \quad D = 1, 2$   
 $\therefore \quad C.F. = c_1 e^x + c_2 e^{2x}$   
P.I.  $= \frac{1}{D^2 - 3D + 2} \sin e^{-x} = \frac{1}{(D-1)(D-2)} \sin e^{-x}$ 

$$= \frac{1}{D-2} e^{x} \int (\sin e^{-x}) e^{-x} dx \qquad \left[ \frac{1}{D-\alpha} V = e^{\alpha x} \int V e^{-\alpha x} dx \right]$$
$$= \frac{1}{D-2} (e^{x} \cos e^{-x}) = e^{2x} \int e^{x} \cos e^{-x} . e^{-2x} dx$$
$$= e^{2x} \int e^{-x} \cos e^{-x} dx = -e^{2x} \sin e^{-x}$$
$$\therefore \quad C.S. \text{ is, } y = c_{1} e^{x} + c_{2} e^{2x} - e^{2x} \sin e^{-x}.$$
**1.3.5 Method of Variation of Parameters**  
Let any given linear equation of 2nd order be
$$P_{0}y'' + P_{1}y' + P_{2}y = Q \qquad \dots (1)$$

where  $P_0 \neq 0$ ,  $P_1$ ,  $P_2$  are constants and Q is a function of x.

The corresponding homogeneous equation is

$$P_0 y'' + P_1 y' + P_2 y = 0 \qquad \dots (2)$$

Let  $y_c = c_1y_1 + c_2y_2$  be the general solution of (2) and therefore, the complementary solution of (1), where  $y_1$ ,  $y_2$  are L.I. functions of x over an open interval I.

Now we try to find a particular solution of (1) by considering

$$y = A(x) y_1 + B(x) y_2 \qquad \qquad \dots (3)$$
  
and determine the functions A and B so that (3) is a solution of (1).

Differentiating (3) w.r.t. x, we get,

$$y' = Ay_1' + By_2' + A'y_1 + B'y_2$$
 ... (4)

Choose 
$$A'y_1 + B'y_2 = 0$$
 ... (5)  
∴ (4) becomes,  $y' = Ay_1' + By_2'$  ... (6)

Differentiating (6) w.r.t. x, we get,

$$y'' = Ay_1'' + By_2'' + A'y_1' + B'y_2'$$

... (7)

Substituting the values of y,y', y" from (3), (6) and (7) in (1), we get,

$$P_0(Ay_1'' + By_2'' + A'y_1' + B'y_2') + P_1(Ay_1' + By_2') + P_2(Ay_1 + By_2) = Q$$

or 
$$A(P_0y_1" + P_1y_1' + P_2y_1) + B(P_0y_2" + P_1y_2' + P_2y_2) + P_0(A'y_1' + B'y_2') = Q \dots (8)$$

 $\therefore$  y<sub>1</sub>, y<sub>2</sub> are solutions of (2)

$$\therefore P_0 y_1^{"} + P_1 y_1^{'} + P_2 y_1 = 0 \text{and } P_0 y_2^{"} + P_1 y_2^{'} + P_2 y_2 = 0$$
 ... (9)

Using (9), equation (8) becomes

$$P_0(A' y_1' + B' y_2') = Q$$

or 
$$A'y_1 + B'y_2 = \frac{1}{P_0}Q$$
 ... (10)

The equation (5) and (10) will give us values of A' and B'

if 
$$\begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix} \neq 0$$
 and this is true as

W  $(y_1, y_2) \neq 0$  due to the fact that  $y_1, y_2$  are L.I. over I.

Now when the values of A', B' are known then with the use of integration, we can determine A and B.

Now with A and B determined, (4) gives us a particular solution of (1) and hence we can find the general solution of (1).

**Example 6 :** Solve  $\frac{d^2y}{dx^2} + a^2y = \tan ax$ , using method of variation of parameters.

**Sol.** The given equation is 
$$\frac{d^2y}{dx^2} + a^2y = \tan ax$$
  
or  $(D^2 + a^2) y = \tan ax$  ... (1)  
The corresponding homogeneous equation is  $(D^2 + a^2) y = 0$  ... (2)  
Its A.E. is  $D^2 + a^2 = 0$  or  $D^2 = -a^2$   
 $\therefore$   $D = \pm ai = 0 \pm ai$   
 $\therefore$  the complementary solution of (1) is  
 $y_c = c_1 \cos ax + c_2 \sin ax$   
Now we seek a particular solution of (1) by variation of parameters.  
Let  $y = A \cos ax + B \sin ax$  ... (3)  
Differentiating (3) w.r.t.  $x$ , we get,  
 $y' = A' \cos ax + B' \sin ax = 0$  ... (5)  
 $\therefore$  (4) becomes,  $y' = -A a \sin ax + B a \cos ax$  ... (6)  
Differentiating  $w.r.t. x$ , we get  
 $y'' = -A' a \sin ax + B' a \cos ax - Aa^2 \cos ax - Ba^2 \sin ax$  ... (7)  
Substituting the values of  $y$ ,  $y''$  from (3) and (7) in (1), we get  
 $-A' a \sin ax + B' a \cos ax = \tan ax$   
Now we try to find values of A' and B' from (5) and (8).  
Multiplying (5) by asin ax and (8) by cos ax and adding, we get  
 $B' a (\sin^2 ax + \cos^2 ax) = \tan ax \cos ax$ 

or B' a = sin ax or B' = 
$$\frac{1}{a} \sin ax$$

Also from (5), 
$$A' = -\frac{B'\sin ax}{\cos ax} = -\frac{1}{a}\frac{\sin^2 ax}{\cos ax} = -\frac{1}{a}\left(\frac{1-\cos^2 ax}{\cos ax}\right)$$

$$= -\frac{1}{a} \left( \sec ax - \cos ax \right) = \frac{1}{a} \cos ax - \frac{1}{a} \sec ax$$

 $\therefore$  Integrating w.r.t. x, we get,

$$A = \frac{1}{a} \frac{\sin ax}{a} - \frac{1}{a^2} \log \left| \tan \left( \frac{\pi}{4} + \frac{ax}{2} \right) \right| = \frac{1}{a^2} \sin ax - \frac{1}{a^2} \log \left| \tan \left( \frac{\pi}{4} + \frac{ax}{2} \right) \right|$$

Also B' =  $\frac{1}{a} \sin ax \Rightarrow B = -\frac{1}{a^2} \cos ax$ 

Putting values of A and B in (3), we get,

$$y = \left[\frac{1}{a^2}\sin ax - \frac{1}{a^2}\log\left|\tan\left(\frac{\pi}{4} + \frac{ax}{2}\right)\right|\right]\cos ax - \frac{1}{a^2}\cos ax\sin ax$$

which is particular solution of (1)

 $\therefore \qquad \text{General solution of (1) is} \\ y = c_1 \cos ax + c_2 \sin ax$ 

$$+\left[\frac{1}{a^{2}}\sin ax - \frac{1}{a^{2}}\log \left|\tan\left(\frac{\pi}{4} + \frac{ax}{2}\right)\right|\right]\cos ax - \frac{1}{a^{2}}\cos ax\sin ax \cdot$$

#### **1.3.6 Method of Undetermined Coefficients**

This method is used for finding the P.I. of a linear differential equation F(D) = X, where X contains terms in some special forms, as tabulated below

| S.No. | Special Form of X                                    | Trial Solution y for P.I.                        |
|-------|------------------------------------------------------|--------------------------------------------------|
| 1.    | $X^n$ or $a_n X^n$                                   | $A_0 + A_1 x + \dots + A_n x^n$                  |
| or    | $a_0^{+}a_1^{-}x + a_2^{-}x^2 + \dots + a_n^{-}x^n$  |                                                  |
| 2.    | e <sup>ax</sup> or pe <sup>ax</sup> Ae <sup>ax</sup> |                                                  |
| 3.    | $a_n x^n e^{ax}$                                     | $e^{ax} (A_0 A_1 x + A_2 x^2 + \dots + A_n x^n)$ |
| or    | $e^{ax}(a_0 + a_1x + a_2x^2 + + a_nx^n)$             |                                                  |
| 4.    | p sin ax or q cos ax                                 | A sin ax + B cos ax                              |
| or    | p sin ax + q cos ax                                  |                                                  |
| 5.    | $pe^{bx} sin ax or qe^{bx} cos ax$                   | $e^{bx}$ (A sin ax + B cos ax)                   |
|       |                                                      |                                                  |

|    | or | $e^{bx}$ (p sin ax + q cos ax)            |                                                    |
|----|----|-------------------------------------------|----------------------------------------------------|
| 6. |    | $x^n sin ax or a_n x^n sin ax$            | $(A_0 + A_1 x + + A_n x^n) \sin ax +$              |
|    | or | x <sup>n</sup> cos ax                     | $(A'_{0} + A'_{1}X + \dots + A'_{n}x^{n}) \cos ax$ |
|    | or | a <sub>n</sub> x <sup>n</sup> cos ax      |                                                    |
|    | or | $(a_0 + a_1 x + \dots + a_n x^n) \cos ax$ |                                                    |
|    | or | $(a_0 + a_1x + \dots + a_nx^n) \sin ax$   |                                                    |

**Note.** In the above table, n is a positive integer and  $a_0$ ,  $a_1$  ......  $a_n$ , p, q, a, b,  $A_0$ ,  $A_1$ , .....  $A_n$ ,  $A'_0$ ,  $A'_1$ , .....  $A'_n$  are constants. The constants occuring in second column are known and the constants occurding in third column are determined by substituting the trial solution in the given equation i.e., from the identity F(D) y = X.

**Example 7**: Solve  $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$  by method of undetermined

coefficients.

*.*..

**Sol.** The given differential equation is  $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$  ... (1)

In S.F.,  $(D^2 + 2D + 4) y = 2x^2 + 3e^{-x}$ The A.E. is  $D^2 + 2D + 4 = 0$ 

or 
$$D = \frac{-2 \pm \sqrt{4 - 16}}{2} = \frac{-2 \pm i2\sqrt{3}}{2} = -1 \pm i\sqrt{3}$$

$$\therefore \qquad \text{C.F.} = e^{-x} \left( c_1 \cos \sqrt{3x} + c_2 \sin \sqrt{3x} \right)$$

None of the terms in X =  $2x^2 + 3e^{-x}$  is present in C.F.

:. the trial solutions corresponding to  $x^2$  is  $A_0 + A_1x + A_2x^2$  and to  $e^{-x}$  is  $A_3 e^{-x}$  respectively.

trial solution for P.I. is (A + A - A - A) = (A + A - A)

$$y = (A_0 + A_1 x + A_2 x^2) + A_3 e^{-x}$$
  
$$\frac{dy}{dx} = A_1 + 2A_2 x - A_3 e^{-x}, \frac{d^2 y}{dx^2} = 2A_2 + A_3 e^{-x}$$

Putting the value of  $\frac{d^2y}{dx^2}$ ,  $\frac{dy}{dx}$ , y in (1), we get

 $2 A_{2} + A_{3} e^{-x} + 2A_{1} + 4A_{2}x - 2A_{3}e^{-x} + 4A_{0} + 4A_{1}x + 4A_{2}x^{2} + 4A_{3}e^{-x} = 2x^{2} + 3e^{-x}$ Equating coefficients of like terms on both sides, we have Coefficient of  $e^{-x}$ ;  $A_{3} - 2A_{3} + 4A_{3} = 3 \implies A_{3} = 1$ 

Coefficient of 
$$x^2$$
;  $4A_2 = 2 \implies A_2 = \frac{1}{2}$   
Coefficient of x;  $4A_2 + 4A_1 = 0 \implies A_1 = -\frac{1}{2}$   
Constant terms;  $2A_2 + 2A_1 + 4A_0 = 0 \implies A_0 = 0$   
 $\therefore \quad P.I. = 0 - \frac{1}{2}x + \frac{1}{2}x^2 + e^{-x} = -\frac{1}{2}x + \frac{1}{2}x^2 + e^{-x}$   
 $\therefore \quad \text{the C.S is given by}$ 

y = C.F. + P.I. = 
$$e^{-x}(c_1 \cos \sqrt{3x} + c_2 \sin \sqrt{3x}) - \frac{1}{2}x + \frac{1}{2}x^2 + e^{-x}$$
.

#### 1.3.7 Summary

In this lesson, we studied to find out the solutions of homogeneous and nonhomogeneous differential equations of order 2 or more, having constant coefficients. With these solutions, we were able to understand the concept of homogeneous solution and particular integral. Further, method of variation of parameters and method of undetermined coefficients for finding particular integral of non-homogeneous equations, have been elaborated in detail. The concepts are easily understandable with the help of suitable examples.

#### 1.3.8 Key Concepts

Homogeneous differential equation, Constant coefficients, Non-homogeneous differential equation, Method of Variation of Parameters, Method of Undetermined Coefficients, Particular Inetgral.

#### **1.3.9 Long Questions**

- 1. Explain the method of variation of parameters.
- 2. Explain the method of undetermined coefficients.
- 3. Solve  $(D^2 + D + 1) y = (1 + \sin x)^2$
- 4. Solve  $(D^2 4D + 4) y = x^2 + e^x + \cos 2x$
- 5. Solve  $(D^4 1) y = x \sin x$
- 6. Solve  $(D^2 + 3D + 2) y = \sin e^x by$  the method of variation of parameters.

#### **1.3.10 Short Questions**

1. Solve 
$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 4y = 0$$

2. Solve  $(D^3 + 1) y = 3 + e^{-x}$ .

31

3. Differentiate between homogeneous and non-homogeneous differential equation.

#### 1.3.11 Suggested Readings

- 1. R.K. Jain, S.R.K. Lyengar, Advanced Engineering Mathematics, Narosa Publishing House.
- 2. Rai Singhania : Ordinary and Partial Differential Equations, S. Chand & Company, New Delhi.
- 3. Zafar Ahsan, Differential Equations and their Applications, Prentice-Hall of India Pvt. Ltd., New Delhi 2nd Ed.

#### B.A. PART - I (SEMESTER-I)

## LAST UPDATED: MAY, 2023 MATHEMATICS : PAPER-II DIFFERENTIAL EQUATIONS

#### **LESSON NO. 1.4**

Author : Dr. Chanchal

## LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER WITH VARIABLE COEFFICIENTS

- 1.4.1 Objectives
- 1.4.2 Introduction
- 1.4.3 Cauchy's Linear Equation
- 1.4.4 Legendre's Linear Equation
- 1.4.5 Exact Equation
- 1.4.6 Differential Equation of the 2<sup>nd</sup> Order
  1.4.6.1 Method of Variation of Parameters
  1.4.6.2 Method of Changing the Independent Variable
- 1.4.7 Summary
- 1.4.8 Key Concepts
- 1.4.9 Long Questions
- **1.4.10 Short Questions**
- 1.4.11 Suggested Readings

#### 1.4.1 Objectives

In continuation with the previous lesson no. 2, in this lesson, we will study the methods for finding the solutions of linear differential equations of higher order with variable coefficients.

#### **1.4.2 Introduction**

An equation of the form

$$P_0 \; \frac{d^n y}{dx^n} + P_1 \; \frac{d^{n-1} y}{dx^{n-1}} + P_2 \; \frac{d^{n-2} y}{dx^{n-2}} + \ldots P_n y = Q$$

where  $P_0$ ,  $P_1$ ,  $P_2$ , ...,  $P_n$  and Q are functions of x, is called a linear differential equation with variable coefficients.

In this lesson, we will discuss various methods of solving some well known linear differential equations with variable coefficients such as Cauchy's linear equation, Legendre's linear equation and some other types of equations.

w

#### **1.4.3 Cauchy's Linear Equation**

A linear equation of the form

$$P_0 x^n \frac{d^n y}{dx^n} + P_1 x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + P_n y = Q(x)$$

where  $P_0$ ,  $P_1$ ,...,  $P_n$  are real constants and Q(x) is a function of x, is called Cauchy's linear equation.

Such an equation can be solved under the following rule :

#### Rule : Working rule to solve Cauchy's linear equation

**Step 1.** Put  $x = e^{z}$  i.e.,  $z = \log x, x > 0$ 

**Step 2.** Put  $\frac{d}{dz} = \theta$  so that

$$\mathbf{x} \mathbf{D} = \mathbf{\theta}, \mathbf{x}^2 \mathbf{D}^2 = \mathbf{\theta} (\mathbf{\theta} - 1), ..., \mathbf{x}^n \mathbf{D}^n = \mathbf{\theta} (\mathbf{\theta} - 1) (\mathbf{\theta} - 2) ... \left(\mathbf{\theta} - \overline{n-1}\right)$$

Step 3. Putting these in the given equation, we get,

$$\left[P_0\theta\left(\theta-1\right)...\left(\theta-\overline{n-1}\right)+P_1\theta\left(\theta-1\right)...\left(\theta-\overline{n-2}\right)+...+P_n\right]y=Q\left(e^z\right) \text{ which is linear equation}$$

with constant coeffs and solve for y in terms of z.

**Step 4.** Put  $z = \log x$  to get the required solution.

**Example 1 :** Solve :  $x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 8y = 65 \sin(\log x)$ 

Sol. The given differential equation is

$$x^{3} \frac{d^{3}y}{dx^{3}} + 3x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + 8y = 65 \sin (\log x)$$
  
or, in S.F.  
$$(x^{3}D^{3} + 3x^{2}D^{2} + xD + 8) y = 65 \sin (\log x) \qquad \dots (1)$$
  
Putting x = e<sup>z</sup>, or z = log x, x > 0  
and x D =  $\theta$ , x<sup>2</sup> D<sup>2</sup> =  $\theta$  ( $\theta$  - 1) and x<sup>3</sup> D<sup>3</sup> =  $\theta$  ( $\theta$  -1) ( $\theta$  - 2)  
here  $\frac{d}{dz} = \theta$ , in (1), we get  
$$[\theta (\theta-1) (\theta-2) + 3\theta (\theta-1) + \theta + 8] y = 65 \sin z$$
  
or  $\theta^{3} - 3\theta^{2} + 2\theta + 3\theta^{2} - 3\theta + \theta + 8) y = 65 \sin z$   
or  $(\theta^{3} + 8) y = 65 \sin z \qquad \dots (2)$   
A.E. is  $\theta^{3} + 8 = 0$ 

or 
$$(\theta + 2) (\theta^2 - 2\theta + 4) = 0$$
  
 $\therefore \quad \theta = -2, \frac{2 \pm \sqrt{4 - 16}}{2} = -2, \frac{2 \pm 2i \sqrt{3}}{2} = -2, 1 \pm \sqrt{3} i$   
 $\therefore \quad C.F. = c_1 e^{-2z} + e^z (c_2 \cos \sqrt{3}z + c_3 \sin \sqrt{3}z)$   
and  $P.I. = \frac{1}{\theta^3 + 8} (65 \sin z) = 65 \cdot \frac{1}{\theta(-1) + 8} \sin z$   $[\because \theta^2 = -1^2]$   
 $= 65 \cdot \frac{-\theta - 8}{(-\theta - 8)(-\theta + 8)} \sin z = 65 \frac{-\theta - 8}{\theta^2 - 65} \sin z$   
 $= 65 \cdot \frac{1}{-1 - 64} (-\theta \sin z - 8 \sin z) = -(-\cos z - 8 \sin z) = 8 \sin z + \cos z$   
 $\therefore \quad \text{the general solution is}$   
 $y = C.F. + P.I.$   
or  $y = c_1 e^{-2z} + e^z (c_2 \cos \sqrt{3}z + c_3 \sin \sqrt{3}z) + 8 \sin z + \cos z$ 

or 
$$y = c_1 x^{-2} + x [c_2 \cos(\sqrt{3} \log x) + c_2 \sin(\sqrt{3} \log x)]$$

+8 sin (log x) + cos (log x)

 $\left[ \because e^z = x \right]$ 

#### 1.4.4 Legendre's Linear Equation

A linear equation of the form

$$P_0(a + bx)^n \frac{d^n y}{dx^n} + P_1(a + bx)^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + ... + P_n y = Q(x) \qquad \dots (1)$$

where  $P_0$ ,  $P_1$ ,  $P_2$ ,...,  $P_n$  are real constants and Q(x) is a function of x, is called Legendre's linear equation.

Working method to solve Legendre's linear equation is given below :

#### Rule : Working rule to solve Legendre's linear equation

**Step 1.** Put  $a + b = e^{z}$ , i.e.,  $z = \log (a + bx)$ , a + bx > 0

**Step 2.** Put  $\frac{d}{dx} = \theta$ , so that

 $(a + bx) D = b\theta, (a + bx)^2 D^2 = b^2\theta (\theta - 1), ..., (a + bx)^n D^n = b^n\theta (\theta - 1)... \left(\theta - \overline{n - 1}\right)$ 

Step 3. Putting in the given equation, we get,

$$\left[P_0 b^n \theta(\theta-1) \dots \left(\theta - \overline{n-1}\right) + P_1 b^{n-1} \theta \left(\theta - 1\right) \dots \left(\theta - \overline{n-2}\right) + \dots + P_n\right] y = Q\left(\frac{e^z - a}{b}\right)$$

which is a linear equation with constant coefficients and solve for y in terms of z. **Step 4.** Put  $z = \log (a + bx)$  to get the required solution.

**Example 2 :** Solve  $(1 + x)^2 y_2 + (1 + x) y_1 = 2 \cos [\log (1 + x)]$ . **Sol.** The given differential equation is

$$(1 + x)^2 \frac{d^2 y}{dx^2} + (1 + x) \frac{dy}{dx} = 2\cos [\log (1 + x)]$$

or, in S.F.,  $[(1 + x)^2 D^2 + (1 + x) D] = 2 \cos [\log (1 + x)]$  ... (1) Put  $1 + x = e^z$ , or  $z = \log (1 + x)$ , x > -1

and 
$$(1 + x) D = \theta$$
,  $(1 + x)^2 D^2 = \theta (\theta - 1)$  where  $\frac{d}{dz} = \theta$ 

From (1), we get,

 $\begin{bmatrix} \theta & (\theta - 1) + \theta \end{bmatrix} y = 2 \cos z \quad \text{or} \qquad \theta^2 y = 2 \cos z$ The A.E. is  $\theta^2 = 0 \implies \theta = 0, 0$  $\therefore \qquad \text{C.F.} = (c_1 + c_z z) e^{0z} = c_1 + c_2 z$ P.I.  $= \frac{1}{\theta^2} (2\cos z) = 2 \frac{1}{\theta^2} \cos z = 2 \frac{1}{-1} \cos z = -2\cos z$ 

C.S. is  $y = c_1 + c_2 z - 2 \cos z = c_1 + c_2 \log (1 + x) - 2 \cos [\log (1 + x)].$ 

#### **1.4.5 Exact Equation**

A differential equation  $f\left(\frac{d^n y}{dx^n}, \frac{d^{n-1} y}{dx^{n-1}}, \dots, \frac{dy}{dx}, y\right) = Q(x)$  is said to be exact if it can be

obtained, simply by differentiation, from an equation of the next lower order

$$F\left(\frac{d^{n-1}y}{dx^{n-1}},\frac{d^{n-2}y}{dx^{n-2}},\ldots,\frac{dy}{dx},y\right) = \int Q(x) \, dx + c, \text{ where } c \text{ is an arbitrary constant}$$

Further, the NASC that the differential equation

$$P_0 \; \frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + P_2 \frac{d^{n-2} y}{dx^{n-2}} + \ldots + P_n y = Q$$

where  $P_0 \neq 0$ ,  $P_1, P_2, \dots, P_n$  and Q are functions of x, may be exact, is given by

$$P_n - P_{n-1} + P_{n-2} - P_{n-3} + \dots + (-1)^{n-1} P_0^{(n)} = 0$$

**Working method to test exactness.** Write the coeffs.  $P_0$ ,  $P_1$ ,  $P_2$ , ...,  $P_n$ , representing the missing coeffs (if any) by zero and operate upon them by – D as shown under.

$$-D \begin{vmatrix} P_0 & P_1 & P_2 & P_n \\ \\ -P_0' & -P_1' + P_0'' & -P_{n-1}' P_{n-2}'' - \dots + (-1)^n P_0^{(n)} \\ \hline P_0 & P_1 - P_0' P_2 - P_1' + P_0'' P_n - P_{n-1}'' + P_{n-2}'' - \dots + (-1)^n P_0^{(n)} \end{vmatrix}$$

The equation is exact iff remainder

 $P_n - P'_{n-1} + P''_{n-2} - \dots + (-1)^n P_0^{(n)} = 0$ And the first integral is

$$P_0 \frac{d^{n-1}y}{dx^{n-1}} + (P_1 - P_0') \frac{d^{n-2}y}{dx^{n-2}} + (P_2 - P_1' + P_0'') \frac{d^{n-3}y}{dx^{n-3}} + \dots$$

$$+ \left\{ P_{n-1} - P_{n-2}' + \dots + (-1)^{n-1} P_0^{(n-1)} \right\} y = \int Q \, dx + c \, .$$

**Example 3 :** Solve  $[(x^3 - 4x) D^3 + (9x^2 - 12) D^2 + 18x D + 6] y = 0.$ 

Sol. The given differential equation is

 $[(x^{3}-4x) D^{3}+(9x^{2}-12) D^{2}+18x D+6] y = 0$ 

or 
$$(x^{3} - 4x)\frac{d^{3}y}{dx^{3}} + (9x^{2} - 12)\frac{d^{2}y}{dx^{2}} + 18x\frac{dy}{dx} + 6y = 0$$
 ... (1)  
-D  $x^{3} - 4x$   $9x^{2} - 12$   $18x$   $6$   
 $-3x^{2} + 4$   $-12x$   $-6$   
 $x^{3} - 4x$   $6x^{2} - 8$   $6x$   $|0|$ 

Here remainder is zero. Therefore (1) is exact and its first solution is

$$-\underbrace{D}_{-3x^{2}+4}^{(x^{3}-4x)} \frac{d^{2}y}{dx^{2}} + (6x^{2}-8)\frac{dy}{dx} + 6xy = c_{1} \qquad \dots (2)$$

$$x^3 - 4x$$
  $3x^2 - 4$  |0

Again the remainder is zero. Therefore (2) is exact and its first integral or a second integral of (1) is

Again the remainder is zero. Therefore (3) is exact and its first integral or a third integral of (1) is

$$(x^{3}-4x)y = c_{1}\frac{x^{2}}{2} + c_{2}x + c_{3}.$$

#### **Integrating Factor**

Many times, the given equation may not be exact but it can be made exact by multiplying with the I.F., which can be determined under the following rules :

**Rule 1 :** If the coefficients  $P_0$ ,  $P_1$ ,  $P_2$ ,...,  $P_n$  of non-exact linear equation are of the form  $kx^p$  or sum or difference of the terms of the above type, then we shall suppose  $x^m$  is an I.F. We shall multiply the given differential equation by  $x^m$  and apply the condition of exactness. This will give us the value of m and the I.F.

**Rule 2 :** If the coeffs.  $P_0$ ,  $P_1$ ,  $P_2$ , ...,  $P_n$  are trigonometrical functions of the form sin x, cos x, tan x etc., then by trial we will find some suitable trigonometrical function as I.F.

**Example 4 :** Solve the following equation :

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx}(\tan x) + 3y = 3\tan^2 x \sec x.$$

**Sol.** The given equation is 
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx}(\tan x) + 3y = 3\tan^2 x \sec x$$
 ... (1)

Multiplying both sides of (1) by cos x, we get,

$$-\frac{D}{\cos x} \frac{d^2 y}{dx^2} + 2\sin x \frac{dy}{dx} + 3\cos x \cdot y = 3\tan^2 x \qquad \dots (2)$$

$$\begin{aligned} \cos x & 3 \sin x & [0] \\ \because & \text{remainder } = 0 \\ \therefore & (2) \text{ is exact and its first solution is} \\ & \cos x \frac{dy}{dx} + 3 \sin x.y = 3 (\tan x - x) + c_1 \\ \text{or} & \frac{dy}{dx} + 3 \tan x \cdot y = 3 (\sec x \tan x - x \sec x) + c_1 \sec x & \dots (3) \\ \because & (3) \text{ is linear equation of first order in y} \\ \therefore & \text{comparing it with } \frac{dy}{dx} + Py = Q, \text{ we get}, \\ P = 3 \tan x, Q = 3 (\sec x \tan x - x \sec x) + c_1 \sec x \\ \therefore & \int P dx = 3 \int \tan x dx = -3 \log \cos x = \log (\cos x)^{-3} \\ \therefore & \text{ I.F.} = e^{\int p dx} = (\cos x)^{-3} = \frac{1}{\cos^3 x} \\ \therefore & \text{ solution of (3) i.e., that of (1) is} \\ y \cdot \frac{1}{\cos^3 x} = \int 3 (\sec x \tan x - x \sec x) \sec^3 x dx + c_1 \int \sec x \sec^3 x dx + c_2 \\ & = 3 \cdot \frac{\sec^4 x}{4} - 3 \left[ x \left( \tan x + \frac{\tan^3 x}{3} \right) \right] \\ & - \int \left( \tan x + \frac{\tan^3 x}{3} \right) dx \right] + c_1 \left( \tan x + \frac{\tan^3 x}{3} \right) + c_2 \\ \text{ or } y \sec^3 x = \frac{3}{4} \sec^4 x - 3 \left[ x \left( \tan x + \frac{\tan^3 x}{3} \right) \right] \\ & + \frac{2}{3} \log |\cos x| - \frac{1}{6} \sec^2 x \right] + c_2 + c_1 \left( \tan x + \frac{\tan^3 x}{3} \right) \end{aligned}$$

which is the required solution.

39

#### 1.4.6 Differential Equation of the 2<sup>nd</sup> Order

The equation  $\frac{d^2y}{dx^2} + P \frac{dy}{dx} + Qy = R$  where P, Q and R are functions of x, is called the

standard linear differential equation of the second order. If P = 0, the equation

 $\frac{d^2y}{dx^2}$  + Qy = R is called the normal form.

We discuss some methods below to solve such type of differential equations :

#### **1.4.6.1 Method of Variation of Parameters**

**Example 5**: Solve the following equation :  $(x + 2) y'' - (2x + 5) y' + 2y = (x + 1) e^{x}$ given that its complementary solution is  $c_1(2x + 5) + c_2 e^{2x}$ . The given equation is  $(x + 2) y'' - (2x + 5) y' + 2y = (x + 1) e^{x}$ Sol. ... (1) Its complementary solution is  $y_c = c_1 (2x + 5) + c_2 e^{2x}$ Now we seek a particular solution of (1) by variation of parameters. Let  $y = A (2x + 5) + Be^{2x}$ ... (2) where A and B are functions of x. Diff. (2) w.r.t. x, we get  $y' = 2A + 2Be^{2x} + A' (2x + 5) + B' e^{2x}$ ... (3) Choose A'  $(2x + 5) + B' e^{2x} = 0$ ... (4) (3) becomes,  $y' = 2A + 2Be^{2x}$ *:*. ... (5) and  $y'' = 2A' + 2B' e^{2x} + 4 Be^{2x}$ ... (6) Substituting the values of y, y', y" form (2), (5), and (6) in (1), we get,  $(x + 2) (2A' + 2B' e^{2x} + 4Be^{2x}) - (2x + 5) (2A + 2Be^{2x})$  $+2 [A (2x + 5) + Be^{2x}] = (x + 1) e^{x}$ ... (7) 2 (x + 2) A' + 2 (x + 2)  $e^{2x}B' = (x + 1) e^{x}$ or Multiplying (4) by 2 (x + 2) and (7) by 1 and subtracting, we get, A'  $[(2x + 5) \cdot 2 (x + 2) - 2 (x + 2)] = -(x + 1) e^{x}$ 2  $(x + 2) (2x + 4) A' = - (x + 1) e^{x}$ or  $4 (x + 2)^2 A' = - (x + 1) e^x$ or  $A' = -\frac{(x+1)e^{x}}{4(x+2)^{2}}$ *.*.. Again multiplying (4) by 2 (x + 2), (7) by (2x + 5) and subtracting we get, B'  $e^{2x} [2 (x + 2) - 2 (x + 2) (2x + 5)] = - (x + 1) (2x + 5) e^{x}$  $-2 B' e^{x} (x + 2) (2x + 4) = - (x + 1) (2x + 5)$ or

$$\begin{array}{ll} \therefore & \mathrm{B}' = \frac{(2x+5)\,(x+1)}{4\,(x+2)^2}\,\mathrm{e}^{-x} \\\\ \therefore & \mathrm{A} = -\int \frac{(x+1)\,\mathrm{e}^x}{4\,(x+2)^2}\,\mathrm{d}x = -\frac{1}{4}\,\int \mathrm{e}^x \left[\frac{x+1}{(x+2)^2}\right] \mathrm{d}x \\\\ & = -\frac{1}{4}\,\int \mathrm{e}^x \left[\frac{(x+2)-1}{(x+2)^2}\right] \mathrm{d}x = -\frac{1}{4}\,\int \mathrm{e}^x \left[\frac{1}{x+2} - \frac{1}{(x+2)^2}\right] \mathrm{d}x \\\\ & = -\frac{1}{4}\,\mathrm{e}^x \cdot \frac{1}{x+2} \qquad \qquad \left[\because \int \mathrm{e}^x \{(f(x)+f'(x)\}\,\mathrm{d}x = \mathrm{e}^x f(x)\right] \\\\ \text{and} & \mathrm{B} = \frac{1}{4}\,\int \frac{(2x+5)\,(x+1)}{(x+2)^2}\,\mathrm{e}^{-x} = \frac{1}{4}\,\int \frac{2\,(x+2)^2-(x+2)-1}{(x+2)^2}\,\mathrm{e}^{-x} \mathrm{d}x \\\\ & = \frac{1}{4}\,\cdot 2\,\int \mathrm{e}^{-x} \mathrm{d}x - \frac{1}{4}\,\int \frac{1}{x+2}\,\mathrm{e}^{-x} \mathrm{d}x - \frac{1}{4}\,\int \frac{1}{(x+2)^2}\,\mathrm{e}^{-x} \\\\ & = \frac{1}{2}\,\mathrm{e}^{-x} - \frac{1}{4}\,\left[\frac{1}{x+2}\,\frac{\mathrm{e}^{-x}}{-1} - \int \frac{-1}{(x+2)^2}\,\frac{\mathrm{e}^{-x}}{-1}\,\mathrm{d}x\right] - \frac{1}{4}\,\int \frac{1}{(x+2)^2}\,\mathrm{e}^{-x} \mathrm{d}x \\\\ & = -\frac{1}{2}\,\mathrm{e}^{-x} + \frac{1}{4(x-2)}\,\mathrm{e}^{-x} + \frac{1}{4}\,\int \frac{1}{(x+2)^2}\,\mathrm{e}^{-x} \mathrm{d}x - \frac{1}{4}\,\int \frac{1}{(x+2)^2}\,\mathrm{e}^{-x} \mathrm{d}x \\\\ & = -\frac{1}{2}\,\mathrm{e}^{-x} + \frac{1}{4(x+2)}\,\mathrm{e}^{-x} \end{array}$$

 $\therefore$  particular solution of (1) is

$$y_{p} = \frac{-(2x+5)}{4(x+2)} e^{x} + \left[-\frac{1}{2}e^{-x} + \frac{e^{-x}}{4(x+2)}\right]e^{2x} = -e^{x}$$

:. the general solution of (1) is  $y = c_1(2x + 5) + c_2 e^{2x} - e^x$ .

41

## 1.4.6.2 Method of Changing the Independent Variable

**Example 6 :** Solve the following equation :  $x^6 \frac{d^2y}{dx^2} + 3x^5 \frac{dy}{dx} + a^2y = \frac{1}{x^2}$ .

**Sol.** The given equation is  $x^6 \frac{d^2y}{dx^2} + 3x^5 \frac{dy}{dx} + a^2y = \frac{1}{x^2}$ 

or 
$$\frac{d^2 y}{dx^2} + \frac{3}{x} \frac{dy}{dx} + \frac{a^2}{x^6} y = \frac{1}{x^8}$$
 ... (1)

Comparing it with  $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$ , we get,  $P = \frac{3}{x}$ ,  $Q = \frac{a^2}{x^6}$ ,  $R = \frac{1}{x^8}$ 

Changing the independent variable from x to z, the equation (1) reduces to

$$\frac{d^2 y}{dz^2} + P_1 \frac{dy}{dz} + Q_1 y = R_1 \qquad \dots (2)$$

where 
$$P_1 = \frac{P \frac{dz}{dx} + \frac{d^2 z}{dx^2}}{\left(\frac{dz}{dx}\right)^2}, Q_1 = \frac{Q}{\left(\frac{dz}{dx}\right)^2}, R_1 = \frac{R}{\left(\frac{dz}{dx}\right)^2}$$

We choose z in such a way that  $Q_1 = \frac{Q}{\left(\frac{dz}{dx}\right)^2} = \frac{\frac{a^2}{x^6}}{\left(\frac{dz}{dx}\right)^2} = \text{constant} = a^2 \text{(say)}$ 

$$\therefore \qquad x^3 \frac{dz}{dx} = 1, \text{ or } \frac{dz}{dx} = \frac{1}{x^3}$$

$$\therefore \qquad z = -\frac{1}{2x^2} \qquad \dots (3)$$

Now 
$$P_1 = \frac{\frac{3}{x} \cdot \frac{1}{x^3} + \left(-\frac{3}{x^4}\right)}{\left(\frac{1}{x^3}\right)^2} = 0$$
 and  $R_1 = \frac{\frac{1}{x^8}}{\frac{1}{x^6}} = \frac{1}{x^2} = -2z$ 

$$\therefore$$
 equation (2) reduces to  $\frac{d^2y}{dz^2} + a^2y = -2z$ 

or 
$$(D^2 + a^2) y = -2z$$
  
A.E. is  $D^2 + a^2 = 0$ , or  $D^2 = -a^2$  or  $D = \pm ia$ 

$$\therefore \qquad \text{C.F.} = c_1 \cos az + c_2 \sin az = c_1 \cos \left(-\frac{a}{2x^2}\right) + c_2 \sin \left(-\frac{a}{2x^2}\right)$$

P.I. = 
$$-\frac{1}{D^2 + a^2} 2z = -2 \frac{1}{a^2 \left(1 + \frac{D^2}{a^2}\right)} z$$

$$= -\frac{2}{a^{2}} \left(1 + \frac{D^{2}}{a^{2}}\right)^{-1} z = -\frac{2}{a^{2}} (1) z = -\frac{2z}{a^{2}} = \frac{1}{a^{2}x^{2}}$$

$$\therefore \qquad \text{complete solution is } y = c_1 \cos \frac{a}{2x^2} - c_2 \sin \frac{a}{2x^2} + \frac{1}{a^2 x^2}.$$

#### 1.4.7 Summary

In this lesson, we studied to find out the solutions of linear differential equations having variable coefficients. In particular, we have solved Cauchy's linear equations and Legendre's linear equation. Further, we have discussed method of variation of parameters and method of changing the independent variable for solving linear differential equation of second order with variable coefficients. The concepts are made easily understandable with the help of suitable examples.

#### 1.4.8 Key Concepts

Cauchy's Linear Equation, Legendre's Linear Equation, Exact differential equation, Integrating Factor, Method of variation of parameters.

#### **1.4.9 Long Questions**

1. Solve  $((1 + 2x)^2D^2 - 6(1 + 2x)D + 16)y = 8(1 + 2x)^2$ 

2. Solve 
$$(2x^2 + 3x)\frac{d^2y}{dx^2} + (6x + 3)\frac{dy}{dx} + 2y = (x + 1)e^x$$

3. Solve 
$$x \frac{d^2y}{dx^2} - (2x-1)\frac{dy}{dx} + (x-1)y = 0$$
 by the method of variation of parameters.

4. Solve  $\frac{d^2y}{dx^2} - \cot x \frac{dy}{dx} - y \sin^2 x = 0$  by the change of independent variables.

#### **1.4.10 Short Questions**

1. Solve the following differential equations :

(i) 
$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} = x$$

(ii)  $(x^2D^2 - 3xD + 5) y = sin (log x)$ 

- 2. Define Cauchy's Linear Equation.
- 3. Define Legendre's Linear Equation.

#### 1.4.11 Suggested Readings

- 1. R.K. Jain, S.R.K. Lyengar, Advanced Engineering Mathematics, Narosa Publishing House.
- 2. Rai Singhania : Ordinary and Partial Differential Equations, S. Chand & Company, New Delhi.
- 3. Zafar Ahsan, Differential Equations and their Applications, Prentice-Hall of India Pvt. Ltd., New Delhi 2nd Ed.

# Mandatory Student Feedback Form <u>https://forms.gle/KS5CLhvpwrpgjwN98</u>

Note: Students, kindly click this google form link, and fill this feedback form once.